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Abstract. In this paper, we present a linearized compact difference scheme for one-
dimensional time-space fractional nonlinear diffusion-wave equations with initial
boundary value conditions. The initial singularity of the solution is considered, which
often generates a singular source and increases the difficulty of numerically solving
the equation. The Crank-Nicolson technique, combined with the midpoint formula
and the second-order convolution quadrature formula, is used for the time discretiza-
tion. To increase the spatial accuracy, a fourth-order compact difference approxima-
tion, which is constructed by two compact difference operators, is adopted for spa-
tial discretization. Then, the unconditional stability and convergence of the proposed
scheme are strictly established with superlinear convergence accuracy in time and
fourth-order accuracy in space. Finally, numerical experiments are given to support
our theoretical results.
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1 Introduction

In this paper, the following time-space fractional nonlinear diffusion-wave equation with
initial boundary value conditions will be considered

C
0 Dα

t u(x,t)=
(

∂2

∂x2 +
∂β

∂|x|β

)
u(x,t)+g(u)+ f (x,t), (1.1a)
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u(x,0)=0, ut(x,0)=0, 0< x<L, (1.1b)
u(0,t)=u(L,t)=0, 0< t≤T, (1.1c)

where 1< α,β≤ 2, g(u) is a nonlinear function of u that fulfills the Lipschitz condition
with g(0)=0, f (x,t) is a known function, and C

0 Dα
t u(x,t) is the temporal Caputo fractional

derivative of order α defined as

C
0 Dα

t u(x,t)=
1

Γ(2−α)

∫ t

0
(t−s)1−α ∂2u(x,s)

∂s2 ds.

And ∂βu(x,t)
∂|x|β is the Riesz fractional derivative of order β defined as

∂βu(x,t)
∂|x|β

=− 1

2cos(πβ
2 )

(
RL
0 Dβ

x u(x,t)+RL
x Dβ

Lu(x,t)
)

,

where RL
0 Dβ

x u(x,t) and RL
x Dβ

Lu(x,t) are the left and right Riemann-Liouville fractional
derivatives of order β defined as

RL
0 Dβ

x u(x,t)=
1

Γ(2−β)

∂2

∂x2

∫ x

0
(x−z)1−βu(z,t)dz

and

RL
x Dβ

Lu(x,t)=
1

Γ(2−β)

∂2

∂x2

∫ L

x
(z−x)1−βu(z,t)dz,

respectively.

Remark 1.1. In the case of nonhomogeneous initial conditions, such as u(x,0)= ϕ(x) 6=
0 and ut(x,0) = ψ(x) 6= 0. To homogenize the initial value conditions, we can use the
following transformation

û(x,t)=u(x,t)−ϕ(x)−tψ(x).

Clearly, the nonhomogeneous boundary conditions can be similarly homogenized.

The time-space fractional diffusion-wave equation (1.1) can be considered as inter-
mediate between parabolic diffusion equations and hyperbolic wave equations. It has
been widely applied in the modeling of oxygen delivery through capillaries and anoma-
lous relaxation in magnetic resonance imaging signal magnitude [1–3]. However, us-
ing currently available analytical methods, it is impossible to find an exact solution to
Eq. (1.1) [4–6]. As a result, if Eq. (1.1) is to be used in practical modeling, effective numeri-
cal methods for solving it in the corresponding numerical simulations must be developed
(see [7–11] for examples).
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We mention some recent numerical methods that have been developed to solve time-
space fractional partial differential equations with initial boundary value conditions [12–
23]. Bhrawy and Zaky [12] proposed a fast spectral method to solve the multi-term
time-space fractional diffusion-wave equation. Ding [14] presented a global Padé ap-
proximation method for time-space fractional diffusion equation. Zhao et al. [17] intro-
duced and analyzed a Galerkin finite element scheme for time-space fractional diffu-
sion equation. Vong et al. [18] considered high order finite difference methods for two-
dimensional fractional diffusion equations with temporal Caputo and spatial Riemann-
Liouville derivatives. Arshad in [19] applied the trapezoidal method and a fourth-order
fractional compact difference operator to solve the time-space fractional diffusion equa-
tion. Lin et al. [20] proposed separable preconditioners for solving time-space fractional
Caputo-Riesz diffusion equations with Toeplitz-like blocks coefficient matrices. Fan [21]
studied the two-dimensional multi-term time-space fractional diffusion-wave equation
on an irregular convex domain using the unstructured mesh finite element method.

