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Abstract. In this paper, we extend the unified gas kinetic particle (UGKP) method to
the frequency-dependent radiative transfer equation with both absorption-emission
and scattering processes. The extended UGKP method could capture the diffusion
and free transport limit and provide a smooth transition in the physical and frequency
space in the regime between the above two limits. The proposed scheme has the prop-
erties of asymptotic-preserving and regime-adaptive, which make it an accurate and
efficient scheme in the simulation of multiscale photon transport problems. In the
UGKP formulation of flux construction and distribution closure, the coefficients of the
non-equilibrium free stream distribution and near-equilibrium Planck expansion are
independent of the time step. Therefore, even with a large CFL number, the UGKP can
preserve a physically consistent ratio of the non-equilibrium and the near-equilibrium
proportion. The methodology of scheme construction is a coupled evolution of the
macroscopic energy equation and the microscopic radiant intensity equation, where
the numerical flux in the macroscopic energy equation and the closure in the micro-
scopic radiant intensity equation are constructed based on the integral solution. Both
numerical dissipation and computational complexity are well controlled, especially in
the optically thick regime. 2D multi-thread code on a general unstructured mesh has
been developed. Several numerical tests have been simulated to verify the numeri-
cal scheme and code, covering a wide range of flow regimes. The numerical scheme
and code we developed are highly demanded and widely applicable in high-energy
engineering applications.
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1 Introduction

The thermal radiative transfer (TRT) equations, which describe the time evolution of ra-
diative intensity and its interaction with the background material, have wide applications
in astrophysics, atmospheric physics, inertial confinement fusion (ICF), high-temperature
flow systems, plasma physics [1, 2], etc. It contains the kinetic radiation transport equa-
tion that describes the photon transport in the background material and the material
energy equation that describes the energy exchange between radiation and background
material. These two equations are coupled by the absorption-emission process that is
characterized by the material opacity. The nonlinear dependency of the material opacity
and material temperature makes the system difficult to solve [3, 4]. In addition, the high
dimensionality of the equation greatly increases the computational cost. Developing nu-
merical methods with high accuracy and high efficiency has become an important topic
for the past decades.

Generally, the numerical methods for radiative transfer equations can be categorized
into the deterministic method and the stochastic method. The deterministic methods
include the macroscopic moment methods [5–10] and microscopic discrete ordinate SN
method [11–15]. The moment methods propose a closure to the radiant intensity by ex-
panding it in a specific functional space [16]. The SN methods directly discretize the
velocity space using a specific quadrature. For stochastic methods, the most commonly
used Monte Carlo (MC) method [17–20] exploits random numbers to simulate the inter-
actions of individual radiation particles with the background material. The MC method
is more efficient in optically thin regimes, especially for multi-dimensional cases, and
does not suffer from the ray effect compared with the deterministic method. The implicit
Monte Carlo (IMC) method proposed by Fleck and Cummings [17] is a popular Monte
Carlo method for solving the TRT equations. This method approximates the rapid, dy-
namic timescale of photon absorption-emission processes via effective scattering events
by the Fleck factor, according to which the nonlinear TRT equations are reformulated
into a system of linearized equations and solved by the standard Monte Carlo method.
However, it is generally noticed that the IMC method becomes inefficient in the optically
thick region when the photon mean free path is much smaller than the flow character-
istic length, and the particle collision becomes dominated. In such a regime, a great
number of effective scattering events are calculated during a time step, which signif-
icantly increases the computational cost. Efforts have been made to improve the effi-
ciency of the IMC method in optically thick regions [21, 22], such as the implicit Monte
Carlo diffusion (IMD) [23], discrete diffusion Monte Carlo (DDMC) [24, 25] methods, as
well as the moment-based scale-bridging method [26–30]. The IMD and DDMC meth-
ods are transport-diffusion hybrid methods that simulate the TRT equations with dif-
fusion approximation in optically thick regions and the standard IMC method in other
regions. For the transport-diffusion hybrid method, special efforts need to be made for
the domain decomposition and the information exchange at transport-diffusion inter-
faces. For the moment-based scale-bridging method, coupled high-order and low-order
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(HO-LO) equations are solved to improve the overall simulation efficiency for the TRT
equations. Numerical principles such as the asymptotic-preserving property and the
regime-adaptive property have been proposed to guide the multiscale numerical scheme
construction [31–33].

The unified gas kinetic scheme (UGKS) has been constructed first to simulate both
continuum, and rarefied flow [34], and then extended for the TRT problems [35–40].
The UGKS utilizes a finite volume formulation to solve the macroscopic transport and
material energy equations, where the DOM method is employed to discretize the an-
gle direction of the microscopic transport equation. In addition, the integral solution
of the transport equation is employed to establish the time-dependent interface fluxes
at a cell interface for both micro and macroscopic equations. This solution covers the
physics from the free transport to the diffusion limit, which makes the UGKS asymptotic
preserving (AP). Therefore, the UGKS accurately captures the diffusive and free trans-
port solutions in optically thick and thin regimes respectively, as well as the solutions
in the transition regime. Recently, the UGKS is extended to the particle-based Monte
Carlo method, such as the unified gas kinetic particle (UGKP) [41, 42] and the unified
gas-kinetic wave-particle (UGKWP) methods [43]. Similar to the UGKS framework, the
UGKP and UGKWP methods employ a finite volume solver for the macroscopic trans-
port and material energy equations and a particle-based Monte Carlo solver (instead of
the DOM method) for the microscopic transport equation. Therefore, the UGKP and
UGKWP methods have asymptotic preserving properties as well. In addition, the Monte
Carlo solver has avoided the interdependence of complex polyhedral-mixed mesh in
microscopic transport equation solving as in the DOM solver, which makes UGKP and
UGKWP methods more suitable for problems with complex polyhedral-mixed mesh than
UGKS method.

