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SEMI-CONVERGENCE OF AN ALTERNATING-DIRECTION

ITERATIVE METHOD FOR SINGULAR SADDLE POINT

PROBLEMS

YINGZHE FAN AND ZHANGXIN CHEN

Abstract. For large-scale sparse saddle point problems, Peng and Li [12] have recently proposed a

new alternating-direction iterative method for solving nonsingular saddle point problems, which is
more competitive (in terms of iteration steps and CPU time) than some classical iterative methods

such as Uzawa-type and HSS (Hermitian skew splitting) methods. In this paper, we further study

this method when it is applied to the solution of singular saddle point problems and prove that it
is semi-convergent under suitable conditions.
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1. Introduction

Consider the saddle point problem(
A B
−BT 0

)(
x
y

)
=

(
f
−g

)
or Ãx̃ = b, (1.1)

where the matrices A ∈ Rm×m and B ∈ Rm×n and the vectors f ∈ Rm and g ∈ Rn
are given, with n ≤ m, and BT is the transpose of the matrix B. We shall assume
that A is positive real (i.e., AT +A is positive definite) and B is a rectangular matrix
with rank(B) = r. Saddle point problems arise in many scientific computing and
engineering applications such as mixed finite element methods for solving elliptic
partial differential equations, and Stokes problems, computational fluid dynamics,
and constrained least-squares problems; see [7, 8, 9, 11], for example. Benzi et al.
[5] gave a comprehensive survey for recent work on the saddle point problems.

When the matrix B is of full column rank, i.e., r = n, we know that the coef-
ficient matrix of system (1.1) is nonsingular and this sytem has a unique solution.
Because the matrices A and B are usually large and sparse, iterative methods are
always considered to be the most suitable candidates for solving system (1.1). So
far, a large variety of iterative methods based on the matrix splitting of the coeffi-
cient matrix of (1.1) have been studied in the literature, for example, Uzawa-type
methods [4, 6], GSSOR (generalized symmetric successive over-relaxation) itera-
tive methods [1, 10], and HSS iterative methods [3]. Recently, Peng and Li [12]
has proposed a new alternating-direction iterative method for solving system (1.1).
Theoretical analysis and numerical experiments have shown that this new iterative
method is more competitive than some classical iterative methods in terms of it-
eration steps and CPU time, such as the Uzawa-type and HSS iterative methods
with optimal parameters.

When r < n, the coefficient matrix of system (1.1) is singular and this system has
an infinite number of solutions; see [5]. Recently, Zheng et al. [14] has showed that
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the GSOR (generalized successive over-relaxation) iterative method proposed in [4]
can be used to solve a singular saddle point problem of type (1.1) and proved that
this method is semi-convergent. In this paper, we will study the new alternating-
direction iterative (ADI) method presented in [12] when it is applied to the solution
of the singular system (1.1), and prove that this new method is semi-convergent
under suitable conditions.

2. An Alternating-direction Iterative Method

In this section, we review the new alternating-direction iterative method pro-
posed in [12] for solving the nonsingular saddle point problem (1.1).

Define

Ã =

(
A B
−BT 0

)
, H̃ =

(
A B
0 0

)
, S̃ =

(
0 0
−BT 0

)
.

We then consider the following splittings of Ã:

Ã = (α1I + H̃)− (α1I − S̃) = (α2I + S̃)− (α2I − H̃),

where I denotes the identity matrix with the corresponding dimension and α1 and
α2 are positive parameters.

Now, given the initial guess x̃(0), a new-ADI method can be described as follows:{
(α1I + H̃)x̃k+ 1

2 = (α1I − S̃)x̃k + b,

(α2I + S̃)x̃k+1 = (α2I − H̃)x̃k+ 1
2 + b.

By eliminating the intermediate vector x̃(k+ 1
2 ), this method can be equivalently

rewritten as

x̃(k+1) = Tα1,α2 x̃
(k) + c,

where
Tα1,α2

= (α2I + S̃)−1(α2I − H̃)(α1I + H̃)−1(α1I − S̃),

c = (α2I + S̃)−1[I + (α2I − H̃)(α1I + H̃)−1]b.
(2.1)

Lemma 2.1. With the above definition, the matrix Tα1,α2
has the form

Tα1,α2 =

(
T11 T12

T21 T22

)
, (2.2)

where

T11 =
α1 + α2

α1α2
(α1I +A)−1(α2

1I −BBT )− α1

α2
I,

T12 = −α1 + α2

α2
(α1I +A)−1B,

T21 =
α1 + α2

α1α2
2

BT (α1I +A)−1(α2
1I −BBT ) +

α2
2 − α1

1

α1α2
2

BT ,

T22 = I − α1 + α2

α2
2

BT (α1I +A)−1B.