Very recently, Dehghan et al. [24] presented a new method for solving two-
dimensional weakly singular time-space fractional integro-differential equation. Ab-
baszadeh et al. in [25] proposed and analyzed a high-order numerical scheme for solving
the two-dimensional time-space distributed order weakly singular integro-partial differ-
ential equation using finite difference and Galekrin spectral methods. Huang et al. [26]
proposed and analyzed a superlinear convergence method for solving the multi-term and
distribution-order fractional wave equation with initial singularity.

However, there are still few publications on numerical methods for time-space frac-
tional nonlinear partial differential equations with initial singularity. This motivates us
to propose an efficient numerical method for solving the time-space fractional nonlinear
diffusion-wave equation with initial boundary value conditions that takes regularity un-
der consideration. In this paper, we consider the analytical solution to Problem (1.1) with
the following time regularity assumption:∣∣∣∣∂iu(x,t)

∂ti

∣∣∣∣≤Ctσ−i, i=0,1,2, (1.2)

where 1<σ< α is a regularity parameter. Herein, we construct high-order accurate lin-
earized compact difference schemes for time-space fractional nonlinear diffusion-wave
equation with initial boundary value conditions. Specifically, the considered problem
is converted into their equivalent partial integro-differential equations. Then, using the
Crank-Nicolson technique in combination with the second-order convolution quadrature
formula and the midpoint formula in time, as well as the classical central difference for-
mula and the fourth-order compact operators in space, we will construct a linearized
compact finite difference scheme. Next, the linearized compact finite difference scheme
is proved to be unconditional stable and convergence.

The remainder of this paper is structured as follows. Section 2 provides and dis-
cusses various preparatory and relevant lemmas. The linearized compact finite differ-
ence scheme is constructed in Section 3. In Section 4, the stability and convergence of
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the linearized compact finite difference scheme are proved. Numerical experiments are
provided to verify the theoretical results in Section 5. Section 6 concludes this paper with
a brief conclusion.

2 Preliminaries

In this section, we introduce certain fundamental notations and key lemmas that will
be utilized throughout the remainder of this paper. Assume that both M,N are positive
integers. Let τ=T/N and tn =nτ (n=0,1,··· ,N). Let h= L/M and xi = ih (i=0,1,··· ,M).
Then, the spatial central difference operator and compact difference operators are defined
as

δ2
xun

i =
1
h2

(
un

i−1−2un
i +un

i+1
)

,

Aun
i =


1

12
(
un

i−1+10un
i +un

i+1

)
, 1≤ i≤M−1,

un
i , i=0 or M,

Hun
i =


β

24
un

i−1+

(
1− β

12

)
un

i +
β

24
un

i+1, 1≤ i≤M−1,

un
i , i=0 or M.

It is obvious that

Aun
i =

(
1+

h2

12
δ2

x

)
un

i , Hun
i =

(
1+

βh2

24
δ2

x

)
un

i .

For convenience, we introduce a new compact difference operator

Lun
i =AHun

i =

(
1+

h2

12
δ2

x

)(
1+

βh2

24
δ2

x

)
un

i

=

(
1+

βh2

24
δ2

x

)(
1+

h2

12
δ2

x

)
un

i =HAun
i .

Lemma 2.1. If u(t) satisfies (1.2), then the following results

ut(tn+1/2)=
u(tn+1)−u(tn)

τ
+O(tσ−3

n+1τ2)

=δtun+ 1
2 +O(tσ−3

n+1τ2) (2.1)

and

0 Jα−1
t u(tn+1/2)=

1
2

[
0 Jα−1

t u(tn+1)+0 Jα−1
t u(tn)

]
+O(tσ+α−3

n+1 τ2) (2.2)

hold, where 0 Jα
t is the Riemann-Liouville integral operator defined by

0 Jα
t u(t)=

1
Γ(α)

∫ t

0
(t−z)α−1u(z)dz.
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Proof. For−1≤γ≤1 and n=0,1,··· ,N−1, we can easily find that by the Taylor expansion(
tn+ 1

2

)σ−γ
=

1
2

[(
tσ−γ
n+1

)
+
(

tσ−γ
n

)]
+O

(
tσ−γ−2
n+1 τ2

)
. (2.3)

Since u(t)=O(tσ), we deduce that

0 Jα−1
t u(tn+ 1

2
)=O

(
tσ+α−1
n+ 1

2

)
.

Therefore, (2.2) is obtained by setting γ=1−α in (2.3). Similarly, (2.1) can be obtained by
letting γ=1 in (2.3).