In this work, we extended the UGKP method for the frequency-dependent radiative
system considering both absorption-emission and scattering processes, and the scheme is
formulated on a general unstructured mesh. The UGKP and UGKWP methods have the
same framework, with the only difference in the source sampling (The UGKWP method
only resamples free-streamed photons, instead of all photons as in UGKP). Thus, all
following derivations in this work are also suitable for the UGKWP method. The key
methodology of the construction of UGKP is first the coupling evolution of the macro-
scopic energy equation and microscopic radiant intensity equation, and second the mul-
tiscale numerical flux and closure derived from the integral solution. The multi-group
formulation is used to discretize the frequency space, and a multi-dimensional formula-
tion is used for flux construction at the cell interface. The photon particles are sampled
and tracked from multiple sources, including photons in census, photons from bound-
ary/initial condition, and the macroscopic emission and scattering sources. The pro-
posed scheme is capable to capture the multiscale flow physics in both spatial and fre-
quency space. With the inclusion of the scattering effect, the flow regimes are enriched,
covering the optically thin ballistic regime, optically thick single-temperature diffusive
regime, and optically thick two-temperature diffusive regime [44, 45]. The proposed
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UGKP preserves all three regime solutions in their corresponding flow regimes. Espe-
cially, the UGKP converges to a nine-point scheme [39, 46] on a distorted quadrilateral
mesh in the diffusive regime.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
TRT equations. In Section 3, the proposed UGKP method for solving the frequency-
dependent radiative equations with considered both absorption-emission and scattering
processes on an unstructured mesh is presented. Section 4 discusses the numerical prop-
erties, including the asymptotic preserving property and the regime-adaptive property
of UGKP. Numerical results are shown in Section 5 to verify the UGKP method and the
program. The summary and future work are given in Section 6.

2 Frequency-dependent radiative transfer equations

The frequency-dependent radiative transfer equations describe the transport of radiation
and its energy exchange with the material. Under the assumption of local thermal equi-
librium (LTE), the time-dependent frequency-dependent radiative transfer equations in
the absence of both external and internal sources can be written in the following scaled
form: 

ε

c
∂I
∂t

+Ω⃗·∇I=Lε
aσa (B(ν,T)− I)+Lε

sσs

(
1

4π

∫
4π

IdΩ⃗− I
)

,

CV
∂T
∂t

≡ ∂Um

∂t
=

Lε
aσa

ε

∫
4π

∫ ∞

0
(I−B(ν,T))dνdΩ⃗.

(2.1)

Here I
(
t,⃗r,Ω⃗,ν

)
is the radiation intensity which depends on time t, spatial variable r⃗,

angular variable Ω⃗, frequency variable ν ∈ (0,+∞), T(t,⃗r) is the material temperature,
σa (⃗r,ν,T) is the absorption coefficient, σs (⃗r,ν,T) is the scattering coefficient, c is the speed
of light, ε > 0 is the Knudsen number, Lε

a and Lε
s are two parameters depending on ε,

Um (⃗r,t) is the material energy density, and CV > 0 is the heat capacity. In addition, the
Planck function B(ν,T) is defined by

B(ν,T)=
2hν3

c2
1

ehν/kT−1
, (2.2)

where h is Planck’s constant and k is Boltzmann’s constant. The assumption of isotropic
scattering is taken in this work.

The photon flow regimes are enriched when both absorption and scattering processes
are considered in system (2.1). In the optically thin regime, the system (2.1) degenerates
to the free-stream ballistic regime. In the optically thick regime, when the absorption
process dominates, the system asymptotically converges to a single-temperature diffu-
sion equation, and when the scattering process dominates, the system asymptotically
converges to a two-temperature diffusion system. Specifically, with Lε

a = 1/ε and Lε
s = ε,

the absorption process will be dominated as ε→ 0. The equilibrium state with equal ra-
diation and material temperature will be obtained, and the radiant intensity converges
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to the local Planckian distribution I → B(ν,T). The material temperature T0 satisfies the
following diffusion equation:

∂

∂t
Um (T0)+

∂

∂t

(
aT4

0

)
=∇· 1

3σa
∇
(

acT4
0

)
, (2.3)

where a is the radiation constant given by

a=
8πk4

15h3c3 .

When Lε
a= ε and Lε

s=1/ε, the scattering process will be dominated as ε→0, and the two-
temperature regime will be approached. If we define radiation energy as ρ=

∫
4π IdΩ⃗, the

radiation intensity goes to I→ρ/4π, and the radiation energy and material temperature
T stratify the following nonlinear two-temperature diffusion system:

∂ρ

∂t
−∇· c

3σs
∇ρ= cσa (4πB(ν,T)−ρ),

CV
∂T
∂t

≡ ∂Um

∂t
=σa

∫ ∞

0
(ρ−4πB(ν,T))dν.

(2.4)

One important thing is that the numerical scheme we construct keeps a consistent asymp-
totic behavior for the radiative transfer system (2.1), which is referred to as the asymptotic
preserving (AP) property of the scheme [31, 33].

3 UGKP for frequency-dependent radiative transfer system

In this section, we present the UGKP method for the frequency-dependent radiative
equations with both absorption-emission and scattering processes under the unstruc-
tured mesh.

