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Abstract. We consider a shape reconstruction inverse problem constrained by a semi-

linear elliptic interface problem in reaction diffusion. The existence of the model is

shown. We perform shape sensitivity analysis and propose two numerical optimization

algorithms based on the distributed shape gradient. The first algorithm allows shape

changes and the second algorithm uses a level set method allowing shape and topological

changes. Numerical results are presented to verify effectiveness of the algorithms.
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1. Introduction

Theoretical and numerical aspects of geometric inverse problems with unknown geo-

metric shape have been investigated for many years. In various applications, an unknown

subdomain and its complement are the sets where discontinuous parameters takes differ-

ent constant values. Geometric inverse problems have wide applications in engineering,

including heat source identification [14, 24], interface reconstruction of diffusive coeffi-

cient [16, 19, 21, 32], elastic inclusion detection [2], and electrical impedance tomogra-

phy [10,20].

For solving such problems, one needs to find a mechanism to represent the shape

and follow its evolution. A straightforward method for solving such problems consists in

parametrization of the shape, usually curve/surface and follow its evolution after regu-

larization. However, this simple approach may fail if no topology information on recon-
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struction is known a priori, especially for reconstruction of possible multi-connected com-

ponents. Then, approaches and techniques allowing shape and topological changes are

required, such as the level set method [1,8], phase-field method [5], and topological deriva-

tive approach [18, 34]. A level set method was developed for numerically solving elliptic

interface inverse problem [8,10,19] and inverse obstacle problem [30].

Shape optimization and reconstruction has caused interests not only on linear partial

differential equation (PDE) constraints, but also on nonlinear PDE cases [12,18,31,34,40].

Interface location reconstruction was studied associated with linear elliptic problems [10,

19] and linear elasticity [2,35]. For interface identification of semi-linear elliptic problems,

sensitivity analysis was explored with the topological derivative [3] (see [5] for phase-field

approach). Shape optimization of semi-linear elliptic problems is considered in [18,31,40].

In this paper, we consider an interface inverse problem associated with a semi-linear elliptic

interface problem for chemical or heat reaction diffusion. We show existence of a solution

to the optimization model and propose two numerical algorithms for reconstruction when

the subdomain components are simply connected or multi-connected. Both the boundary

moving and the level set method we propose rely on the objective’s distributed shape gradi-

ent. The so-called shape gradient in the shape optimization community is contained in the

Eulerian derivative, which measures the sensitivity information of the objective with respect

to domain (shape) variations [33]. The Eulerian derivative is known to have two forms —

viz. boundary type and volumetric one. The latter holds more generally, although they are

equivalent when the boundary has certain smoothness [6,11]. Their discrete finite-element

approximations behave different even when their formulations are equivalent on the con-

tinuous level. The boundary expression may work not well in certain optimization algo-

rithms [38] (see [15,39] for possible theoretical explanations on the accuracy advantage of

finite-element discretizations of distributed shape gradients). The distributed shape gradi-

ent has been applied in many problems including electrical impedance tomography [4,22],

structural topology optimization [7], shape design of fluid flows [23], etc.

The rest of the paper is organized as follows. In Section 2, we introduce the interface

inverse problem associated with a semi-linear elliptic boundary value problem. Then we

show existence and perform shape sensitivity analysis. In Section 3, we propose two nu-

merical algorithms based on shape gradient and level set method. In Section 4, numerical

examples are presented to test performance of both algorithms. Brief conclusions follow in

last section.

2. Existence and Shape Sensitivity of Model Problem

We first introduce an interface reconstruction inverse problem in nonlinear reaction

diffusion, which can have applications in chemical diffusion processes or heat conduction.

Then we show existence and perform shape sensitivity analysis with shape calculus. Let

us first introduce notations for Sobolev spaces. Let D ⊂ Rd , d = 2,3 be an open bounded

domain with Lipschitz boundary ∂ D. The Lν(D) function spaces are defined by

Lν(D) :=
�
u : ‖u‖Lν(D) <∞

	
, ν = 2,∞,
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where

‖ f ‖L2(D) :=

�∫

D

| f (x)|2dx

�1/2
,

‖ f ‖L∞(D) := ess sup
�
| f (x)| : x ∈ D
	
.

Denote

H1(D) =
�

v ∈ L2(D) :∇v ∈ L2(D)d
	

,

H1
0(D) =
�

v ∈ H1(D) : v|∂ D = 0
	

equipped with the norm

‖v‖H1(D) :=
�
‖v‖2

L2(D)
+ ‖∇v‖2

L2(D)

�1/2
.

Let us make an assumption between the shape Ω and the fixed domain D. For the closed

subsets A, B ⊂ D, denote

̺(A, B) =max
x∈A

min
y∈B
‖x − y‖,

where ‖ · ‖ is the Euclidean norm of a vector.

Assumption 2.1. There is a compact K0 ⊂ D such that Ω ⊂⊂ K0 and dist(∂ D, K0) ¾ d0 for

some d0 > 0, where dist(∂ D, K0) = sup(̺(∂ D, K0),̺(K0,∂ D)).

2.1. Model problem and existence

Let us introduce a measurable subset Ω ⊂⊂ D, cf. Fig. 1. Consider the following semi-

linear elliptic interface problem in chemical reaction diffusion or heat conductivity [27]:

−∇ · (k∇u) + u3 = f in D,

¹uº = 0 on ∂Ω,
�

k
∂ u

∂ n

�
= 0 on ∂Ω,

u = 0 on ∂ D,

(2.1)

where n is the unit outward normal to the boundary ∂Ω, ¹·º the jump across the interface,

Ω, D \ Ω̄ are filled by materials with different respective positive diffusion coefficients or

conductivities k1, k2, and

k =

¨
k1 in Ω,

k2 in D \ Ω̄.

Here, k is called the diffusion coefficient in chemical diffusion processes or the thermal

diffusivity in heat conduction problems and u denotes concentration or temperature.
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Figure 1: Domains D and Ω.

The weak formulation of (2.1) is: Find u ∈ H1
0
(D) such that

∫

D

k∇u · ∇vdx +

∫

D

u3vdx =

∫

D

f vdx for all v ∈ H1
0(D). (2.2)

It is known [9] that the problem (2.2) has a unique solution.