Lemma 2.2 ([27,28]). Let 1<σ<α<2 and ω
(α−1)
k are the weights associated with the generating

function (
3
2
−2z+

z2

2

)1−α

,

under the Assumption (1.2), then∣∣∣∣∣0 Jα−1
tn+1

u(t)−τα−1
n+1

∑
k=0

ω
(α−1)
n+1−ku(tk)

∣∣∣∣∣≤Ctσ+α−3
n+1 τ2.

For linearizing the nonlinear function g(u), the following lemma is necessary.

Lemma 2.3 ([29]). Suppose u(t) satisfies the Assumption (1.2), then it holds

u(tn+1)=2u(tn)−u(tn−1)+O(tσ−2
n τ2).

The following two lemmas are listed in order to show the truncation errors of two
compact difference operators, which generates the fourth-order accuracy approximation
in space.

Lemma 2.4 (Lemma 1.2 in [30]). Suppose u(x)∈C6([xi−1,xi+1]) and ζ(s)=5(1−s)3−3(1−
s)3, we obtain

Au
′′
(xi)−δ2

xu(xi)=
h4

360

∫ 1

0

[
u(6) (xi−sh)+u(6) (xi+sh)

]
ζ(s)ds.

Lemma 2.5 (Theorem 2.4 in [31]). Let 1<β<2 and u(x) is defined in a finite interval [0,L]. If
u(x)∈C7(R) and all its derivative up to the order five belong to L(R), then

−δ
β
x u(x)=H

(
∂βu(x)
∂|x|β

)
+O(h4),

where

δ
β
x u(x)=

1
hβ

d x
L e

∑
j=−d L−x

h e

(−1)j Γ(β+1)
Γ(β/2− j+1)Γ(β/2+ j+1)

u(x− jh),

where ∂βu(x)
∂|x|β is the Riesz derivative with order β.
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3 Derivation of a linearized compact difference scheme

In this section, a linearized compact finite difference scheme for Problem (1.1) will be
derived under the Assumption (1.2). After multiplying 0 Jα−1

t on both sides of Eq. (1.1),
we get the following partial integro-differential equation

∂u(x,t)
∂t

=0 Jα−1
t

[(
∂2

∂x2 +
∂β

∂|x|β

)
u(x,t)+g(u)

]
+F(x,t), (3.1)

where F(x,t)= 0 Jα−1
t f (x,t).

Assume u(x,·)∈C7([0,L]) with u(0,·)=u(L,·)=0 and consider Eq. (3.1) at the point
(xi,tn+1/2), that is

∂u(xi,t)
∂t

∣∣∣∣
t=t

n+ 1
2

= 0 Jα−1
t
n+ 1

2

[(
∂2

∂x2 +
∂β

∂|x|β

)
u(xi,t)+g(u(xi,t))

]
+F(xi,tn+ 1

2
).

Using the Crank-Nicolson method and Lemma 2.1, we obtain

u(xi,tn+1)−u(xi,tn)

τ

=
1
2

(
0 Jα−1

tn+1

∂2u(xi,t)
∂x2 +0 Jα−1

tn

∂2u(xi,t)
∂x2

)
+

1
2

(
0 Jα−1

tn+1

∂βu(xi,t)
∂|x|β

+0 Jα−1
tn

∂βu(xi,t)
∂|x|β

)
+

1
2

(
0 Jα−1

tn+1
g(u(xi,t))+0 Jα−1

tn
g(u(xi,t))

)
+F(xi,tn+ 1

2
)+O(tσ−3

n+1τ2).

Now, let us act both sides of the above equation with the compact operator L. Then by
using Lemmas 2.4 and 2.5, we obtain

L
(

u(xi,tn+1)−u(xi,tn)

τ

)
=

1
2

(
0 Jα−1

tn+1

(
Hδ2

x−Aδ
β
x

)
u(xi,t)+0 Jα−1

tn

(
Hδ2

x−Aδ
β
x

)
u(xi,t)

)
+
L
2

(
0 Jα−1

tn+1
g(u(xi,t))+0 Jα−1

tn
g(u(xi,t))

)
+LF(xi,tn+ 1

2
)+O(tσ−3

n+1τ2+h4).