3.1 Frequency space discretization

The frequency variable ν is discretized with the standard multi-group method. The con-
tinuous frequency space (0,+∞) is discretized into G frequency internals with frequency
boundary

(
νg−1/2,νg+1/2

)
, where g = 1,··· ,G, and ν1/2 = 0,νG+1/2 = ∞. With the multi-

group discretization, we integrate the first equation in (2.1) over each frequency interval:

∫ νg+1/2

νg−1/2

(
ε

c
∂I
∂t

+Ω⃗·∇I
)

dν

=
∫ νg+1/2

νg−1/2

[Lε
aσa (B(ν,T)− I)]dν+

∫ νg+1/2

νg−1/2

[
Lε

sσs

(
1

4π

∫
4π

IdΩ⃗− I
)]

dν. (3.1)
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For Eq. (3.1), the radiation intensity and energy in different groups and the corresponding
group opacities are given by

Ig =
∫ νg+1/2

νg−1/2

I
(

t,⃗r,Ω⃗,ν
)

dν, ρg =
∫

4π
IgdΩ⃗, (3.2)

and

σe,g =

∫ νg+1/2
νg−1/2

σaB(ν,T)dν∫ νg+1/2
νg−1/2

B(ν,T)dν
, σa,g =

∫ νg+1/2
νg−1/2

σa Idν∫ νg+1/2
νg−1/2

Idν
,

σso,g =

∫ νg+1/2
νg−1/2

σs Idν∫ νg+1/2
νg−1/2

Idν
, σsi,g =

∫ νg+1/2
νg−1/2

σs

(∫
4π IdΩ⃗

)
dν∫ νg+1/2

νg−1/2

(∫
4π IdΩ⃗

)
dν

.

(3.3)

For the Planck function B(ν,T) on the right side of Eq. (3.1), it is also integrated over the
frequency interval by

ϕg =
∫ νg+1/2

νg−1/2

B(ν,T)dν. (3.4)

With these notations in (3.2), (3.3), and (3.4), Eq. (2.1) turns to an equivalent multi-group
radiative transfer system

ε

c
∂Ig

∂t
+Ω⃗·∇Ig =Lε

a
(
σe,gϕg−σa,g Ig

)
+Lε

s

(
σsi,g

ρg

4π
−σso,g Ig

)
,

CV
∂T
∂t

≡ ∂Um

∂t
=

Lε
a

ε

G

∑
g=1

∫
4π

(
σa,g Ig−σe,gϕg

)
dΩ⃗.

(3.5)

Note that the absorption opacity σa,g, scattering-in opacity σsi,g, and scattering-out opac-
ity σso,g in Eq. (3.5) is a weighted integration with the unclosed radiant intensity I(t,⃗r,Ω⃗,ν).
The unclosed function I(t,⃗r,Ω⃗,ν) in the above opacity integration is approximated by the
Planck function with radiation temperature Tr,

σa,g =

∫ νg+1/2
νg−1/2

σaB(ν,Tr)dν∫ νg+1/2
νg−1/2

B(ν,Tr)dν
, σsi,g =σso,g =

∫ νg+1/2
νg−1/2

σsB(ν,Tr)dν∫ νg+1/2
νg−1/2

B(ν,Tr)dν
, (3.6)

where the radiant temperature is defined as

acT4
r =

∫
4π

∫ ∞

0
IdνdΩ⃗=

G

∑
g=1

ρg. (3.7)

Let σs,g =σsi,g =σso,g as the scattering opacity, and the system (3.5) turns to:
ε

c
∂Ig

∂t
+Ω⃗·∇Ig =Lε

a
(
σe,gϕg−σa,g Ig

)
+Lε

sσs,g

( ρg

4π
− Ig

)
,

CV
∂T
∂t

≡ ∂Um

∂t
=

Lε
a

ε

G

∑
g=1

∫
4π

(
σa,g Ig−σe,gϕg

)
dΩ⃗.

(3.8)
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The following macroscopic equations can be obtained by taking the angular integration
of the radiation transport equation in (3.8)

ε

c
∂ρg

∂t
+∇·

〈
Ω⃗Ig

〉
=Lε

a
(
4πσe,gϕg−σa,gρg

)
,

CV
∂T
∂t

≡ ∂Um

∂t
=

Lε
a

ε

G

∑
g=1

(
σa,gρg−4πσe,gϕg

)
,

(3.9)

where
〈
Ω⃗Ig

〉
=
∫

4π Ω⃗IgdΩ⃗.

3.2 Spatial and time discretization

Under the multi-group framework, we will give the discretization of spatial and time
variables on unstructured mesh here, based on the finite volume method. The formulas
are presented in a two-dimensional Cartesian space. The angle direction is denoted by
Ω⃗=(µ,ξ) with µ=

√
1−ζ2cosθ and ξ =

√
1−ζ2sinθ, where ζ ∈ [−1,1] is the cosine value

of the angle between the propagation direction Ω⃗ and the z-axis, and θ ∈ [0,2π) is the
angle between the projection vector of Ω⃗ onto the xy-plane and the x-axis. Due to the
symmetry of angular distribution in the two-dimensional Cartesian case, we only need
to consider ζ>0. The computational domain is discretized into the unstructured mesh as
shown in Fig. 1. The mesh center cj =

(
xc

j ,y
c
j
)

is given by(
xc

j ,y
c
j

)
=

1
Vj

∫
Vj

(x,y)dxdy. (3.10)

The time is discretized by tn with time step ∆t= tn+1−tn. A conservative finite volume
numerical scheme for the macroscopic equation (3.9) is of the form