For Ω ⊂⊂ D, define the perimeter of Ω in D as the total variation of its characteristic

function χΩ, i.e.

PD(Ω) = TV(χΩ) := sup

¨∫

Ω

divφdx

���� φ ∈ D
1(D,Rd),max

x∈D
‖φ(x)‖ ¶ 1

«
,

where D1(D,Rd) denotes the space of all continuously differentiable functions with com-

pact support in D. Consider a shape reconstruction inverse problem

min
Ω∈Uad

J(Ω) :=
1

2

∫

M

(u− ud)
2dx +αPD(Ω), (2.3)

where ud : H1(Rd) → R is a given smooth function, the admissible set Uad is a subset of

E (D)with E (D) being the set of all subsets of D, the observation domain M ⊂ D, and α > 0

is a regularization parameter. The second term is introduced for showing existence of a so-

lution to the optimization model and for the regularization effect to the ill-posedness when

observation contain possible noise in practice. If the boundary ∂Ω is Lipschitz continuous,

then

PD(Ω) =

∫

∂Ω

ds.

This integral represents the curve length in 2D or the surface area in 3D. Here, the volu-

metric observation data are used to recover the interface between two different materials
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in reaction diffusion. Though boundary observation seems to be more practical and com-

plicated due to less data information available, we consider for simplicity distributed obser-

vation case typically on a partial banded region near the boundary rather than the whole

domain. Actually, similar volumetric observation was considered for inverse obstacle prob-

lems associated with linear diffusion [8] and elliptic diffusive interface reconstruction [19].

Interface reconstruction of semi-linear elliptic problems has other applications — e.g. in

cardiac electrophysiology [3, 5], where homogeneous Neumann boundary conditions are

satisfied and boundary observation is employed.

To obtain theoretical existence of the model problem, we consider the set of character-

istic functions

Char(D) =
�
χ ∈ L2(D) | χ(1−χ) = 0 a.e. in D

	

equipped with the L2(D) topology, where

χ = χΩ =

¨
1 in Ω,

0 in D \ Ω̄.

Theorem 2.1. The mapping χΩ 7→ u(Ω) with u(Ω) denoting the weak solution to problem

(2.2) is continuous from Char(D) into H1
0
(D).

Proof. Let Ωi, i = 1,2, . . . , and Ω0 be a measurable subset of D ⊂ Rd , ui = u(Ωi),

i = 1,2, . . . the solution to (2.2) with the domain Ωi, and

k = k1χΩ0
+ k2(1−χΩ0

),

k̃ = k1χΩi
+ k2(1−χΩi

).

Then

k − k̃ = (k1 − k2)(χΩ0
−χΩi

).

For k and k̃, there exists respective unique solutions u0 ∈ H1
0(D) and ui ∈ H1

0(D) such that

∫

D

k∇u0 · ∇v + u3
0vdx =

∫

D

f vdx for all v ∈ H1
0(D),

∫

D

k̃∇ui · ∇v + u3
i vdx =

∫

D

f vdx for all v ∈ H1
0(D).

(2.4)

By (2.4), we have

∫

D

k̃ (∇u0 −∇ui) · ∇v +
�
u3

0 − u3
i

�
vdx

= −

∫

D

(k − k̃)∇u0 · ∇vdx for all v ∈ H1
0(D).
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Taking v = u0 − ui, we obtain
∫

D

k̃|∇u0 −∇ui|
2dx +

∫

D

∫ 1

0

3
�
sui + (1− s)u0

�2
(u0 − ui)

2dsdx

= −

∫

D

(k − k̃)∇u0 · (∇u0 −∇ui)dx ,

which implies that

min{k1, k2}‖∇u0 −∇ui‖
2
L2(D)

¶

∫

D

|(k1 − k2)(χΩ0
−χΩi

)| · |∇u0 · (∇u0 −∇ui)|dx

¶ ‖(k1 − k2)(χΩ0
−χΩi

) · ∇u0‖L2(D)‖∇u0 −∇ui‖L2(D).

Then, we have

min{k1, k2}‖∇u0 −∇ui‖L2(D) ¶ ‖(k1 − k2)(χΩ0
−χΩi

) · ∇u0‖L2(D). (2.5)

The family of domainsΩi, i = 1,2, . . . , is said to converge in measure to the domainΩ0 if the

sequence of characteristic functions χΩi
converges to χΩ0

in the set Char(D), i.e. in L2(D)

norm. Then the sequence of functions gi := (k1−k2)(χΩ0
−χΩi

) converges to zero in L2(D)

as i→∞. Therefore, we have ‖gi(x)‖ ≤ const. By the Lebesgue dominated convergence

theorem, there exists a subsequence {gi j
}∞

j=1
such that gi j

(x) → 0 as j → ∞ for almost

every x in D. Then the function gi on the right-hand side of (2.5) belongs to L1(D), and

converges to zero for almost every x in D. Then the right-hand side of (2.5) converges to

zero as i→∞. Thanks to (2.5), one can show that the norm ‖∇(ui − u0)‖L2(D) converges

to zero, and by the Poincaré inequality of H1
0
(D) we have that ‖ ui − u0 ‖H1(D)→ 0, hence

the desired continuity.

Theorem 2.2. The shape functional (2.3) is lower semi-continuous on the set Char(D) ⊂
L2(D).

Proof. For the second term of (2.3), the functional χΩ 7→ PD(Ω) is semi-continuous on

the set Char(D) [33, Lemma 2.6]. Let u ∈ H1
0
(D) (resp. ũ ∈ H1

0
(D)) be the unique solution

of (2.4) associated with Ω (resp. Ω̃). For the first term of (2.3), the Lipschitz continuity

can be obtained as follows:

1

2

∫

M

(u− ud)
2 −

1

2

∫

M

(ũ− ud)
2

=
1

2

∫

D

χM (u− ũ)(u− ũ+ 2ũ− 2ud)

¶
1

2
‖χM‖L∞(D)‖u− ũ‖L2(D)‖u− ũ+ 2ũ− ud‖L2(D)

¶
1

2
‖u− ũ‖L2(D)

�
‖u− ũ‖L2(D) + 2‖ũ− ud‖L2(D)

�
.