Let u(xi,tn)=un
i . By Lemma 2.2, it achieves that

L
(

un+1
i −un

i
τ

)
=

τα−1

2

(
n+1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
un+1−k

i +
n

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
un−k

i

)

+
τα−1L

2

(
n+1

∑
k=0

ω
(α−1)
k g(un+1−k

i )+
n

∑
k=0

ω
(α−1)
k g(un−k

i )

)
+LFn+ 1

2
i +O(tσ−3

n+1τ2+h4). (3.2)
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In terms of the unknown un+1
i , Eq. (3.2) is a nonlinear system. To linearize Eq. (3.2), we

use

u1
i =u0

i +τ(ut)
0
i +O

(
τ2 tσ−1

∣∣∣t1

t0

)
and Lemma 2.3 for n=0 and 1≤n≤N−1, respectively, i.e.,

L
(

u1
i −u0

i

)
=

τα

2

(
1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
u1−k

i +ω
(α−1)
0

(
Hδ2

x−Aδ
β
x

)
u0

i

)

+
ταL

2

(
ω

(α−1)
0 g(u0

i +τ(ut)
0
i )+ω

(α−1)
1 g(u0

i )
)

+
ταL

2
ω

(α−1)
0 g(u0

i )+τLFn+ 1
2

i +R∗i (3.3)

and

L
(

un+1
i −un

i

)
=

τα

2

(
n+1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
un+1−k

i +
n

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
un−k

i

)

+
ταL

2

(
n+1

∑
k=1

ω
(α−1)
k g(un+1−k

i )+
n

∑
k=0

ω
(α−1)
k g(un−k

i )

)

+
ταω

(α−1)
0
2

Lg(2un
i −un−1

i )+τLFn+ 1
2

i +R∗i , (3.4)

where R∗i =O(t
σ−3
n+1τ3+τh4).

Noting (ut)0
i =0, omitting the truncation error term R∗i in (3.3) and (3.4) and replacing

the un
i by its numerical solution Un

i , one can get the following linearized compact finite
difference schemes for Eq. (3.1),

L
(

U1
i −U0

i

)
=

τα

2

(
1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
U1−k

i +ω
(α−1)
0

(
Hδ2

x−Aδ
β
x

)
U0

i

)

+
ταL

2

(
ω

(α−1)
0 g(U0

i )+ω
(α−1)
1 g(U0

i )
)

+
ταL

2
ω

(α−1)
0 g(U0

i )+τLFn+ 1
2

i (3.5)

and

L
(

Un+1
i −Un

i

)
=

τα

2

(
n+1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
Un+1−k

i +
n

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
Un−k

i

)

+
ταL

2

(
n+1

∑
k=1

ω
(α−1)
k g(Un+1−k

i )+
n

∑
k=0

ω
(α−1)
k g(Un−k

i )

)

+
ταω

(α−1)
0
2

Lg(2Un
i −Un−1

i )+τLFn+ 1
2

i . (3.6)
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4 Analysis of the linearized compact difference schemes (3.5)
and (3.6)

To begin, we define the grid function space Θh as follows,

Θh ={un
i |0≤n≤N, 0≤ i≤M and un

0 =un
M =0}.

For two vectors un,vn∈Θh, we denote

〈un,vn〉=h
M−1

∑
i=1

un
i vn

i , ||un||2= 〈un,un〉.

Lemma 4.1 (Lemma 3.4 in [32]). For 1<β<2 and the operator δ
β
x defined in Lemma 2.5, there

exists a linear difference operator, denoted by δ
β/2
x , such that

〈δβ
x un,vn〉= 〈δβ/2

x un,δβ/2
x vn〉,

where un,vn∈Θh.

Lemma 4.2 (Lemma 4.2.2 in [33]). For un,vn∈Θh, it holds

〈δ2
xun,vn〉=−〈δxun,δxvn〉.

Lemma 4.3. The operators A and H are symmetric, positive and commutative. Thus, the oper-
ator L=AH is symmetric and positive. Furthermore, there exist invertible matrices A, B, and
Q such that

〈Aun,vn〉= 〈Bun,Bvn〉, 〈Hun,vn〉= 〈Aun,Avn〉 and 〈Lun,vn〉= 〈Qun,Qvn〉,

where un,vn∈Θh.

Proof. This result is straightforward to obtain using the definitions of the operatorsA,H,
and L.

Now we can define a new norm

‖un‖2
L= 〈Lun,un〉= 〈Qun,Qun〉

and establish the equivalence of two norms ‖·‖L and ‖·‖.

