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ACCELERATING PRECONDITIONED ITERATIVE LINEAR

SOLVERS ON GPU

HUI LIU, ZHANGXIN CHEN AND BO YANG

Abstract. Linear systems are required to solve in many scientific applications and the solution
of these systems often dominates the total running time. In this paper, we introduce our work on
developing parallel linear solvers and preconditioners for solving large sparse linear systems using
NVIDIA GPUs. We develop a new sparse matrix-vector multiplication kernel and a sparse BLAS
library for GPUs. Based on the BLAS library, several Krylov subspace linear solvers, and algebraic
multi-grid (AMG) solvers and commonly used preconditioners are developed, including GMRES,
CG, BICGSTAB, ORTHOMIN, classical AMG solver, polynomial preconditioner, ILU(k) and
ILUT preconditioner, and domain decomposition preconditioner. Numerical experiments show
that these linear solvers and preconditioners are efficient for solving the large linear systems.
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1. Introduction

Linear and nonlinear solvers play an important role in scientific computing areas.
In many scientific applications, the solution of systems of linear algebraic equations
dominates the whole simulation time. The black oil simulator [1], for example, may
run for weeks or even months depending on the problem size. In this simulator,
iterative linear solvers may take up to 98% of the whole simulation time. Therefore,
the development of fast and accurate linear solvers and preconditioners are essential
to many applications.

Efficient iterative linear solvers, preconditioners and parallel computing tech-
niques have been developed to accelerate the solution of linear systems. Saad de-
veloped the GMRES solver, a general solver for unsymmetric linear system [22, 23]
and Vinsome designed the ORTHOMIN solver, which was originally developed for
reservoir simulation [2], for example. Commonly used preconditioners were also
developed, such as Incomplete LU (ILU) factorization, domain decomposition and
algebraic multigrid preconditioners [22, 23]. GPUs (Graphics Processing Unit) are
usually used for display, since each pixel can be processed simultaneously. GPUs
are designed in such a way that they can manipulate data in parallel. They have
parallel architectures and their memory speed is very high [5, 6, 7]. In general,
GPUs are ten to forty times faster than general CPUs (Central Processing Units)
[5, 6, 7], which makes them proper devices for parallel computing, especially for
developing fast linear solvers. The architectures of GPUs are different from those
of CPUs, and therefore, new algorithms for GPUs should be designed to match
the architectures of GPUs. Efforts have been made to utilize GPUs’ performance
[5, 6, 7, 3, 4, 27, 8, 10, 11]. Bell and Garland investigated different kinds of matrix
formats and SpMV algorithms in [3, 4], in which the HYB format matrix and the
corresponding SpMV algorithm was also designed. Naumov from NVIDIA devel-
oped a fast triangular solver for GPU and the solver was over two times faster
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than CPU-based triangular solver. Saad et al. used JAD matrix and developed
an efficient sparse matrix-vector multiplication (SpMV) kernel for GPU, and based
on the kernel, several Krylov solvers and ILU preconditioner were implemented on
GPU. Haase et al. developed a parallel AMG solvers using a GPU cluster [12].
Researchers from NVIDIA also developed an AMG solver on GPU [9, 13]. The
setup and solving phases were both run on GPU, which made their AMG very fast.
Chen et al. from University of Calgary designed a new matrix format HEC (Hy-
brid of Ell and CSR), fast SpMV kernel [11], parallel triangular solver [10], parallel
preconditioners [8] and the GPU solvers have been applied to reservoir simulation
[14, 17]. More details can be read from [5, 6, 7, 3, 4, 27, 8, 10, 11, 15, 24, 28].

In this paper, we introduce our work on developing a general purpose GPU-based
parallel iterative linear solver package. We design a flexible matrix format for GPU
and its corresponding SpMV algorithm [11]. The matrix is also a good choice for
parallel triangular solver [28]. Based on this SpMV and other matrix-vector oper-
ations, several Krylov subspace solvers are implemented. For symmetric positive
definite matrices, AMG solvers are the most effecient methods, which project a low
frequency error to a coarser grid, and convert it to a high frequency error. In this
case, the resulting high frequency error is easy to converge again. The convergence
rate of these AMG solvers is optimal [18, 19, 20, 21] in terms of the number of
iterations. We implement a classical AMG solver, which also serves as a precon-
ditioner. Other commonly used preconditioners are also implemented, including
ILU(k), ILUT(p, tol), RAS (Restricted Additive Schwarz method), polynomial and
block ILU(k), block ILUT(p, tol). Numerical experiments show that our linear
solvers and preconditioners are over ten times faster than CPU-based solvers and
preconditioners.