Now we can conclude that J(Ω) is lower semi-continuous on Char(D) by Theorem 2.1.
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For any constant C > 0,

Char(D, C) =
�
χΩ ∈ Char(D) | PD(Ω) ¶ C

	
.

Setting J (χ) = J(Ω), u = u(χ), we write the problem (2.3) as

min
χ∈Char(D,C)

J (χ) =
1

2

∫

M

�
u(χ)− ud

�2
dx +αTV(χ). (2.6)

Theorem 2.3. Problem (2.6) admits at least one solution.

Proof. It obviously holds that J (χ) ¾ 0 from the form of J (χ). Thus, the value

inf
χ∈Char(D,C)

J (χ)

exists. For a sequence of subdomains {Ωn}
∞
n=0, denote χn = χΩn

. Let {χn}
∞
n=0 ⊂ Char(D)

be a minimization sequence — i.e.

lim
n→∞

J (χn) = inf
χ∈Char(D,C)

J (χ). (2.7)

By [33, Proposition 2.8], the set Char(D, C) is compact in L2(D). Therefore, there exists

a subsequence (still denoted by {χn}
∞
n=0) and a measurable set Ω∗ ⊂ D such that χn→ χ

∗

tends to n→∞ with χ∗ = χΩ∗ . By Theorem 2.2, we have

lim
n→∞

infJ (χn) ¾ J (χ
∗).

Then by (2.7),

lim
n→∞

J (χn) = inf
χ∈Char(D,C)

J (χ) ¾ J (χ∗).

Since

inf
χ∈Char(D,C)

J (χ) ¶ J (χ∗),

we obtain that χ∗ is a minimizer — i.e.

J (χ∗) = min
χ∈Char(D,C)

J (χ).

The proof is complete.

Before analysing the shape sensitivity, we use the Lagrange multiplier method to deal

with the constraint of the semi-linear elliptic problem. We first introduce the Lagrangian

L(Ω, v,q) :=

∫

D

1

2
χM (v − ud)

2d x −

∫

D

k∇v · ∇qd x −

∫

D

v3qd x +

∫

D

f qd x +αPD(Ω),

where the functions v,q are in H1
0(D). The saddle-point of L(Ω, v,q) is characterized by the

first-order optimality condition


∂ L(Ω, v,q)

∂ v
,φ

·

D

=


∂ L(Ω, v,q)

∂ q
,φ

·

D

= 0
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for all φ ∈ H1
0
(D). By the density, this leads to the adjoint problem

−∇ · (k∇p) + 3u2p = χM (u− ud) in D,

¹pº = 0 on ∂Ω,
�

k
∂ p

∂ n

�
= 0 on ∂Ω,

p = 0 on ∂ D,

(2.8)

and the state problem (2.1).

2.2. Shape sensitivity analysis

Shape sensitivity analysis is a valuable tool to design numerical methods for shape opti-

mization [33]. We analyse the shape sensitivity for our shape reconstruction problem with

the perturbation of identity method [13], which is equivalent to the velocity method [33]

in the sense of first-order Taylor expansion. For t ∈ [0,ǫ), ǫ > 0, define a family of smooth

mappings {Ft}t∈[0,ǫ) with Ft : D̄→ D̄ mapping the initial (reference) sub-domain to a per-

turbed sub-domain. The boundary ∂ D is fixed — i.e. Ft(∂ D) = ∂ D. Then we denote Ωt :=

Ft(Ω) = {Ft(x) : x ∈ Ω} with Ω0 = Ω and the boundary ∂Ωt := Ft(∂Ω) = {Ft(x) : x ∈ ∂Ω}
with ∂Ω0 = ∂Ω. The mappings {Ft}t∈[0,ǫ) describe the motion of each point in D, i.e. at

t ∈ [0,ǫ], the point x ∈ D has a new position x t := Ft(x) ∈ D with x0 = x . More precisely,

Ft = Id+ tV,

where Id the identity mapping and V = V (x) denotes a sufficiently smooth vector field in

Vad =
�

V ∈W 1,∞(D,Rd) : V = 0 on ∂ D
	

.

Here, W 1,∞(D,Rd) is the space of vector field functions for which each of its components

belongs to W 1,∞(D), a Banach space of functions uniformly bounded up to first-order weak

derivative.

Definition 2.1. Let V ∈ Vad and ϕ ∈ H1(D). Define on the boundary ∂Ω the tangential part

of V

VΓ := V − (V · n)n,

and the tangential divergence of V

divΓV := divV − nT∇V n,

where ∇V := (∂ Vi/∂ x j)1¶i, j¶d . Define the tangential gradient of ϕ

∇Γϕ =∇ϕ −
∂ ϕ

∂ n
n.
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Definition 2.2. For a real-valued shape functional J : Ω 7→ R, the Eulerian derivative of J at

Ω in a direction V ∈ Vad is defined by the following limit:

dJ(Ω; V ) := lim
tց0

J (Ωt)− J(Ω)

t
.

The shape functional depends both on Ω and a field variable, which describes a PDE

defined on a domain related to Ω. Then, shape sensitivity analysis of the field variable

— e.g. u = u(Ω) is naturally necessary. Let u and ut be two state quantities related to

domains Ω and Ωt , respectively. The set Q ⊂ Rd+1, where Q = ∪t∈[0,t0]
{t}×Ωt , determines

the evolution of Ω in space and time t ∈ [0, t0]. The function ut can be viewed as the

restriction of another function {t} ×Ωt to u : Q → R, u(t, x + tV (x)) = ut(x t) for x ∈ Ω
and t ∈ [0,ǫ]. Suppose that u is smooth enough in a δ-neighborhood Ωδ of Ω. Then,

Definition 2.3. Material and shape derivatives of u at x ∈ D can be defined if there exist

limits

u̇(x) = lim
tց0

u(t, x + tV (x))− u(0, x)

t
=

d

dt
u
�
t, x + tV (x)
�����

t=0

and

u′(x) = lim
tց0

u(t, x)− u(0, x)

t
,

respectively.

It is easy to verify that

u̇(x) = u′(x) +∇u(x) · V (x).