Lemma 4.4. For any grid function un∈Θh, it holds

1
3
‖un‖2≤‖un‖2

L≤‖un‖2.
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Proof. Note that

L=AH=

(
1+

βh2

24
δ2

x

)(
1+

h2

12
δ2

x

)
=1+

h2

12
δ2

x+
βh2

24
δ2

x+
βh4

288
δ2

xδ2
x,

then

〈Lun,un〉=
〈(

1+
h2

12
δ2

x+
βh2

24
δ2

x+
βh4

288
δ2

xδ2
x

)
un,un

〉
=‖un‖2+

h2

12
〈δ2

xun,un〉+ βh2

24
〈δ2

xun,un〉+ βh4

288
〈δ2

xδ2
xun,un〉

=‖un‖2− h2

12
‖δxun‖2− βh2

24
‖δxun‖2+

βh4

288
‖δxδxun‖2.

Using the inverse estimate

‖δxu‖2≤ 4
h2 ‖u

n‖2,

we have

〈Lun,un〉≥‖un‖2− 1
3
‖un‖2− β

6
‖un‖2.

Due to 1<β≤2, it deduces that

〈Lun,un〉≥‖un‖2− 1
3
‖un‖2− β

6
‖un‖2=

1
3
‖un‖2.

Clearly, it holds that

‖Lun‖2≤‖un‖2.

This proof is completed.

Lemma 4.5 (Lemma 2.5 in [34]). For any positive integer K and any real vector (V1,V2,··· ,VK),
then the following inequality holds

K−1

∑
n=0

(
n

∑
j=0

ω
(α−1)
j Vn+1−j

)
Vn+1≥0,

where {ω(α−1)
j }∞

j=0 are the weights defined in Lemma 2.3.
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4.1 Convergence

Theorem 4.1. Let u(x,t) under Assumption (1.2) is the exact solution of Eq. (3.1) with u(0,·)=
u(L,·) = 0 and {Un

i |0≤ i≤M,1≤ n≤N} is the numerical solution of the linearized compact
difference Schemes (3.5) and (3.6), then it holds

‖en‖≤C
(

τσ+h4
)

.

Proof. From Eqs. (3.5) and (3.6), we obtain

L
(

en+1
i −en

i

)
=

τα

2

(
n+1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
en+1−k

i +
n

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
en−k

i

)

+
ταL

2

n

∑
k=0

(
ω

(α−1)
k+1 +ω

(α−1)
k

)(
g(un−k

i )−g(Un−k
i )

)
+

ταω
(α−1)
0
2

L
(

g(2un
i −un−1

i )−g(2Un
i −Un−1

i )
)
+R∗, (4.1)

where en
i =un

i −Un
i . Multiplying Eq. (4.1) by h(en+1

i +en
i ) and summing over 1≤ i≤M−1,

we obtain

‖en+1‖2
L−‖en‖2

L

=
τα

2

n

∑
k=0

ω
(α−1)
k

〈(
Hδ2

x−Aδ
β
x

)(
en+1−k+en−k

)
,en+1+en

〉

+
ταω

(α−1)
n+1

2

〈(
Hδ2

x−Aδ
β
x

)
e0,en+1+en

〉
+

τα

2

n

∑
k=0

(
ω

(α−1)
k+1 +ω

(α−1)
k

)〈
L
(

g(un−k)−g(Un−k)
)

,en+1+en
〉

+
ταω

(α−1)
0
2

〈
L
(

g(2un−un−1)−g(2Un−Un−1)
)

,en+1+en
〉
+〈R∗,en+1+en〉.

Since e0
i =0 for 0≤ i≤M. Summing over n from 1 to J−1 and applying Lemmas 4.1 and

4.2, we obtain the following equality

‖eJ‖2
L−‖e1‖2

L

=− τα

2

J−1

∑
n=1

n

∑
k=0

ω
(α−1)
k 〈Aδx

(
en+1−k+en−k

)
,Aδx

(
en+1+en

)
〉

− τα

2

J−1

∑
n=1

n

∑
k=0

ω
(α−1)
k 〈Bδ

β/2
x

(
en+1−k+en−k

)
,Bδ

β/2
x

(
en+1+en

)
〉

+
τα

2

J−1

∑
n=1

n

∑
k=0

(
ω

(α−1)
k+1 +ω

(α−1)
k

)
〈L
(

g(un−k)−g(Un−k)
)

,en+1+en〉
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+
ταω

(α−1)
0
2

J−1

∑
n=1
〈L
(

g(2un−un−1)−g(2Un−Un−1)
)

,en+1+en〉

+
J−1

∑
n=1
〈R∗,en+1+en〉. (4.2)

Now, using Eqs. (3.3) and (3.5), and following the same deductions as above, we deduce
that

‖e1‖2
L=−

ταω
(α−1)
0
2

(
‖Aδxe1‖2+‖Bδ

β/2
x e1‖2

)
+ταω

(α−1)
0 〈L

(
g(u0)−g(U0)