Proof. Note that

(α1I + H̃)−1(α2I − H̃) = (α2I − H̃)(α1I + H̃)−1,

which is true, since each term in this equation is a polynomial of H̃. Then, with the
splitting Ã = M−N , where M is a nonsingular matrix, Tα1,α2

is the corresponding
iteration matrix

Tα1,α2
= M−1N,
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where

M =
1

α1 + α2
(α1I + H̃)(α2I + S̃),

N =
1

α1 + α2
(α2I − H̃)(α1I − S̃),

which gives the desired result (2.2). �
When the matrix B is of the full column rank (i.e., r = n), the convergence of

the above ADI method was carefully analyzed and the choice of the parameters was
also discussed in paper [12].

3. Semi-convergence of the ADI Method

In this section, we shall show our main results for the above ADI method when
the coefficient matrix of system (1.1) is singular. Before its semi-convergence is
discussed, we shall state some basic concepts and lemmas.

Denote λ(A) and ρ(A) the spectral set and the spectral radius of a square ma-
trix A, respectively. Also, let σ(A) represent the set of singular values of A. Fur-
thermore, define ϑ(A) = max{|λ| : λ ∈ λ(A), λ 6= 1} and Index(A) = min{k :
rank(Ak) = rank(Ak+1), where
k is a nonnegative integer}.

Lemma 3.1 ([2,6]). Suppose that A ∈ Rn×n is a square matrix and I is the
identity matrix with the same dimension. Then the matrix A is semi-convergent if
and only if the following two conditions are fulfilled:

(1) ϑ(A) < 1,
(2) Index(I −A) ≤ 1.

For a matrix A ∈ Rn×n, A = M −N is a splitting if M is nonsingular and the
corresponding iteration scheme can be described as follows:

xk+1 = Txk + c, k = 0, 1, 2, . . . , (3.1)

where T = M−1N is the iteration matrix, c = M−1b, and x0 is an initial guess
vector.

We recall that a square matrix A is semi-convergent if lim
k→∞

Ak exists (k =

0, 1, ....,), and iteration (3.1) is semi-convergent if the corresponding iteration matrix
T is semi-convergent [6,13].

When A is nonsingular, the iterative scheme (3.1) is convergent if and only if
ρ(T ) < 1. When A is singular, the semi-convergence of the iteration matrix T
guarantees the semi-convergence of the iterative scheme (3.1).

Lemma 3.2 ([14]). Let matrix H ∈ R`×`, with ` a positive integer, and I be the
corresponding matrix. Then the partitioned matrix

T =

(
H 0
L I

)
is semi-convergent if and only if either of the following conditions is satisfied:

(1) L = 0 and H is semi-convergent,
(2) ρ(H) < 1.

With Lemmas 3.1 and 3.2, we shall now extend the results for nonsingular saddle
point problems proposed in [12] to those for singular systems.

Theorem 3.3. Assume that A ∈ Rm×m is positive real and B ∈ Rm×n is rank-
deficient (i.e., r < n). Denote by [u∗, v∗]∗ the eigenvector of the matrix Tα1,α2

,
where u∗ and v∗ are the conjugate transposes of u and v, respectively, Tα1,α2 is
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defined in (2.1), and α1 and α2 are positive parameters. Then the alternating-
direction iterative method is semi-convergent to a solution of the singular saddle
point problem (1.1) if

γ >
u∗BBTu

2α1α2Re(u∗Au)
{(α1 + α2)2[Re(u∗Au)]2 + (α1 − α2)2[Im(u∗Au)]2}, (3.2)

where γ = (α2 − α1)|u∗Au|2 + 2α1α2Re(u
∗Au). If A is symmetric and positive

definite, then the method is semi-convergent if

2α1α2[(α2 − α1)(u∗Au)2 + 2α1α2] > (α1 + α2)2u∗BBTu

Proof. From the definition of semi-convergence of an iteration scheme, it suffices
to show that the iteration matrix Tα1,α2

is semi-convergent. Let B = U(B1, 0)V ∗

be the singular value decomposition of B, where U and V are unitary matrices,
B1 = (Σr, 0)T ∈ Rm×r, with

Σr = diag(σ1, σ2, ..., σr),

and σi is a singular value of B, i = 1, ..., r. Then the matrix

P =

(
U 0
0 V

)
is an (m+n)×(m+n) unitary matrix. Defining T̂ = P ∗Tα1,α2P , it follows that the

matrix T̂ is similar to Tα1,α2
. Thus these two matrices have the same eigenvalues.

Hence we only need to demonstrate that T̂ is semi-convergent.
Define the matrices

Â = U∗AU, B̂ = U∗BV.

It holds that B̂ = (B1, 0). Then we see that

T̂ = P ∗Tα1,α2P =

(
U∗T11U U∗T12V
V ∗T21U V ∗T22V

)
.