By definition and simple calculation, for any ϕ,ϑ ∈ H1(D) the following relationships hold:

(ϕϑ)··· = ϕ̇ϑ+ϕϑ̇, (∇ϕ)··· =∇ϕ̇ −∇V⊤∇ϕ, (∇ϕ)··· =∇ϕ̇ −∇ϕ∇V. (2.9)

Let Qδ be a δ-neighborhood of Q and g : Qδ → R a sufficiently smooth function.

Consider the shape functionals

J1(t;Ω) =

∫

Ω

g(t, x t )dx ,

J2(t;Ω) =

∫

∂Ω

g(t, x t )ds.

Lemma 2.1 (cf. Haslinger & Mäkinen [13, Lemma 3.3]).

dJ1(·;Ω)

dt

����
t=0

=

∫

Ω

ġ + g div Vdx ,

dJ2(·;Ω)

dt

����
t=0

=

∫

∂Ω

ġ + gdivΓV ds.
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The following theorem introduces shape sensitivity analysis results of the shape re-

construction problem. The shape gradient of the shape functional can be expressed in

a volumetric integral and a boundary integral if the boundary is sufficiently smooth.

Theorem 2.4. Let u be the weak solution of (2.2). Assume that Ω ⊂ D is Lipschitz. Then,

J(Ω) is shape differentiable at any Ω ∈ Uad , and the Eulerian derivative reads in a volume

form (except for the last term)

dJ(Ω; V ) =

∫

D

k∇uT(∇V +∇V T)∇p+∇ f · V p

+ divV

�
1

2
(u− ud)

2 − k∇u · ∇p− u3p+ f p

�
dx +α

∫

∂Ω

divΓV ds. (2.10)

If the boundary ∂Ω is C2, the boundary formulation of the Eulerian derivative holds

dJ(Ω; V ) =

∫

∂Ω

¨
(k1 − k2)

k1k2

�
k1k2∇Γu · ∇Γ p+

�
k
∂ u

∂ n

��
k
∂ p

∂ n

��
+ακ

«
V · nds, (2.11)

where κ = divn denotes the mean curvature.

Proof. We give a formal yet not strict derivation. Notice that the shape functional can

be written in the form of the Lagrangian

J(Ω) = L(Ω,u, p) =

∫

D

j(u)χM dx −

∫

D

k∇u · ∇pdx −

∫

D

u3pdx +

∫

D

f pdx +αPD(Ω),

where j(u) = 1/2(u − ud)
2. Using Lemma 2.1 and taking partial derivative with respect

to t, we have

dJ(Ω; V ) =

∫

D

�
j(u)χM + f p− (k∇u) · ∇p− u3p

�···

+ divV
�

j(u)χM + f p− k∇u · ∇p− u3p
�
d x +α

∫

∂Ω

divΓV ds.

It follows from (2.9) that

dJ(Ω; V ) =

∫

D

(u− ud)u̇χM + ḟ p+ f ṗ− k∇u̇ · ∇p− k∇u · ∇ṗ

+ k∇uT(∇V +∇V T)∇p− 3u2u̇p− u3 ṗ

+ divV
�

j(u)χM + f p− k∇u · ∇p− u3p
�

dx +α

∫

∂Ω

divΓVds.

Integrating by parts and sorting, we obtain

dJ(Ω; V ) =

∫

D

�
(u− ud)χM +∇ · (k∇p)− 3u2p

�
u̇+
�

f +∇ · (k∇u)− u3
�
ṗ
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+∇ f · V p+ k∇uT(∇V +∇V T)∇p

+ divV
�

j(u)χM + f p− k∇u · ∇p− u3p
�
dx +α

∫

∂Ω

divΓVds. (2.12)

According to the Eqs. (2.1) and (2.8), we can rewrite (2.12) as (2.10).

To show the boundary formulation (2.11), integration by parts for (2.10) implies that

dJ(Ω; V ) =

∫

D

V ·
�
− f∇p− (u− ud)χM∇u+ 3u2p∇u+ u3∇p

�
dx

+

∫

D

�
(∇V +∇V T)− (divV )I

�
k∇u · ∇pdx +α

∫

∂Ω

κV · nds, (2.13)

where I denotes the identity matrix. Let us denote two phases Ω1 := Ω and Ω2 := D\Ω and

ui ∈ H1(Ωi) be the restriction of u to Ωi, i = 1,2. Then

u1 = u2 in H1/2(∂Ω),

k1

∂ u1

∂ n
= k2

∂ u2

∂ n
in H−1/2(∂Ω),

where H1/2(∂Ω) denotes the trace space of functions in H1
0(D) and H−1/2(∂Ω) denotes the

dual of H1/2(∂Ω). Therefore, we can decompose the integrals in (2.13) on Ω1 and Ω2

dJ(Ω; V ) =

2∑

i=1

�∫

Ωi

V ·
�
− f∇pi − (ui − ud)χM∇ui + 3u2

i pi∇ui + u3
i∇pi

�
dx

+

∫

Ωi

�
(∇V +∇V T)− (divV )I

�
k∇ui · ∇pidx

�
+α

∫

∂Ω

κV · nds. (2.14)

Using integration by parts and taking into account that

−∇ · (k∇u) + u3 = f ,

−∇ · (k∇p) + 3u2p = (u− ud)χM

in D, we write
∫

Ωi

V ·
�
− f∇pi − (ui − ud)χM∇ui + 3u2

i
pi∇ui + u3

i
∇pi

�
dx

+ ki

∫

Ωi

�
(∇V +∇V T)− (divV )I

�
∇ui · ∇pidx

= Sign

∫

∂Ω

ki

�
(∇ui · ∇pi)V · n− (∇ui · V )

∂ pi

∂ n
− (∇pi · V )

∂ ui

∂ n

�
ds, i = 1,2, (2.15)

where

Sign=

¨
1, if i = 1,

−1, if i = 2.
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This difference is a consequence of the fact that n is pointing outward Ω1. We can introduce

the continuous quantities across the boundary. Then, the straightforward calculation yields

∫

Ωi

V
�
− f∇pi − (ui − ud)χM∇ui + 3u2

i∇ui pi + u3
i∇pi

�
dx

+ ki

∫

Ωi

�
(∇V +∇V T)− (divV )I

�
∇ui · ∇pidx

= Sign

�∫

∂Ω

�
ki∇Γui · ∇Γ pi −

1

ki

�
ki

∂ ui

∂ n

��
ki

∂ pi

∂ n

��
V · n

−

∫

∂Ω

�
(∇Γui · VΓ )

�
ki

∂ pi

∂ n

�
+ (∇Γ pi · VΓ )

�
ki

∂ ui

∂ n

���
, i = 1,2. (2.16)

Combining (2.14) and (2.16), we finally get the desired surface expression (2.11).