The layout of the paper is as follows. In §2, GPU computing will be intro-
duced briefly. In §3, our work on linear solvers will be proposed. IN §4, parallel
preconditioners are presented. Then numerical experiment will be presented in §5.

2. GPU Computing

Figure 1: NVIDIA Fermi Architecture.
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The architectures of GPUs are parallel [6, 7]. The NVIDIA Fermi GPU, as shown
in Fig. 1 as an example, has 16 SMs (Streaming Multi-processor), and each SM has
32 SPs (Streaming Processor). This GPU has 512 processors shown as green blocks
while a normal CPU has only 2, 4, 6 or 8 cores. The NVIDIA Tesla C2050 has a
peak performance of 1030G FLOPS in single precision and a peak performance of
515G FLOPS in double precision, which are around 10 times faster than that of
CPUs. Each SM has its own L1 cache, shared memory and register. They share L2
cache, constant memory, texture memory and global memory. The global memory
stores most of data, and is used to communicate with CPUs. Its memory speed is
around 150 GB/s while the memory speed of CPUs is around 15 GB/s. The GPU
memory is also about 10 times faster than the CPU memory.

NVIDIA provides CUDA Toolkit [6, 7] to help users develop high performance
programs. CUDA applications consist of two parts: a host part and a device
part. The host program consists of pure CPU codes running on CPUs. The device
program is executed on a GPU device. A device program is called a kernel function,
which employs a SPMT model (Single Program Multiple Thread) [6, 7], generating
a large number of threads and executing the same kernel function in parallel on
streaming processors of GPUs. This bunch of threads is organized into a grid of
thread blocks. Threads in the same block are able to cooperate with each other
by barrier synchronization and shared memory. In addition, threads in different
blocks cannot communicate with each other directly due to efficiency considerations.
However, they can communicate with each other through global memory using two
kernel functions.

3. GPU-based Parallel Linear Solvers

In this section, we will present our work on developing SpMV kernel, Krylov
subspaces solvers and algebraic multi-grid solver.

3.1. Sparse Matrix-Vector Multiplication. For the sake of completeness, the
SpMV algorithm we developed is introduced here [11]. The pattern of memory
access of NVIDIA GPUs is coalesced, which means that if data access is arranged
properly, threads in a grid block read and write data using only one or a few
accesses. In this case, the global memory access is optimized and memory speed is
highest.

For our general matrix formats, such as CSR, CSC and DIA [22, 23, 5], when
we develop sparse matrix-vector multiplication kernel, it is hard to obtain maximal
float point performance and memory speed. NVIDIA developed a hybrid matrix
format HYB [3] and Saad et al designed the JAD matrix format [5] to improve the
performance of SpMV. In this paper, we develop a different matrix format called
HEC shown in Fig. 2, which is friendly to ILU-like preconditioners. The HEC
format consists of two parts: ELL part and CSR part. The ELL is very regular
and each row has the same length. Therefore, the memory access is coalesced and
memory access speed is high. The CSR part stores the irregular part of our matrix.
When designing the SpMV algorithm for GPU, we employ one thread for one row.
Pseudo-codes for this is straightforward as shown in Algorithm 1.

3.2. Krylov Subspace Solvers. From references [22, 23], iterative linear solvers
consist of matrix-vector multiplication operations and vector operations. These
common operations include,
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Figure 2: HEC Matrix Foramt.