ρn+1
j,g =ρn

j,g−
∆t
Vj

∑
k

Φn+1
j,k,g+

c∆tLε
a

ε

(
2π

(
σe,g

)n+1
j ϕn+1

j,g −
(
σa,g

)n+1
j ρn+1

j,g

)
,

CV
Tn+1

j −Tn
j

∆t
=

Lε
a

ε

G

∑
g=1

((
σa,g

)n+1
j ρn+1

j,g −2π
(
σe,g

)n+1
j ϕn+1

j,g

)
,

(3.11)

where ρn+1
j,g , ϕn+1

j,g , and Tn+1
j are the cell averaged value at time tn+1 in cell j, and Φn+1

j,k,g is
the macroscopic fluxes across the cell edge k, which are defined as

ρn+1
j,g =

1
Vj

∫
Vj

ρg (tn+1,x,y)dxdy,

ϕn+1
j,g =

1
Vj

∫
Vj

ϕg (tn+1,x,y)dxdy,

Φn+1
j,k,g =

clk

ε∆t

∫ tn+1

tn

n⃗k ·
〈

Ω⃗Ig

〉
(t,pk,m)dt,

(3.12)
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Figure 1: A cell j of the generalize quadrilateral mesh with cj as the cell center, pk,m as the center of edge k.
The length of the edge k is lk. The tow vertexes of edge k are p⃗k,1 and p⃗k,2, and the unit normal and tangential
vector is n⃗k and τ⃗k respectively. θ is the angle between n⃗k and the x-axis.

where pk,m is the center of edge k, and n⃗k is the unit normal vector of edge k. The construc-
tion of Φn+1

j,k,g is the key to the UGKP method, which will be shown in the next subsection.

3.3 Construction of the macroscopic flux

The radiation intensity Ig around the center of edge k can be obtained by solving the
following initial value problem


ε

c
∂Ig

∂t
+µ

∂Ig

∂x
+ξ

∂Ig

∂y
=Lε

a
(
σe,gϕg−σa,g Ig

)
+Lε

sσs,g

( ρg

2π
− Ig

)
,

Ig (x,y,t)
∣∣
t=tn

= Ig (x,y,tn).
(3.13)

On an unstructured mesh, we need to consider the flow variation in both normal and
tangential directions (⃗nk and τ⃗k) at edge k. The angle between the normal direction n⃗k
and the positive global x-axis x⃗ is θ, as shown in Fig. 1. The local coordinates follow

{
n⃗k =(cosθ,sinθ),
τ⃗k =(−sinθ,cosθ).

(3.14)

The transformation between the global coordinate (x,y) and local orthogonal coordinate
(x′,y′) is x′=

(
x−xk,m

j

)
cosθ+

(
y−yk,m

j

)
sinθ,

y′=−
(

x−xk,m
j

)
sinθ+

(
y−yk,m

j

)
cosθ,

(3.15)
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where xk,m
j and yk,m

j is the global coordinate of the edge center pk,m. Then Eq. (3.13) can
be written as 

ε

c
∂Ig

∂t
+µ′ ∂Ig

∂x′
+ξ ′

∂Ig

∂y′
=Lε

a
(
σe,gϕg−σa,g Ig

)
+Lε

sσs,g

( ρg

2π
− Ig

)
,

Ig
(

x′,y′,t
)∣∣

t=tn
= Ig

(
x′,y′,tn

)
,

(3.16)

where the transformation between (µ′,ξ ′) and (µ,ξ) is similar to Eq. (3.15). With Eqs. (3.15)
and (3.16), the integral solution can be obtained at the edge center pk,m,

Ig (t,0,0)=e−λg(t−tn) Ig

(
tn,−µ′c

ε
(t−tn),− ξ ′c

ε
(t−tn)

)

+
∫ t

tn

e−λg(t−s)

 cLε
aσe,g
ε ϕg

(
s,− µ′c

ε (t−s),− ξ ′c
ε (t−s)

)
+

cLε
sσs,g
ε

ρg
2π

(
s,− µ′c

ε (t−s),− ξ ′c
ε (t−s)

) ds, (3.17)

where λg = c
(

Lε
aσa,g+Lε

sσs,g
)
/ε. And the macroscopic flux across the edge k is evaluated

by

Φn+1
j,k,g =

clk

ε∆t

∫ tn+1

tn

〈
µ′ Ig

〉
(t,0,0)dt. (3.18)

The first term of Eq. (3.17) contributes from microscopic photons with free transport, in-
cluding both the initial/boundary photons and the free photons from the previous time
step in the computational domain. The second part of Eq. (3.17) denotes the contribution
of macroscopic emission and scattering photons in this time step. Therefore, the inte-
gral solution (3.17) bridges the microscopic radiant flux and macroscopic diffusive flux,
making (3.18) a multiscale numerical flux. The macroscopic quantities of Eq. (3.17) are
reconstructed by a piecewise linear polynomial around the edge k as follows:

ϕg
(
t,x′,y′

)
=ϕn+1

j,k,g +δtϕ
n+1
j,k,g (t−tn+1)+δy′ϕ

n+1
j,k,g y′+δx′ϕ

n+1
j,k,g x′,

ρg
(
t,x′,y′

)
=ρn+1

j,k,g+δtρ
n+1
j,k,g (t−tn+1)+δy′ρ

n+1
j,k,g y′+δx′ρ

n+1
j,k,g x′.

(3.19)

The spatial derivatives in (3.19) are calculated by

δx′ϕ
n+1
j,k,g =

ϕn+1
j′,g −ϕn+1

j,g −
(

τ−
j,k+τ+

j,k

)(
ϕ̂n+1

k,2,g−ϕ̂n+1
k,1,g

)
l−j,k+l+j,k

, δy′ϕ
n+1
j,k,g =

ϕ̂n+1
k,2,g−ϕ̂n+1

k,1,g

lk
,

δx′ρ
n+1
j,k,g =

ρn+1
j′,g −ρn+1

j,g −
(

τ−
j,k+τ+

j,k

)(
ρ̂n+1

k,2,g− ρ̂n+1
k,1,g

)
l−j,k+l+j,k

, δy′ρ
n+1
j,k,g =

ρ̂n+1
k,2,g− ρ̂n+1

k,1,g

lk
,

(3.20)

where j′ denotes the neighboring cell which has the common edge k with cell j. The ϕ̂n+1
k,1,g,

ϕ̂n+1
k,2,g, and ρ̂n+1

k,1,g, ρ̂n+1
k,2,g are the macroscopic quantities on the two vertexes (pk,1 and pk,2) of
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edge k, which are calculated as the average macroscopic quantities of those cells that have
the common vertex. The projected length is given by

l−j,k = r⃗
(
cj,pk,m

)
·n⃗k,

l+j,k = r⃗
(

pk,m,cj′
)
·n⃗k,

τ−
j,k =

[⃗
r
(
cj,pk,m

)
· τ⃗k

]/
lk,

τ+
j,k =

[⃗
r
(

pk,m,cj′
)
· τ⃗k

]/
lk.