)
,e1〉

+
ταω

(α−1)
1
2

〈L
(

g(u0)−g(U0)
)

,e1〉+〈R∗,e1〉. (4.3)

Sum Eqs. (4.2) and (4.3) and use Lemma 4.5, it deduces that

‖eJ‖2
L≤

τα

2

J−1

∑
n=1

n

∑
k=0

(
ω

(α−1)
k+1 +ω

(α−1)
k

)〈
L
(

g(un−k)−g(Un−k)
)

,en+1+en
〉

+
ταω

(α−1)
0
2

J−1

∑
n=1

〈
L
(

g(2un−un−1)−g(2Un−Un−1)
)

,en+1+en
〉

+ταω
(α−1)
0 〈L

(
g(u0)−g(U0)

)
,e1〉

+
ταω

(α−1)
1
2

〈L
(

g(u0)−g(U0)
)

,e1〉+
J−1

∑
n=1
〈R∗,en+1+en〉. (4.4)

Exchanging the summation order for the first term on the right-hand side of Inequality
(4.4), using the Lipschitz condition of g and Lemma 4.4, we obtain

‖eJ‖2
L≤Cτα

J−1

∑
k=0

J−1

∑
n=k

(
w(α−1)

n+1−k+w(α−1)
n−k

)
‖ek‖‖en+1+en‖

+Cτα
J−1

∑
n=1
‖en‖‖en+1+en‖+C

J−1

∑
n=1

R∗‖en+1+en‖.

Since τα−1 ∑J−1
n=k(ω

(α−1)
n+1−k+ω

(α−1)
n−k ) is bounded and assume that ‖eP‖L=max0≤J≤N‖eJ‖L,

then it holds

‖eP‖L≤C
P−1

∑
n=0

(
tσ−3
n+1τ3+τh4

)
≤C

(
P−1

∑
n=0

(n+1)σ−3τσ+h4

)
.
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Since ∑P−1
n=0(n+1)σ−3 is bounded. Using Lemma 4.4, we arrive at the estimate

‖eP‖≤C
(

τσ+h4
)

.

The proof is completed.

Remark 4.1. The linearized compact difference Schemes (3.5) and (3.6), according to The-
orem 4.1, have temporal accuracyO(τσ). However, Eq. (3.2) has a global truncation error
in the temporal direction of O(tσ−3

n+1τ2). This means that the global convergence order in
temporal direction can be 2 if tn+1 is far from t0. As a result, we may conclude that lin-
earized compact difference Schemes (3.5) and (3.6) have temporal accuracy O(τσ) near
some first time steps, and become O(τ2) when tn+1 is far from t0. This assertion will be
strictly verified by numerical experiments in Section 4.

4.2 Stability

Theorem 4.2. Suppose {Un
i } and {Ûn

i } are the numerical solutions of linearized compact finite
difference Schemes (3.5) and (3.6) with different initial conditions, then it can be obtained the
following unconditional stability result,

‖ξP‖≤C
(
‖ξ0‖+τ‖Hδ2

xξ0‖+τ‖Aδ
β
x ξ0‖+ max

0≤n≤P
‖L
(

Fn+ 1
2− F̂n+ 1

2

)
‖
)

,

where ξn
i =Un

i −Ûn
i .

Proof. Note that Ûn
i is also the numerical solution of the linearized difference difference

scheme, thus we have

L
(

Ûn+1
i −Ûn

i

)
=

τα

2

(
n+1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
Ûn+1−k

i +
n

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
Ûn−k

i

)

+
ταL

2

(
n+1

∑
k=1

ω
(α−1)
k g(Ûn+1−k

i )+
n

∑
k=0

ω
(α−1)
k g(Ûn−k

i )

)

+
ταω

(α−1)
0
2

Lg(2Ûn
i −Ûn−1

i )+τLF̂n+ 1
2

i . (4.5)

Subtracting Eq. (4.5) from Eq. (3.6), we obtain

L
(

ξn+1
i −ξn

i

)
=

τα

2

(
n+1

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
ξn+1−k

i +
n

∑
k=0

ω
(α−1)
k

(
Hδ2

x−Aδ
β
x

)
ξn−k

i

)

+
ταL

2

n

∑
k=0

(
ω

(α−1)
k+1 +ω

(α−1)
k

)(
g(Un−k

i )−g(Ûn−k
i )

)
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+
ταω

(α−1)
0
2

L
(

g(2Un
i −Un−1

i )−g(2Ûn
i −Ûn−1

i )
)