Algorithm 1 Sparse Matrix-Vector Multiplication, y = Ax

1: for i = 1: n do ⊲ ELL, Use one GPU kernel to deal with this loop
2: the i-th thread calculate the i-th row of ELL matrix; ⊲ Use one thread
3: end for

4:

5: for i = 1: n do ⊲ CSR, Use one GPU kernel to deal with this loop
6: the i-th thread calculate the i-th row of CSR matrix; ⊲ Use one thread
7: end for

y = αAx+ βy, α, β ∈ R,(1)

z = αAx+ βy, α, β ∈ R,(2)

y = αx+ βy, α, β ∈ R,(3)

z = αx+ βy, α, β ∈ R,(4)

α = 〈x, y〉 ,(5)

where A is a matrix, x, y and z are vectors, α and β are real numbers, and 〈·, ·〉 is the
scalar product. If all these operations are implemented, Krylov [22, 23] subspace
solvers can be implemented straightforwardly. We implement a GPU BLAS library,
which contains commonly used BLAS 1 and BLAS 2 subroutines. With the help
of the BLAS library, we implement several Krylov linear solvers, including CG,
GMRES, BICGSTAB, CGS, ORTHOMIN, ORTHODIR and GCR [22, 23].

3.3. Algebraic Multi-Grid Solver. For linear system Ax = b, A is a sparse
positive definite matrix (A ∈ Rnxn). This linear system may be derived from
the discretization of a pressure equation or parabolic equations by using the finite
element method, the finite difference method or the finite volume method.

The structure of the standard V-cycle AMG solver is shown in Fig. 3 [15], which
has L + 1 levels and the original linear system Ax = b stands for the finest level
(l = 0) and level L is the coarsest level. An AMG solver consists of two phases, a
setup phase and a solution phase. In the setup phase, the hierarchical system shown
in Fig. 3 is assembled. On each level l except level L, a coarse grid is chosen, and
the coarser grid block size should be much larger than the current grid block size
such that the linear system on the coarse grid is easy to solve, and the error on it
should approximate the error on the current fine grid. Then a restriction operator
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l = 0

l = 1

l = L

Figure 3: Structure of AMG solver.

R and an interpolation (prolongation) operator P are determined. The restriction
operator projects an error from a finer grid onto a coarser grid and converts a low
frequency error to a high frequency error while the interpolation operator transfers
a solution on a coarser grid to that on a finer grid. In general, the restriction
operator R is the transpose of the interpolation (prolongation) operator P ; i.e.,
R = PT . The setup phase on each level l (0 ≤ l < L) is formulated in Algorithm 2.

Algorithm 2 AMG setup Algorithm

1: Calculate strength matrix S.
2: Choose coarsening nodes set ωl+1 according to strength matrix S, such that

ωl+1 ⊂ ωl.
3: Calculate prolongation operator Pl.
4: Derive restriction operator Rl = PT

l .
5: Calculate coarse matrix Al+1: Al+1 = Rl ×Al × Pl.
6: Choose pre-smoother Sl and post-smoother Tl.

The coarsening algorithms we use here are the RS algorithm introduced by Ruge
and Stüben [18, 19] and the CLJP algorithm introduced by Cleary, Luby, Jones and
Plassmann.

The prolongation operators are the classical one proposed by Ruge and Stüben
and the one introduced in Haase’s paper [12]. The second one is simpler and has
lower complexity compared to the classical prolongation operator. Let P be the
second prolongation operator to be calculated; we have

(6) Pi,j =







1 i is a coarening node,
0 i is a fine node and is weakly connected with j,

1/ni i is a fine node and is strongly connected with j,

where Pi,j is the (i, j)-th element of operator P and ni is the number of coarsening
nodes connected with fine node i.

For a given matrix A, the right-hand side b and the initial solution x, the pre-
smoother Sl and the post-smoother Tl have the same form so that

(7) xm+1 = xm + αM−1(b−Axm) = xm + αM−1r.

The difference is how to choose matrix M and coefficient α, where α is positive and
often equals to 1. If M is chosen as the diagonal matrix of A, we have a Jacobi
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smoother, and if α is less than 1, we have a damped Jacobi. If M is the block
diagonal part of A, we have a block Jacobi smoother. In our solver package, we have
implemented the Jacobi, damped Jacobi, block Jacobi, weighted Jacobi, Gauss-
Seidel, block Gauss-Seidel, approximate inverse, domain decomposition, polynomial
and hybrid smoothers. For the block Jacobi, Gauss-Seidel, block Gauss-Seidel and
domain decomposition smoothers [25, 16], triangular systems are required to solve.
Parallel GPU-based triangular solvers [8] are applied here.

The solution phase of AMG is recursive and is formulated in Algorithm 3, which
shows one iteration of AMG. On each level l, the algorithm requires Al, Rl, Pl,
Sl and Tl. Al, Rl and Pl are matrices. The pre-smoother Sl and post-smoother
Tl are typically damped Jacobi, Gauss-Seidel, block Gauss-Seidel and domain de-
composition smoothers. We assemble the setup phase on CPU solve the system on
GPU.