(3.21)

The time derivative in (3.19) is given by

δtϕ
n+1
j,k,g =

ϕn+1
j,k,g −ϕn

j,k,g

∆t
, δtρ

n+1
j,k,g =

ρn+1
j,k,g−ρn

j,k,g

∆t
. (3.22)

Based on the above reconstruction, the macroscopic interface flux Φn+1
j,k,g can be computed

by substituting (3.17) into (3.18), which has the following form,

Φn+1
j,k,g =

〈
clk

ε∆t

∫ tn+1

tn

µ′e−λg(t−tn) Ig

(
tn,−µ′c

ε
(t−tn),− ξ ′c

ε
(t−tn)

)
dt
〉

+
2π

3

(
D1

)n+1

j,k,g
δx′ϕ

n+1
j,k,g +

2π

3
(

D2)n+1
j,k,g δx′ρ

n+1
j,k,g . (3.23)

The effective diffusion coefficients in (3.23) are given by
D1=−

c3lkLε
aσe,g

∆tε3λ2
g

[
∆t

(
1+e−λg∆t

)
− 2

λg

(
1−e−λg∆t

)]
,

D2=−
c3lkLε

sσs,g

2π∆tε3λ2
g

[
∆t

(
1+e−λg∆t

)
− 2

λg

(
1−e−λg∆t

)]
.

(3.24)

The expressions (3.24) have functional dependence on physical coefficients, the time step,
and the asymptotic parameter:(

D1
)n+1

j,k,g
=D1

(
∆t,ε,

(
σe,g

)n+1
j,k ,

(
λg

)n+1
j,k

)
,(

D2)n+1
j,k,g =D2

(
∆t,ε,

(
σs,g

)n+1
j,k ,

(
λg

)n+1
j,k

)
,

(3.25)

where the coefficients at the cell edge are the harmonic-averaged value with its neigh-
boring cells. Similar to (3.17), Eq. (3.23) consists of a microscopic angular integral term
and two macroscopic terms. The detailed formulation of macroscopic evolution will be
shown in Subsection 3.4, and the microscopic evolution using the Monte Carlo method
will be shown in Subsection 3.5.
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3.4 Macroscopic solver for the radiation energy and material temperature

This subsection gives the UGKP macroscopic evolution algorithm with Eqs. (3.11), (3.17),
and (3.23). The free-streaming fluxes (the integration term) in Eq. (3.23), calculated by
the microscopic solver, will be discussed in Subsection 3.5. With calculated microscopic
free-streaming fluxes, we could obtain a coupled nonlinear system for the macroscopic
quantities Tn+1

j and ρn+1
j,g by substituting (3.23) into the macroscopic equations (3.11). This

nonlinear system is solved by a source iteration method.

Algorithm 1 Source iteration algorithm for macroscopic energy evolution.

1: Initialize flow field ρn+1,0
j,g =ρn

j,g and Tn+1,0
j =Tn

j

2: while Residuals of ρn+1,s
j,g and Tn+1,s

j do not meet the convergence criterion do

3: Compute the coefficients
(
σe,g

)n+1,s
j ,

(
σa,g

)n+1,s
j ,

(
D1)n+1,s

j,k,g ,
(

D2)n+1,s
j,k,g with

Tn+1,s
j .

4: Solve the inner-loop linear system to update ρn+1,s+1
j,g and Tn+1,s+1

j with

ρn+1,s+1
j,g =ρn

j,g−
∆t
Vj

∑
k

Φn+1,s
j,k,g +

c∆tLε
a

ε

(
2π

(
σe,g

)n+1,s
j ϕn+1,s+1

j,g −
(
σa,g

)n+1,s
j ρn+1,s+1

j,g

)
,

Tn+1,s+1
j =Tn

j +
∆tLε

a
εCV

∑
g

((
σa,g

)n+1,s
j ρn+1,s+1

j,g −2π
(
σe,g

)n+1,s
j ϕn+1,s+1

j,g

)
,

ϕn+1,s+1
j,g =ϕn+1,s

j,g +

(
∂ϕg

∂T

)n+1,s

j

(
Tn+1,s+1

j −Tn+1,s
j

)
,

∂ϕg

∂T
=

∫ νg+1/2

νg−1/2

∂B(ν,T)
∂T

dν,

(3.26)
where the macroscopic flux Φn+1,s

j,k,g is given in (3.23)
5: end while
6: Update the solutions ρn+1

j,g =ρn+1,s+1
j,g and Tn+1

j =Tn+1,s+1
j , and calculate ϕn+1

j,g through
(3.4)

3.5 Microscopic solver for the radiation intensity

In this subsection, we present the Monte Carlo method for the microscopic evolution
equation (3.16). The closure of the microscopic intensity of UGKP follows the first-order
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expansion of the integral solution (3.17),

Ig (tn+1,0,0)=e−λg(tn+1−tn) Ig

(
tn,−µ′c

ε
(tn+1−tn),− ξ ′c

ε
(tn+1−tn)

)

+
∫ tn+1

tn

e−λg(tn+1−s)

 cLε
aσe,g
ε ϕg

(
s,− µ′c

ε (tn+1−s),− ξ ′c
ε (tn+1−s)