+τL
(

Fn+ 1
2

i − F̂n+ 1
2

i

)
. (4.6)

Multiplying Eq. (4.6) by h(ξn+1
i +ξn

i ), and summing over 1≤ i≤M−1, we have

‖ξn+1‖2
L−‖ξn‖2

L=
τα

2

n

∑
k=0

ω
(α−1)
k

〈(
Hδ2

x−Aδ
β
x

)(
ξn+1−k+ξn−k

)
,ξn+1+ξn

〉
+

τα

2
ω

(α−1)
n+1

〈(
Hδ2

x−Aδ
β
x

)
ξ0,ξn+1+ξn

〉
+

τα

2

n

∑
k=0

(
ω

(α−1)
k+1 +ω

(α−1)
k

)〈
L
(

g(Un−k)−g(Ûn−k)
)

,ξn+1+ξn
〉

+
ταω

(α−1)
0
2

〈
L
(

g(2Un−Un−1)−g(2Ûn−Ûn−1)
)

,ξn+1+ξn
〉

+τ

〈
L
(

Fn+ 1
2− F̂n+ 1

2

)
,ξn+1+ξn

〉
.

Use the same deductions to get Eq. (4.4) and apply Lemma 4.4, it achieves

‖ξ J‖2
L−‖ξ0‖2

L≤Cτ

∥∥∥∥(Hδ2
x−Aδ

β
x

)
ξ0
∥∥∥∥(‖ξn+1‖+‖ξn‖

)
+Cτ

J−1

∑
k=0
‖g(Uk)−g(Ûk)‖

(
‖ξn+1‖+‖ξn‖

)
+

ταω
(α−1)
0
2

J−1

∑
n=1
‖g(2Un−Un−1)−g(2Ûn−Ûn−1)‖

(
‖ξn+1‖+‖ξn‖

)
+τ

J−1

∑
n=1

∥∥∥∥L(Fn+ 1
2− F̂n+ 1

2

)∥∥∥∥(‖ξn+1‖+‖ξn‖
)

. (4.7)

Using the Lipschitz condition of g, assuming ‖ξP‖L = max0≤J≤N‖ξ J‖L and applying
Lemma 4.4, we obtain

‖ξP‖≤C
(
‖ξ0‖+τ‖Hδ2

xξ0‖+τ‖Aδ
β
x ξ0‖

+ max
0≤n≤P

∥∥∥∥L(Fn+ 1
2− F̂n+ 1

2

)∥∥∥∥)+Cτ
P−1

∑
k=0
‖ξk‖. (4.8)

Applying the Gronwall inequality to inequality (4.8), we arrive at the estimate

‖ξP‖≤C
(
‖ξ0‖+τ‖Hδ2

xξ0‖+τ‖Aδ
β
x ξ0‖+ max

0≤n≤P

∥∥∥∥L(Fn+ 1
2− F̂n+ 1

2

)∥∥∥∥),

this completes the proof.
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5 Numerical experiments

Example 5.1. Consider the following problem

C
0 Dα

t u(x,t)=
(

∂2

∂x2 +
∂β

∂|x|β

)
u(x,t)+g(u)+ f (x,t),

u(x,0)=0, ut(x,0)=0, 0< x<1,
u(0,t)=u(L,t)=0, 0< t≤1,

where 1<σ<α, and

f (x,t)=
Γ(σ+1)

Γ(σ−α+1)
tσ−αx4(1−x)4−4tσx2(x−1)2(14x2−14x+3)

+
tσ

2cos
(

βπ
2

)h(x,β)−t2σx8(1−x)8,

where

h(w,β)=
Γ(9)

Γ(9−β)

(
w8−β+(1−w)8−β

)
−4

Γ(8)
Γ(8−β)

(
w7−β+(1−w)7−β

)
+6

Γ(7)
Γ(7−β)

(
w6−β+(1−w)6−β

)
−4

Γ(6)
Γ(6−β)

(
w5−β+(1−w)5−β

)
+

Γ(5)
Γ(5−β)

(
w4−β+(1−w)4−β

)
.

The nonlinear function g(u)=u2 and the exact solution u(x,t)= tσx4(1−x)4.