3. Numerical Optimization Algorithms

In this section, we present two optimization algorithms for solving the model problem.

Both algorithms are built on the distributed shape gradients derived in last section and

can have shape changes in optimization. They differ in that the first algorithm moves

meshes during optimization, while the second algorithm based on the level set method can

have topological changes on fixed meshes. The distributed shape gradient formulation was

recently adopted in solving inverse problems [12,22] and was expected to be more robust

than the popular boundary formulation of shape gradient.

At each iteration of the outer optimization loop, we use the Galerkin finite element

method in order to discretize:

(i) State equation.

(ii) Adjoint problem.

(iii) Shape gradient flow.

(iv) Level set transport equation.

(v) Reinitialization.

The continuous piecewise linear polynomials are used. In this paper, we do not address

the situation of high contrast ratio between the two phases in the diffusion coefficient. In

that case, reliable approaches such as immersed interface method [19] or cut finite element

method [7] could be used. We consider simple (usual) finite element discretizations of the

state and adjoint interface problems. We use Newton’s method to solve the nonlinear state

problem (2.2).
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3.1. Algorithm 1

During shape changes associated with mesh moving, the mesh quality may decrease,

especially for large domain deformations. Remeshing is performed frequently in shape opti-

mization to produce quasi-uniform meshes desirable for finite element discretizations [38].

We use the conformal transformation [17] rather than remeshing to retain the mesh quality

in 2D. We remark that in [17] the mesh quality preserving strategy is used in deformations

on the variable domain Ω, while here the conformal transformation is employed for inter-

face evolution on the fixed design region D. Let us introduce the idea.

The classical H-shape gradient of J at Ω with respect to (H, (·, ·)H) is defined as the

unique element ∇J(Ω) ∈ H that satisfies

�
∇J(Ω), V
�

H
= −dJ(Ω; V ) for all V ∈ H.

Notice that the H-shaped gradient itself is the minimizer of the problem

min
V∈H

1

2
‖V‖2H + dJ(Ω; V ).

To retain mesh quality, the H-shape gradient can be modified by a conformal transfor-

mation. A vector field V = (V1, V2) ∈ [C
1(D̄)]2 is called holomorphic if it satisfies the

Cauchy-Riemann equations on D, i.e.

∂x1
V1 = ∂x2

V2,

∂x2
V1 = −∂x1

V2.

These conditions can be written as BV = 0, where the operatorB is defined as

B :=

�
−∂x1

∂x2

∂x2
∂x1

�
,
�
C1(D̄)
�2
→
�
C0(D̄)
�2

.

A holomorphic mapping is called conformal if it is injective.

An H-shape gradient satisfying the Cauchy-Riemann can be obtained by solving the

constrained optimization problem

min
V∈H,
BV=0

1

2
‖V‖2H + dJ(Ω; V ). (3.1)

A regularized version with the penalization of (3.1) reads

min
V∈H

1

2

�
1

γ
‖BV‖2

L2(D)
+ ‖V‖2H

�
+ dJ(Ω; V ),

where γ > 0 is a penalty factor. For our model problem, choose a space of deformations that

is frequently used, which is the space H = [�H1(D)]2 consisting of all functions V ∈ [H1(Ω)]2

with mean zero. This space becomes a Hilbert space when equipped with the inner product

(U , V )�H1 := (∇U ,∇V )[L2]2×2 .
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Define the symmetric and antisymmetric parts of the derivative ∇U by

S(∇U) :=
1

2
(∇U +∇U⊤), AS(∇U) :=

1

2
(∇U −∇U⊤).

Therefore, for any U ∈ [H1(Ω)]2 it holds that

‖∇U‖2
[L2]2×2 = ‖S(∇U)‖2

[L2]2×2 + ‖AS(∇U)‖2
[L2]2×2 .

Observe that

‖AS(∇U)‖2
[L2]2×2 = ‖∂x1

U2 − ∂x2
U1‖

2
L2 ,

and hence attempting to minimize this term, could be counterproductive when also trying

to closely satisfy the Cauchy-Riemann equations, as they require ∂x1
U2 + ∂x2

U1 = 0.

Therefore, we define directly

Q :=

�
V ∈
�
L2(D)
�2

: S(∇V ) ∈
�
L2(D)
�2×2

, V = 0 on ∂ D, and

∫

Ω

∂x2
V1 + ∂x1

V2 = 0

�
.

We equip Q with the inner product

(U , V )Q =
1

γ
(BU ,BV )[L2(D)]2 +

�
S(∇U), S(∇V )
�
[L2(D)]2×2 .

Consider

min
V∈Q

1

2

�
1

γ
‖BV‖2

L2(D)2
+ ‖S(∇V )‖2

[L2(D)]2×2

�
+ dJ(Ω; V ),

whose equivalent (descent) shape gradient flow with a nearly conforming mapping — i.e.

the variational form is: Find a U ∈ Q such that

(U , V )Q = −dJ(Ω; V ) for all V ∈ Q.

Algorithm 1: Shape Reconstruction of Diffusive Interface

1 Initialization.

2 while Objective functional changes as iteration do

3 Solve the state problem with Newton’s method.

4 Solve the adjoint state.

5 Solve the shape gradient flow with nearly conformal mapping.

6 Deformation evolution Ωm+1← Ωm+ηUm.

7 end

In our numerical experiment, we choose the fixed value η = 0.01 as the step size of the

grid movement. It is worth noting that Algorithm 1 is only suited for the case d = 2.
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3.2. Algorithm 2

The second algorithm that we propose is based on the level set method [25,26]. We first

introduce the basics of the level set method to represent subdomains and track interfaces.