)
+

cLε
sσs,g
ε

ρg
2π

(
s,− µ′c

ε (tn+1−s),− ξ ′c
ε (tn+1−s)

) ds

=e−λg∆t Ig

(
tn,−µ′c

ε
∆t,− ξ ′c

ε
∆t

)
+

1
λg

(
1−e−λg∆t

)[ cLε
aσe,g

ε
ϕn+1

j,g +
cLε

sσs,g

ε

ρn+1
j,g

2π

]
. (3.27)

Once the macroscopic quantities ρn+1
j,g and ϕn+1

j,g are obtained, we could recover the mi-
croscopic radiation intensity at tn+1. In Eq. (3.27), there are three types of particles: the
free-streaming particles from the previous time step Ig (tn), the re-emitted source ϕn+1

j,g ,

and the scattered source ρn+1
j,g

/
2π. The particle free-streaming probability is e−λg∆t, and

the particle re-emission and scattering probability is
(
1−e−λg∆t). In addition, the factors

cLε
aσe,g

/
λgε and cLε

sσs,g
/

λgε indicate the relative contribution of re-emission and scatter-
ing processes in the macroscopic source, depending on the corresponding cross sections.
For the free-streaming particles, we stream them by its free path sampling from the to-
tal cross-section. For the re-emitted and scattered particles, we re-sample the photons as
the second term in Eq. (3.27). The total energy of re-emitted and scattered photons are
1

λg

(
1−e−λg∆t) cLε

aσe,g
ε ϕn+1

j,g and 1
λg

(
1−e−λg∆t) cLε

sσs,g
ε

ρn+1
j,g
2π , respectively. Then, the re-emitted

and scattered photons are sampled in each mesh isotropically and uniformly.
The photon tracking algorithm in each time step is following. Three events should be

calculated in each time step: (i) the photon interacts with background material and either
be absorbed or be scattered; (ii) the photon exits the current cell and enters a cell with
different opacity or leaks out of the system; (iii) the photon survives up to the end of the
time step and goes to the census. Associated with the three events are three distances,
i.e. the distance to collision dC, the distance to the cell interface dB, and the distance
that would be traveled until the end of time step dT. The calculation of each quantity is
straightforward. The distance to collision dC is sampled by

dC =− 1
σt

lnχ, (3.28)

where σt is the macroscopic total cross section of the medium in the current cell, and χ is
a random number on [0,1]. The distance to the spatial cell interface dB satisfies:

r⃗B− r⃗=dBΩ⃗, (3.29)
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where r⃗ is the current location of each photon and r⃗B is the cell interface location in direc-
tion Ω⃗. And the distance traveled to the end of time step is

dt = c(tend−t), (3.30)

where t is the current time of each particle and tend is the end of time step. With calcu-
lated distances in (3.28)-(3.30), the Monte Carlo solver determines which event to happen
based on the minimum quantity of these three distances. The photon tracking in UGKP
is similar to the traditional Monte Carlo method. Those photons with dt as the minimum
distance goes to census and will be further tracked in the next step. Those photons with
dB as the minimum distance will either go to a new mesh or leak out of the system (and be
killed). The only difference between the microscopic solver of UGKP and the traditional
Monte Carlo method is in the case with dC as the minimum distance. Once the photon has
“collided” with the material, the photon will be killed immediately. The subsequent be-
havior of these “collided” photons will be evaluated by the macroscopic solver of UGKP,
instead of accurately tracking these photons in the traditional Monte Carlo method. Dur-
ing particle tracking, the net free-streaming flux in Eqs. (3.18) and (3.23) is obtained for
photon i transports across the edge k, which is provided as the microscopic interface
fluxes (the integration term) of Eq. (3.23) to close the macroscopic equations.

Φmicro
j,k,g =∑

i
1(Ωx′)(x⃗i)wi,g. (3.31)

3.6 Summary

The coupled evolution of the macroscopic energy equation and microscopic intensity for
the frequency-dependent radiative transfer system are presented in Subsections 3.4 and
3.5. We summarise the UGKP algorithm as follows, and the flowchart is given in Fig. 2.

Algorithm 2 The algorithm for UGKP method
1: Initialize the flow field and sample photon particles
2: for Simulation time less than the final time do
3: Stream all particles by their free path, and calculate the free-streaming flux
4: Apply the source iteration algorithm to evolve macroscopic field as in Subsection

3.4
5: Re-sample the re-emitted and scattered particles and close the microscopic inten-

sity with Eq. (3.27)
6: end for

For the proposed UGKP method, the evolution of microscopic particles provides the
free-streaming numerical flux for the macroscopic equations, and the solution of macro-
scopic equations provides the closure sources for the microscopic solver. The macro and
microscopic evolution are closely coupled.
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Macroscopic solverMicroscopic Monte Carlo solver

Solve system (1)

Construct multi-group (9)

Finite volume scheme (15)

Angle integration to get 

macroscopic system (13)

Source sampling (31)

Photon tracking (32) - (34)

Get macroscopic quantities by 

solving (15)

Update macroscopic quantities
Get microscopic interface 

fluxes (35)

Figure 2: The flowchart of the UGKP method.

4 Asymptotic analysis

The asymptotic preserving (AP) property is important for the construction of a multiscale
scheme. In this section, we will show that the proposed UGKP method preserves free
transport, the single-temperature and the two-temperature diffusive regimes.