By algebraic computations, we have

U∗T11U = U∗[
α1 + α2

α1α2
(α1I +A)−1(α2

1I −BBT )− α1

α2
I]U

=
α1 + α2

α1α2
U∗(α1I +A)−1UU∗(α2

1I −BBT )U − α1

α2
I

=
α1 + α2

α1α2
(α1I + Â)−1(α2

1I −B1B
T
1 )− α1

α2
I,

U∗T12V = U∗[−α1 + α2

α2
(α1I +A)−1B]V

= −α1 + α2

α2
(α1I + Â)−1U∗BV

= (−α1 + α2

α2
(α1I + Â)−1B1, 0),

V ∗T21U = V ∗[
α1 + α2

α1α2
2

BT (α1I +A)−1(α2
1I −BBT ) +

α2
2 − α2

1

α1α2
2

BT ]U

=
α1 + α2

α1α2
2

(
BT1
0

)
(α1I + Â)−1(α2

1I −B1B
T
1 ) +

α2
2 − α2

1

α1α2
2

(
BT1
0

)
=

(
α1+α2

α1α2
2
BT1 (α1I + Â)−1(α2

1I −B1B
T
1 ) +

α2
2−α

2
1

α1α2
2
BT1

0

)
,
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and

V ∗T22V = V ∗[I − α1 + α2

α2
2

BT (α1I +A)−1B]V

=

(
I − α1+α2

α2
2
BT1 (α1I + Â)−1B1 0

0 In−r

)
.

Therefore, we obtain

T̂ =

(
T̆ 0
0 In−r

)
,

where

T̆ =

 α1+α2
α1α2

(α1I + Â)−1(α2
1I −B1BT1 ) − α1

α2
I −α1+α2

α2
(α1I + Â)−1B1

α1+α2

α1α
2
2
BT1 (α1I + Â)−1(α2

1I −B1BT1 ) +
α2
2−α

1
1

α1α
2
2
BT1 I − α1+α2

α2
2

BT1 (α1I + Â)−1B1

 .

From Lemma 3.2, we know that matrix T̂ is semi-convergent if and only if T̆
is semi-convergent. Now, if ρ(T̆ ) < 1, it holds that λ(I − T̆ ) 6= 0; i.e., the matrix

(I − T̆ ) has a full rank. Thus Index(I − T̆ ) = 0. It follows from Lemma 3.1

that the matrix T̆ is semi-convergent. Furthermore, note that matrix T̆ is the
corresponding iteration matrix when the alternating-direction method is applied to
the nonsingular saddle point problem:(

Â B1

−BT1 0

)(
x̂
ŷ

)
=

(
f̂
−ĝ

)
,

where ŷ, ĝ ∈ Rr. Hence, by using Theorem 1 in [5], we see that ρ(T̆ ) < 1 if and
only if

γ >
û∗B1B

T
1 û

2α1α2Re(û∗Âû)
{(α1 + α2)2[Re(û∗Âû)]2 + (α1 − α2)2[Im(û∗Âû)]2}, (3.3)

where γ = (α2 − α1)|û∗Âû|2 + 2α1α2Re(û
∗Âû) and [û∗, v̂∗]∗ is the eigenvector of

T̂ . Since T̂ = P ∗Tα1,α2P , [û∗, v̂∗]∗ = P ∗[u∗, v∗]∗. Therefore, we have

û∗Âû = û∗U∗AUû = (Uû)∗A(Uû) = u∗Au,

û∗B1B
T
1 û = û∗U∗BBTUû = u∗BBTu,

which indicates that (3.3) is equivalent to (3.2) and thus completes the proof. �
Denote by σmin(BT ) and σmax(BT ) the smallest and largest singular values of

BT , respectively. Similarly, let λmin(A) and λmax(A) be the smallest and largest
eigenvalues of A. Suppose that the following assumptions are established:

(A1) A is symmetric positive definite and ill-conditioned;
(A2) α1 = α2 = α.

Based on assumption (A1), without loss of generality, we further assume that
(A3) λmin(A) < σmax(BT ) < 1

2λmax(A).

Since λ(A) = λ(Â) and σ(BT ) = σ(BT1 ), the following theorem immediately
follows from Theorem 4.1 in [12]:
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Theorem 3.4. Under the assumptions (A1)–(A3), if a1 ≥ 2σmax(BT ) and
a2 > 0, then

ρ(T̆ ) =



2σ2
max(BT )− α2 +

√
[λ2
max(A)− 4σ2

max(BT )]α2 + 4σ4
max(BT )

α[α+ λmax(A)]
,

σmax(BT ) < α ≤ α0,

α2 − 2σ2
min(BT ) +

√
[λ2
min(A)− 4σ2

min(BT )]α2 + 4σ4
min(BT )

α[α+ λmin(A)]
, α > α0,

where α0 =
√
σ2
max(BT ) + σ2

min(BT ), a1 = u∗Au, and a2 = u∗BBTu.

4. Conclusion

In this paper, an alternating-direction iterative method has been studied when it
is applied to the solution of a singular saddle point problem. The semi-convergence
of this method has been proved with reasonable assumptions, and the spectral
radius of the iteration matrix has been obtained for special cases.
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