Consider domains D and Ω described above. The domain D is divided into two subregions

Ω and D\Ω by ∂Ω. A level set function φ : D→ R is introduced to satisfy

φ(x) < 0, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,

φ(x) > 0, x ∈ D \Ω.

The Heaviside and delta functions are respectively defined by

H
�
φ(x)
�
=

¨
1, if φ(x) > 0,

0, otherwise,
(3.2)

and

δ
�
φ(x)
�
=H ′
�
φ(x)
�
. (3.3)

According to [25], for any f2 = f2(x), the following relation holds:

∫

∂Ω

f2ds =

∫

D

δ(φ)|∇φ| f2dx .

In the equation of state (2.1), the adjoint equation (2.8) and the Eulerian derivative (2.10),

we use the Heaviside function for

k = k(φ) = k2

�
1−H (φ)
�
+ k1H (φ).

The evolution of Ω and ∂Ω can be transformed into a transport equation of a time-

dependent level set function φ = φ(t, x) as

∂ φ

∂ t
+V ·∇φ = 0 in (0,∞)× D,

φ(0, x) = φ0(x) in D,

∂ φ

∂ n
= 0 on (0,∞)× ∂ D,

(3.4)

where V : D → Rd is the velocity filed and φ0 is the initial level set function. During the

optimization process, the level-set function usually becomes too flat, which causes numer-

ical instability. One good way to overcome this problem is the level set function as a sign

distance function

φ(x) =






−ϕ(x ; Γ ) in Ω,

0 on Γ ,

ϕ(x ; Γ ) in D \Ω,
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where

ϕ(x ; Γ ) :=min
y∈Γ
‖x − y‖

denotes the minimal distance of x to Γ . For regularization of the level-set function, a so-

called reinitialization process is usually suggested to be performed to the current level set

function φ0(x) by solving the solution ψ = ψ(τ, x) of the following nonlinear equation,

up to the stationary state

∂ ψ

∂ τ
+ sign(φ) (|∇ψ| − 1) = 0 in (0, T )× D,

ψ(0, x) = φ0(x) in D,

∂ ψ

∂ n
= 0 on (0, T )× ∂ D,

(3.5)

where sign is the sign function and τ > 0 is a pseudo-time variable.

A H1-shape gradient flow is used to increase smoothness of velocity field [37]. More

specifically, find V ∈
�
H1

0(D)
�d

such that

∫

D

(ω∇V :∇W +V ·W )dx = −dJ(Ω,W ) for all W ∈ [H1
0
(D)]d , (3.6)

where ω > 0 is a parameter adjusting the diffusion effect. The gradient flow system in-

volves the (vectorial) d-dimensional field whose numerical computations are demanding,

especially in three-dimension. To reduce computational costs, we introduce a decomposi-

tion scheme which decomposes the d-dimensional problem (3.6) into d one-dimensional

problems. More specifically, we can solve in parallel the scalar types of variational prob-

lems: Find Vi ∈ H1
0(D) such that

∫

Ω

(ω∇Vi · ∇η+Viη)dx = −dJ(Ω;ξi) for all η ∈ H1
0(D) (3.7)

for i = 1,2, . . . , d , where ξi = [0, . . . ,η, . . . , 0]T with all components being 0 except the i-th

being η. Set V = [V1,V2, . . . ,Vd]
T. For efficient computing (3.7) with the finite element

method, we assemble (stiffness and mass) matrices, perform LU decomposition only once

and save them.

We use the characteristic finite element method [29,40] to solve the level-set transport

equation (3.4) [37,40]. Let X : R→ Rd such that

dX

dt
(t) = V
�
t, X (t)
�
.

Then for φ : R×Rd → R, we have

d

dt
φ
�
t, X (t)
�
=
∂ φ

∂ t
+∇φ · V ,

where V = V (t, ·) is the solution of (3.6) at each time t. This allows interpreting (3.4) as

(d/dt)φ(t, X (t)) = 0.
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Let ∆t > 0 be an appropriate time step. The backward Euler approximation of it is

dφ

dt

�
t, X (t)
�
=
φ
�
t, X (t)
�
−φ
�
t −∆t, X (t)−V (t, X (t))∆t

�

∆t
+ O (∆t).

We consider the time discretization 0 = t0 < t1 < · · · < t j with t j = j∆t( j ∈ N ∪ 0). The

approximate solution at t j−1 by the Euler method is given by

X (t j−1) = X (t j)−V
�
t j , X (t j)
�
∆t + O
�
∆t2
�

.

The above arguments imply that a first-order approximation of the material derivative is

dφ

dt

�
t j , X (t j)
�
=
φ
�
t j , X (t j)
�
−φ
�
t j−1, X (t j−1)
�

∆t
+ O (∆t).

For j = 1,2, . . . , the time semi-discretization of (3.4) reads: Find φ(t j , X (t j)) ∈ H1(D) such

that �
φ
�
t j , X (t j)
�
−φ
�
t j−1, X (t j−1)
�

∆t
, v

�
= 0 for all v ∈ H1(D).

We also use the characteristics Galerkin method for reinitialization (3.5). We write it

as

ψτ +V ·∇ψ= sign(φ), V := sign(φ)
∇ψ

|∇ψ|
.

For l = 1,2, . . . , we use

V
�
τl , X (τl)
�

:= sign(φ)∇ψ(τl , X (τl))/|∇ψ(τl , X (τl))|.

The time semi-discrete variational form of (3.5) reads: Find ψ(τl , X (τl)) ∈ H1(D) such

that

�
ψ
�
τl , X (τl)
�
−ψ
�
τl−1, X (τl−1)
�

∆τ
, v

�
=
�

sign(φ), v
�

for all v ∈ H1(D),

where

X (τl−1) := X (τl)−V
�
τl , X (τl)
�
∆τ.

The sizes of∆t and∆τ are typically restricted for accuracy consideration and gradient de-

scent requirement of the whole algorithm. We choose time step small enough for numerical

accuracy, stability, and decrease of the objective [8]

∆t = c
h

‖V‖L∞(D)

,

where c > 0 is a suitable small parameter. Similar strategy is adopted for ∆τ.
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Algorithm 2: A Level Set Method for Shape Reconstruction of Diffusive Interface

1 Initialization.

2 while Objective functional changes as iteration do

3 Solve the state problem with Newton’s method.

4 Solve the adjoint state.

5 Solve the shape gradient flow.

6 Evolve the level-set equation.

7 if level set function becomes too flat or steep then

8 Reinitialization.

9 else

10 Go back.

11 end

12 end

Remark 3.1. Both algorithms described above can be stopped by a suitable criterion — viz.

if the relative decrease of two successive objectives are smaller than a given error tolerance.