4.1 Free transport regime

In the free transport limit as σa and σs is on the order O(σ)≪ 1, the coefficients in the
macroscopic numerical flux (3.23) have the following asymptotic orders

σe,g ∼O(σ), σa,g ∼O(σ), σs,g ∼O(σ),

λg = c
(
σa,g+σs,g

)
∼O(σ), e−λg(t−tn)∼1,(

D1
)n+1

j,k,g
∼−

2c
(
σe,g

)n+1
j,k lk

ε2
[(

σa,g
)n+1

j,k +
(
σs,g

)n+1
j,k

]2 ∼O
(

σ−1
)

,

(
D2)n+1

j,k,g ∼−
2c

(
σs,g

)n+1
j,k lk

2πε2
[(

σa,g
)n+1

j,k +
(
σs,g

)n+1
j,k

]2 ∼O
(

σ−1
)

,

(4.1)
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where Lε
a and Lε

s are taken as ε for simplicity. We apply asymptotic analysis to the macro-
scopic equation (3.11), and the O

(
σ−1) equation is

∑
k

ϕn+1
j′,g −ϕn+1

j,g −
(

τ−
j,k+τ+

j,k

)(
ϕ̂n+1

k,2 −ϕ̂n+1
k,1

)
l−j,k+l+j,k

+∑
k

ρn+1
j′,g −ρn+1

j,g −
(

τ−
j,k+τ+

j,k

)(
ρ̂n+1

k,2 − ρ̂n+1
k,1

)
l−j,k+l+j,k

=0,

(4.2)
whose solution is

ϕn+1
j,g =ϕn+1

g , ρn+1
j,g =ρn+1

g . (4.3)

This means that the diffusive flux does not contribute to the evolution of the macroscopic
quantities ϕn+1

g and ρn+1
g . Therefore, the macroscopic numerical flux (3.23) has the fol-

lowing form:

Φn+1
j,k,g →

〈
clk

ε∆t

∫ tn+1

tn

µ′ Ig

(
tn,−µ′c

ε
(t−tn),− ξ ′c

ε
(t−tn)

)
dt
〉

, (4.4)

which indicates that the macroscopic numerical flux is the same as the tallied free trans-
port flux of the microscopic Monte Carlo particles. The O

(
σ0) equation is

ρn+1
j,g =ρn

j,g−
∆t
Vj

∑
k

〈
clk

ε∆t

∫ tn+1

tn

µ′ Ig

(
tn,−µ′c

ε
(t−tn),− ξ ′c

ε
(t−tn)

)
dt
〉

, (4.5)

which indicates that the radiation energy changes only because of the contribution of the
tallied free transport flux of the microscopic Monte Carlo particles. Moreover, the O

(
σ1)

equation is

2πϕn+1
j,g −ρn+1

j,g =0 (4.6)

which can be further deducted as

∑
g

2πϕn+1
j,g =∑

g
ρn+1

j,g ⇒
∫ ∞

0

∫
2π

B(ν,T)dΩ⃗dν=
∫ ∞

0

∫
2π

IdΩ⃗dν ⇒ I=B(ν,T). (4.7)

This means that the system has reached the equilibrium state of free transport. The above
analysis shows that the solution of the proposed UGKP method preserves the free trans-
port solution in the free transport limit.

4.2 Single-temperature diffusion regime

For the single-temperature diffusion regime, or equilibrium diffusion limit, the Knudsen
number ε approaches 0, Lε

a∼1/ε, and Lε
s∼ε. The coefficients in the macroscopic numerical
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flux (3.23) have the following orders

λg =
c
(
σa,g

/
ε+εσs,g

)
ε

∼O
(
ε−2), e−λg(t−tn)→0,

(
D1

)n+1

j,k,g
→−

c
(
σe,g

)n+1
j,k lk

ε2
[(

σa,g
)n+1

j,k

/
ε+ε

(
σs,g

)n+1
j,k

]2 →−
c
(
σe,g

)n+1
j,k lk[(

σa,g
)n+1

j,k

]2 ,

(
D2)n+1

j,k,g →−
c
(
σs,g

)n+1
j,k lk

2π
[(

σa,g
)n+1

j,k

/
ε+ε

(
σs,g

)n+1
j,k

]2 ∼O
(
ε2)→0.

(4.8)

Therefore, the macroscopic numerical flux (3.23) has the following form:

Φn+1
j,k,g →−2π

3

c
(
σe,g

)n+1
j,k lk[(

σa,g
)n+1

j,k

]2 δx′ϕ
n+1
j,k,g . (4.9)

Apply the asymptotic analysis to the macroscopic equations (3.11), and we have the
O
(
ε−2) equation

2π
(
σe,g

)n+1
j ϕn+1

j,g −
(
σa,g

)n+1
j ρn+1

j,g =0. (4.10)

Sum over the group index g and we get∫ ∞

0

∫
2π

σaB(ν,T)dΩ⃗dν=
∫ ∞

0

∫
2π

σa IdΩ⃗dν (4.11)

which indicates that the leading order radiation temperature approaches the material
temperature at the equilibrium limit

I=B(ν,T) ⇒ 2πϕn+1
j,g =ρn+1

j,g ⇒
(
σe,g

)n+1
j =

(
σa,g

)n+1
j =

(
σP,g

)n+1
j , (4.12)

where σP,g is the Planck mean opacity. Sum the macroscopic radiation transport equation
over the group index g and coupled it with the material energy equation in (3.11), we
derive the O

(
ε0) equation

G

∑
g=1

ρn+1
j,g =

G

∑
g=1

ρn
j,g−

∆t
Vj

G

∑
g=1

∑
k

−2π

3
clk(

σP,g
)n+1

j,k

δx′ϕ
n+1
j,k,g


−cCV

(
Tn+1

j −Tn
j

)
. (4.13)

According to Eq. (4.12), we have
∑
g

2πϕn+1
j,g =

∫ ∞

0

∫
2π

B
(

ν,Tn+1
j

)
dΩ⃗dν= ac

(
Tn+1

j

)4
,

∑
g

ρn+1
j,g =∑

g
2πϕn+1

j,g = ac
(

Tn+1
j

)4
.