Algorithm 3 AMG Solution Algorithm: mg solve(l)

Require: bl, xl, Al, Rl, Pl, Sl, Tl, 0 ≤ l < L

b0 = b
if (l < L) then

xl = Sl(xl, Al, bl) ⊲ Pre-smoothing
r = bl −Alxl

br+1 = Rlr ⊲ Restriction
mg solve(l+ 1) ⊲ Next level
xl = xl + Plxl+1 ⊲ Prolongation
xl = Tl(xl, Al, bl) ⊲ Post-smoothing

else

xl = A−1
l bl

end if

x = x0

4. Parallel Preconditioners

It is well known that preconditioners are essential to the speed up and conver-
gence of iterative linear solvers. If a preconditioner is chosen properly, the solution
time of linear systems can be reduced dramatically. We implement polynomial
preconditioner, Incomplete LU (ILU) factorization preconditioner, block ILU fac-
torization and domain decomposition preconditioner [22, 23, 25].

For any nonsingular matrix A, we write A as A = I −B. If the spectral radium
of B is less than one, then we have the following Neumann polynomial:

(8) A−1 = I +B1 +B2 +B3 +B4 + · · · .

If we define Pk(A) as follows:

(9) Pk(A) = I + B1 +B2 +B3 +B4 + · · ·Bk,

then Pk(A) is a kth-order Neumann polynomial preconditioner. The solution of a
preconditioned linear system equals to SpMV.

For any given square non-singular matrix A, the ILU factorization computes
a sparse lower triangular matrix L and a sparse upper triangular matrix U. If
no fill-in is allowed, we obtain the so-called ILU(0) preconditioner. If fill-ins are
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allowed and computed by non-zero pattern using method introduced in [23], ILU(k)
can be obtained. Another method is ILUT, which drops entries based on the
numerical values of the fill-in elements [23, 5]. When block Jacobi method is choose
as preconditioner, each submatrix is solveed by ILU(k) or ILUT, then block ILU(k)
and block ILUT are implemented. When the number of blocks is set to one, they
are usual ILU(k) and ILUT, respectively.

Domain decomposition methods use the principle of divide-and-conquer. These
methods have been primarily developed for solving Partial Differential Equations
(PDEs) over regions in two or three dimensions [23] and for parallel computing. Cai
et al. developed the restricted additive Schwarz method for a general sparse matrix
[25], which reduces communication and is much faster than the classical additive
Schwarz preconditioner. Its basic idea is to restrict the original large matrix to
some smaller matrices and then to solve these smaller matrices simultaneously. In
this paper, we treat the original matrix as an undirected graph and this graph
is partitioned by METIS [16]. The subdomain can be extended according to the
topology of the graph. Then each smaller problem can be solved by ILU(k) or
ILUT.

For ILU preconditioners and RAS preconditioner, the following triangular sys-
tems need to be solved:

(10) LUx = b ⇔ Ly = b, Ux = y,

where L and U are a lower triangular matrix and an upper triangular matrix,
respectively, b is the right-hand side vector and x is the unknown to be solved for.
The lower triangular problem, Ly = b, is solved first, and then, by solving the upper
triangular problem, Ux = y, we can obtain the result x. For GPU computing, the
parallel triangular solvers are based on the level schedule method [23], and details
can be read from [23, 28, 8].

5. Numerical Experiments

Numerical experiments are performed on our workstation with Intel Xeon X5570
CPUs and NVIDIA Tesla C2050/C2070 GPUs. The operating system is CentOS
6.2 X86 64 with CUDA Toolkit 4.0 and GCC 4.4. All CPU codes are compiled with
-O3 option. The type of float point number is double. Performance of our SpMV
kernel can be found [11].

Example 1. The matrix is from SPE 10 [1]. Its dimension is 2,188,851 and the

number of non-zeros is 29,915,573. Three solvers are tested without any precondi-

tioner, and the number of iteration is fixed at 20. Data is shown in Table 1.