Considering that inverse problems which can be very ill-posed in certain cases — e.g. highly

noisy and/or in-sufficient observing data, we simply stop the algorithm.

Remark 3.2. Let us discuss advantages and disadvantages of Algorithms 1 and 2. Algo-

rithm 1 is flexible for deformations through mesh moving and can be effective for shape

optimization problems with topology of the subdomain to be reconstructed not known a pri-

ori. Secondly, it performs shape variations efficiently, especially for simple shapes and is

relatively easy to implement. Algorithm 1 fails to deal with topological changes. Algo-

rithm 2 is effective for complex shape optimization with no shape or topology information

known a priori, since both shape and topological changes can happen by virtue of the level

set method. Compared with Algorithm 1, Algorithm 2 although being mesh-fixed usually

requires more computational efforts for solving level-set equation and reinitialization.

Remark 3.3. These algorithms should also be effective for a general nonlinear reaction

term in (2.1) as long as the general reaction term ensures well-posedness of the state equa-

tion. Generally speaking, it is necessary to add growth restriction conditions to the nonlin-

ear term [36]. More precisely, there is a positive constant C such that for all u, the following

estimate holds:

|F(u)| ¶ C(1+ |u|p−1),

where p = 6 if d = 3, or p ∈ [1,∞) if d = 2. Moreover, the nonlinear term should satisfy

Lipschitz continuity condition: there is a positive constant L such that

‖F(u1)− F(u2)‖H1
0
(D) ¶ L‖u1 − u2‖H1

0
(D) for all u1,u2 ∈ H1

0(D).
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4. Numerical Experiments

We test numerical performance of both algorithms. Set k1 = 1 and k2 = 5. The influ-

ence of added noise to observation data is considered in our numerical experiments. More

specifically, we add noise to the exact finite element grid function u∗
d

and then let ud be the

given data — i.e.

ud = u∗
d
+σ
‖u∗

d
‖L2(D)

‖r∗‖L2(D)

r∗.

Here, σ > 0 is the noise level and r∗ a grid function, whose nodal values are a uniform

random distribution in [-1,1] with zero mean value.

Notice that the Heaviside function (3.2) and delta function (3.3) are not differentiable.

Thus they are numerically approximated respectively by

Hζ(φ) =






0, if φ < −ζ,

1

2
+
φ

2ζ
+

1

2π
sin

�
πφ

ζ

�
, if |φ| ¶ ζ,

1, if φ > ζ,

δζ(φ) =






0, if |φ| > ζ,

1

2ζ
+

1

2ζ
cos

�
πφ

ζ

�
, if |φ| ¶ ζ

with a small parameter ζ > 0. We use the approximation [25,28] for numerically comput-

ing sign(φ)

sign(φ) ≃
φp

φ2 + h2|∇φ|2
.

4.1. Examples of Algorithm 1

Example 4.1. Choose a square D = (−1,1)2. The target subdomain Ω is a disk {x |x2
1
+

x2
2 ¶ 0.5}. We test two cases for the initial Ω: a square located in the center and a non-

convex L-shape. Let M = D and σ = 0 for the first two cases. For Case 1, Fig. 2 shows

that the use of conformal mapping (γ = 10−3) allows good shape-regular mesh qualities

during mesh moving and set regularization parameter α= 10−4. The reconstruction effect

is satisfactory. See Fig. 3 for Case 2 (α = 10−5), instead of using conformal mapping,

remeshing is employed every 5 iterations. In this way, good mesh quality can be maintained

at the expense of additional computational effort. The convergence history of the objective

for both cases is shown in Fig. 4. Finally, we test partial measurement and noisy observation

in Case 3. Choose

M = (−1,1)2 \ [−0.8,0.8]2

and σ = 0.01. Set α = 10−8. Fig. 5 shows the reconstruction and Fig. 6 shows the conver-

gence history. The comparisons on the reconstruction result and the final objective between

the noise free and noisy cases indicate better reconstruction effect for the noisy free case,

which is a expected phenomenon.
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a) Initial design b) Iteration=40 c) Final design d) Target design

Figure 2: Example 4.1, Case 1. Shape changes with conformal mapping used.

a) Initial design b) Iteration=220 c) Iteration=400 d) Final design

Figure 3: Example 4.1, Case 2. Shape deformations (first row) and corresponding finite element solutions
(second row).

Figure 4: Example 4.1. Convergence history: Case 1 (left) and Case 2 (right).
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a) Observation area(Grey) b) Final design, σ = 0 c) Finite-element solution

d) Final design, σ = 0.01 e) Finite-element solution

Figure 5: Example 4.1, Case 3. Reconstruction results.

Figure 6: Example 4.1, Case 3. Convergence history: σ = 0 (left) and σ = 0.01 (right).

Example 4.2. Set D = (0,1)2. The target Ω is non-convex. We test two cases for the ini-

tial Ω: a square located in the center and an L-shape. Set α= 10−5. As shown in Fig. 7 with

conformal mapping (γ = 10−3) for Case 1, the shape evolution process illustrates the effec-

tiveness of final reconstruction from initial square. Fig. 8 shows the unsatisfactory result

without conformal mapping and the satisfactory result with remeshing. When conformal

mapping is not used and the mesh is not redivided, in the process of optimization, because

the mesh quality is too poor, the optimization step will continue to decrease or even tend
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a) Initial design b) Iteration=80 c) Final design d) Target design

e) Finite element solution: Target design f) Finite element solution: Final design

Figure 7: Example 4.2, Case 1. Reconstruction process.