Firstly, taking σ= 1.3, α= 1.7 and β= 1.5, we plot the numerical and exact solutions
of the considered problem in Fig. 1. It is observed that numerical and exact results are in
excellent agreement. Fig. 2 shows that the errors are small, implying that our numerical
solutions can accurately approximate the exact solutions. Secondly, to confirm Theorem
4.1, set a suitable small h, the errors at t1 and the numerical convergence orders are re-
ported in Table 1. According to the data in Table 1, we conclude that the σ-order accuracy
in time is obtained. To verify Remark 4.1, Tables 2 and 3 show the errors and the temporal
numerical convergence orders at t1 and tN for β=1.5, α=1.9 with various σ. As expected,
the numerical convergence order approaches σ at t1 and is close to 2 at tN .

Finally, we verify the numerical accuracy in space of the proposed scheme (3.5) and
(3.6). The numerical errors and convergence orders in maximum norm are listed in Table
4. According to the data in the Table, we conclude that the fourth-order convergence
accuracy in space is verified.
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Figure 1: The comparison of numerical solution of linearized compact Schemes (3.5) and (3.6) with the exact
solution for τ=1/10, h=1/80, σ=1.3, α=1.7, and β=1.5.
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Figure 2: The error surface between numerical solutions and exact solutions for τ = 1/10, h= 1/80, σ= 1.3,
α=1.7, and β=1.5.

6 Conclusions

In this paper, the classical central difference formula and the fourth-order compact dif-
ference methods are used to discritize the spatial derivatives, while the Crank-Nicolson
technique, the midpoint formula and the second-order convolution formula are used for
temporal discretizations. Then, the linearized compact finite difference Schemes (3.5) and
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Table 1: The errors at t1 and temporal numerical convergence orders with fixed h=0.001, σ=1.5, and β=1.4.

τ
α=1.6 α=1.75 α=1.9

error order error order error order
1/20 1.2617×10−6 1.1083×10−6 1.1001×10−6

1/40 4.0007×10−7 1.6571 4.3309×10−7 1.3557 4.6194×10−7 1.2518
1/80 1.6390×10−7 1.2875 1.7151×10−7 1.3364 1.7601×10−7 1.3920
1/160 6.1895×10−8 1.4049 6.3013×10−8 1.4445 6.3573×10−8 1.4692
1/320 2.2394×10−8 1.4667 2.2542×10−8 1.4830 2.2607×10−8 1.4916

Table 2: The errors at t1 and temporal numerical convergence orders with fixed h=0.001, β=1.5, and α=1.9.

τ
σ=1.6 σ=1.7 σ=1.8

error order error order error order
1/20 7.4562×10−7 4.7407×10−7 2.9809×10−7

1/40 2.8814×10−7 1.3717 1.6273×10−7 1.5426 7.8316×10−8 1.9284
1/80 1.0359×10−7 1.4758 5.5459×10−8 1.5530 2.5645×10−8 1.6106
1/160 3.5034×10−8 1.5641 1.7591×10−8 1.6566 7.6754×10−9 1.7404
1/320 1.1636×10−8 1.5902 5.4590×10−9 1.6881 2.2294×10−9 1.7836

Table 3: The errors at tN and temporal numerical convergence orders with fixed h=0.001, β=1.5, and α=1.9.

τ
σ=1.6 σ=1.7 σ=1.8

error order error order error order
1/10 1.5983×10−5 1.9179×10−5 2.2293×10−5

1/20 3.2939×10−6 2.2787 4.1227×10−6 2.2179 4.9774×10−6 2.1631
1/40 8.1363×10−7 2.0174 9.8729×10−7 2.0621 1.1865×10−6 2.0686
1/80 2.1707×10−7 1.9062 2.5101×10−7 1.9757 2.9583×10−7 2.0039
1/160 6.1055×10−8 1.8300 6.6207×10−8 1.9227 7.5727×10−8 1.9659
1/320 1.7949×10−8 1.7662 1.8062×10−9 1.8740 1.9888×10−8 1.9289

Table 4: The errors and spatial numerical convergence orders with fixed τ=0.01, σ=1.4, and α=1.9.

h β=1.3 β=1.5 β=1.8
error order error order error order

1/5 1.0536×10−4 1.0610×10−4 1.1498×10−4

1/10 6.9971×10−6 3.9124 6.6788×10−6 3.9897 7.4611×10−6 3.9458
1/20 4.3327×10−7 4.0134 4.0577×10−7 4.0409 4.5665×10−7 4.0302

(3.6) are presented for time-space fractional nonlinear diffusion-wave equations with ho-
mogeneous initial boundary value conditions based on their equivalent fractional partial
integro-differential equations. The unconditional stability and the convergence of the
proposed schemes are proved by energy method. Furthermore, the numerical experi-
ments are presented to support our theoretical results.
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