Table 1: Performance of solvers without preconditioner

Solver CPU (s) GPU (s) Speedup
BICGSTAB 3.27 0.31 9.95

ORTHOMIN(20) 5.95 0.52 10.61
GMRES(20) 60.39 5.61 10.72
GMRES(40) 178.08 17.01 10.45

This example is for testing the framework of our package and the performance
of the BLAS library. From Table 1, we can see that our linear solvers are efficient
and they are around 10 times faster than the CPU version solvers.
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Example 2. The matrix used here is from a three-dimensional Poisson equation.

Its dimension is 1,000,000 and the number of non-zeros is 6,940,000. Performance

data is collected in Table 2.

Table 2: Performance of the matrix from the Poisson equation

Preconditioner Parameters CPU (s) GPU (s) Speedup
BILUK 1 block 16.31 2.15 7.55
BILUK 16 blocks 20.12 2.53 7.93
BILUK 128 blocks 20.2 2.39 8.44
BILUK 512 blocks 22.76 2.70 8.39
BILUT 1 block 7.11 1.67 4.24
BILUT 16 blocks 14.85 2.38 6.19
BILUT 128 blocks 14.56 2.30 6.30
BILUT 512 blocks 18.59 2.71 6.83
RAS 256 blocks, overlap = 1 18.70 2.16 8.60
RAS 2048 blocks, overlap = 1 22.03 2.35 9.32
RAS 256 blocks, overlap = 2 20.27 2.18 9.24
RAS 2048 blocks, overlap = 2 22.23 2.66 8.30

In this example, the solver is GMRES(20). Three different preconditioners are
tested, which are block ILU(0), block ILUT and domain decomposition, noted by
BILUK, BILUT and RAS. For the BILUK, when the number of blocks is one, it is
ILU(0). Though it is highly sequential, we can still speed ILU(0) around 7.5 times
faster. When increasing the number of blocks, our solver has better speedup. The
average speedup for this matrix is about 8.

BILUT is a special preconditioner since it is obtained according to the values
of L and U ; sometimes, the sparse patterns of L and U are more irregular than
those in BILUK [8]. From Table 2, we can see that the speedups are a little lower
compared to BILUK. However, BILUT reflects the real data dependence, and its
performance is better than BILUK in general. This is demonstrated by Table 2.
The CPU version BILUT always takes less time than the CPU BILUK. But, for
the GPU versions, their performance is similar.

Here the RAS means restricted additive schwarz preconditioner proposed by Cai
et al [25]. The RAS preconditioner is always stable. It also has better speedup
than BILUK and BILUT, which is demonstrated by Table 2. The average speedup
is around 9.

Example 3. The matrix tested is from a three-dimensional elliptic partial dif-

ferential equation. Its grid size is 100x100x100. The dimension of the matrix is

1,000,000 and the number of non-zeros is 6,940,000. The RS coarsening strate-

gy and damped Jacobi smoother are applied. The AMG solver has 8 levels. The

termination criterium is 1e-6 [15].

The performance data is shown in Fig. 4. Both CPU and GPU solvers terminate
in 21 iterations. The GPU takes 1.127s to solve the linear system shown in green
color while the CPU solver takes 10.8s to solve it shown in red color. The GPU-
based parallel AMG solver is 9.58 times faster than the CPU-based AMG solver.

Example 4. The matrix tested is also from a three-dimensional elliptic partial

differential equation. Its grid size is 130x130x130. The dimension of the matrix is
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Figure 5: Running time of Example 4

2,197,000 and the number of non-zeros is 15,277,600. The RS coarsening strategy

and weighted Jacobi smoother are applied. The AMG solver has 8 levels. The

termination criterium is 1e-6 [15].

The performance of example 4 is shown in Fig. 5. AMG solvers terminate in 25
iterations. The GPU-based AMG solver takes 3.02s shown in green color while the
CPU-based AMG solver takes 37.86s. The speedup of the GPU-based AMG solver
for this matrix is around 12.47. This parallel solver is much more efficient than the
CPU-based solver.

6. Conclusion

In this paper, we present our GPU-based parallel iterative linear solvers and
preconditioners. A GPU BLAS library, including SpMV and vector operations,
several Krylov subspace linear solvers,classical AMG solver and commonly used
preconditioners are implemented. The numerical experiments show that our solvers
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and preconditioners are efficient. From these experiments, we can conclude that
our GPU-based linear solvers are around ten times faster than the corresponding
CPU-based linear solvers.
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