Figure 8: Example 4.2, Case 1. Reconstructed result without conformal mapping (left) and with
remeshing (right).

to 0, so that the optimization cannot continue. In Fig. 9, convergence histories of the ob-

jective show the algorithm without using conformal mapping and remeshing leads to poor

final result, while either remeshing or conformal mapping is effective for algorithm’s con-

vergence. In Case 2, Figs. 10 and 11 show the shape evolution process with remeshing

used every 5 iterations and convergence history of the objective, respectively. We also con-

sider the optimization with only partial measurement and noise σ = 0.01. The observation

data is shown in Fig. 5(a), and the optimization result is shown in Fig. 10(h). Here, set

α= 10−8, and other parameter values are not changed.
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Figure 9: Example 4.2, Case 1. Convergence histories: without using conformal mapping (Curve 2),
using conformal mapping (Curve 1), and using remeshing (Curve 3).

a) Initial design b) Iteration=70 c) Iteration=350

d) Iteration=580 e) Final design f) Partial measure result

Figure 10: Example 4.2, Case 2. Shape evolution process.

Example 4.3. Consider reconstruction on an irregular D in Fig. 12 for satisfactory results

obtained with α = 10−5. In this example, we also consider the optimization based on partial

observation data shown in Fig. 12(a) and add noise, where the noise level σ = 0.01 and

set α = 10−9. The optimization result is shown in Fig. 12(d).
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Figure 11: Example 4.2, Case 2. Convergence history: α= 10−5 (left) and α = 10−8 (right).

(a) Observation area (Grey) (b) Initial design (c) Final design with

whole-observation

(d) Final design with

partial-observation

(e) Convergence history for partial-observation

Figure 12: Example 4.3, Algorithm 1. Final design, σ = 0, α = 10−5 (c) and σ = 0.01, α = 10−9 (d).

4.2. Examples of Algorithm 2

Both shape and topology changes are allowed using the level set method with fixed

meshes on general design regions as shown below. Set ω = 10−3, cf. (3.6). We reinitialize

at every iteration.
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Example 4.4. We solve Example 4.3 by the level set method, which allows shape changes

on fixed irregular design region as shown in Fig. 13. The final reconstruction of noisy case

(σ = 0.01) is slightly less satisfactory than the noise-free one as expected, especially when

partial observation data is available as shown in Fig. 12(a). In Fig. 14, as α increases, there

is more regularization effect and thus the interface length is expected to decrease.

a) Initial design b) Intermediate design c) Final design with

whole-observation, σ = 0

d) Final design with

partial-observation, σ = 0.01

e) Convergence history for whole-observation,

α= 10−5
f) Convergence history for partial-observation,

α = 10−9

Figure 13: Example 4.4 by Algorithm 2. Optimization process and convergence history.

a) α = 5.0× 10−5 b) α= 10−5 c) α = 10−6

Figure 14: Example 4.4. Effects of the regularization parameter on reconstruction results, σ = 0.1.
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Example 4.5. Choose D = (0,1)2, cf. Fig. 15. We reconstruct a diamond and an ellipse.

Set α= 10−5. The evolution process is shown in Fig. 16, where satisfactory reconstruction

results are obtained with noise-free whole-observation. Both initial designs with several

holes and one hole can converge to a well multi-connected reconstruction result. Similar

to Case 3 of Example 4.1, we consider the same partial observation as in Fig. 5(a).

In Fig. 17, as the observation data information reduces, the reconstruction quality de-

creases compared with the reconstruction result in Fig. 16. Moreover, the reconstruction

quality decreases further when data has noise. From Fig. 18, the comparisons of the two

cases show that the final objective value of the noisy case is reasonably larger.

Figure 15: Examples 4.5-4.6. Mesh of D = (0, 1)2.

a) Initial design 1 b) Iteration = 10 c) Iteration = 50 d) Final design

e) Target design f) Initial design 2 g) Iteration = 300 h) Reconstructed result

Figure 16: Example 4.5. Shape and topological changes with noise-free whole-observation.
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Figure 17: Example 4.5 with partial measurement, σ = 0 (left) and σ = 0.01 (right).

Figure 18: Example 4.5 with partial measurement: Convergence history (Curve A, σ = 0.01 and Curve
B, σ = 0).

Example 4.6. We re-solve Example 4.2 with Algorithm 2. Choose α= 10−9. The algorithm

allowing topological changes starts with an initial design containing a few holes as shown

in Fig. 19, where the final concave object is approximately reconstructed. It is expected that

the partial observation reconstruction withσ = 0.01 is not so good as the whole observation

one. In Fig. 20, the partial observation case converges to a slightly higher value than the

whole observation case for convergence history of the objective.

Example 4.7. Let D = (0,1)3. Choose the target Ω to be a heart-shaped region as shown

in Fig. 21(f). Set α = 10−9. Fig. 21 shows the noisy case has lower reconstruction quality

than the noise-free one. Both multi-connected and simply-connected initial subdomains can

converge to the heart shape, which implies the robustness of Algorithm 2 in 3D. Moreover,

the more practical case with only partial observation data and noise is also considered, in

which M := (−1,1)3\[−0.8,0.8]3 and σ = 0.01. See Figs. 22 and 23 for reconstruction

and convergence history of objective. Choose α= 10−8. As expected for whole-observation,

the converged objective of the noisy data case is larger than that of the noise-free one in

Fig. 23.
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a) Initial design b) Iteration 20 c) Iteration 40

d) Final result with noise-free

observation on D
e) Illustration of partial observation

f) Final result with noise-free

partial-observation and σ = 0.01

Figure 19: Example 4.6. Optimization process.

Figure 20: Example 4.6. Convergence history: α = 10−9.

5. Conclusion

We have shown existence and proposed numerical methods for solving an inverse shape

problem associated with a semi-linear elliptic interface problem in reaction diffusion. We

performed shape sensitivity analysis and used the distributed shape gradient to propose

a numerical shape optimization algorithm and a topology optimization algorithm, the latter

of which is based on the level set method. A variety of numerical examples were proposed

to demonstrate the effectiveness of our algorithms.
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a) Initial design b) Final design:σ = 0 c) Final design:σ = 0.05

d) Initial design e) Final design: σ = 0 f) Target design

Figure 21: Example 4.7. Initial and reconstructed results.

Figure 22: Example 4.7. Left: Partial observation illustration (White region). Right: Reconstruction
result, σ = 0.01.
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Figure 23: Example 4.7. Convergence history: Whole-observation (left) and partial-observation (right).
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