(4.14)
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It shows that Eq. (4.13) becomes a standard nine points scheme for the diffusion limit
equation (2.3) coupled with (4.14). This shows that the proposed UGKP method for the
frequency-dependent radiative transfer equations (2.1) preserves the single-temperature
equilibrium diffusion limit.

4.3 Two-temperature diffusion regime

For the two-temperature diffusion regime or non-equilibrium diffusion limit, the Knud-
sen number ε approaches 0, Lε

a = ε and Lε
s = 1/ε. The coefficients in the macroscopic

numerical flux (3.23) have the following orders

λg =
c
(
εσa,g+σs,g

/
ε
)

ε
→ o

(
ε−2), e−λg(t−tn)→0,

(
D1

)n+1

j,k,g
→−

c
(
σe,g

)n+1
j,k lk[

ε
(
σa,g

)n+1
j,k +

(
σs,g

)n+1
j,k

/
ε
]2 → o

(
ε2)→0,

(
D2)n+1

j,k,g →−
c
(
σs,g

)n+1
j,k lk

2πε2
[
ε
(
σa,g

)n+1
j,k +

(
σs,g

)n+1
j,k

/
ε
]2 →− clk

2π
(
σs,g

)n+1
j,k

.

(4.15)

The macroscopic numerical flux (3.23) has the following form:

Φn+1
j,k,g →− clk

3
(
σs,g

)n+1
j,k

δx′ρ
n+1
j,k,g . (4.16)

Substituting the macroscopic numerical flux (4.16) into the macroscopic equations (3.11),
and summing the macroscopic radiation transport equation over the group index g, we
have

G

∑
g=1

ρn+1
j,g =

G

∑
g=1

ρn
j,g−

∆t
Vj

G

∑
g=1

∑
k

− clk

3
(
σs,g

)n+1
j,k

δx′ρ
n+1
j,k,g


+c∆t

G

∑
g=1

(
2π

(
σe,g

)n+1
j ϕn+1

j,g −
(
σa,g

)n+1
j ρn+1

j,g

)
(4.17)

Eq. (4.17) is a standard nine points scheme for the first diffusion limit equation in (2.4),
independent of the parameter ε. The second equation of (2.4) is also independent of the
parameter ε, and the convergence of Eq. (2.4) is automatically satisfied. This indicates that
the proposed UGKP method for the frequency-dependent radiative transfer equations
(2.1) preserves the two-temperature non-equilibrium diffusion limit.
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5 Numerical examples

In this section, we present eight numerical examples to validate the extended UGKP
method. These examples include two one-dimensional Marshak wave problems, the
Tophat problem, a multi-group problem, two modified Marshak wave problems, and
two wave diffusion problems. In the following computations, the unit of length is taken
to be centimeter (cm), the mass unit is gram (g), the time unit is nanosecond (ns), the
temperature unit is kilo electronvolt (keV), and the energy unit is 109 Joules (GJ). Un-
der the above units, the speed of light is 29.98cm/ns, and the radiation constant a is
0.01372GJ/(cm3keV4).

5.1 Marshak wave-2A problem

First, we take the one-dimensional Marshak wave problems to verify the extended UGKP
method. In the Marshak wave-2A problem, a thermal wave was driven by a constant in-
tensity incident on the left boundary of the computational domain. The temperature
of the left boundary source is 1 keV, while the initial material and radiation tempera-
ture are in equilibrium at 10−6 keV. The computational domain is a slab 1.0 cm thick
which consists of an unstructured mesh with a maximum size of 0.005 cm. The absorp-
tion/emission coefficient is set to be temperature-dependent of σ=30.0

/
T3cm−1, and the

specific heat to be 0.3GJ/keV/cm3.
In Fig. 3(a), the material and radiation temperatures simulated using the UGKP

method at times 0.2, 0.4, 0.6, 0.8, and 1.0 ns are given, compared with the reference results
in [16]. The small absorption/emission coefficient violates the equilibrium diffusion ap-
proximation in this case. This violation can be observed in the comparison between the
computed UGKP material temperatures, the diffusion equations results and the refer-
ence results in Fig. 3(b). These results show that the proposed scheme works well for this
rarefied-to-transitional flow regime.

5.2 Marshak wave-2B problem

The Marshak wave-2B problem is the same as the Marshak wave-2A problem except that
it has a temperature-dependent absorption/emission coefficient with σ=300.0

/
T3cm−1.

With this absorption/emission coefficient, the flow regime covers the transitional to con-
tinuum flow regimes, and the solution converges to the diffusion limit solution.

The material and radiation temperatures simulated using the UGKP method at times
15, 30, 45, 60, and 74 ns are given in Fig. 4(a), compared with the reference results in [16].
In Fig. 4(b), the computed material temperatures for both UGKP simulation and diffusion
equations results at times 15, 45, 74 ns are given, as well as the reference results. It is
observed that the UGKP results are close to the diffusive limit results.
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Figure 3: The results of Marshak wave-2A problem. (a) The radiation and material temperature at times
0.2, 0.4, 0.6, 0.8, and 1.0 ns, compared with the reference solutions. (b) The material temperature from
UGKP simulation and the diffusion equation solution at time 0.2, 0.6, and 1.0 ns, compared with the reference
solutions.
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Figure 4: The results of Marshak wave-2B problem. (a) The radiation and material temperature at times 15, 30,
45, 60, and 74 ns, compared with the reference solutions. (b) The material temperature from UGKP simulation
and the diffusion equation solution at time 15, 45, and 74 ns, compared with the reference solutions.

5.3 Tophat problem

The Tophat problem, or the crooked pipe problem, is a two-dimensional problem con-
sisting of both optically thin and thick material. The size of the computational do-
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Figure 5: The material temperature over time for the five probes in the Tophat problem, compared with the
reference solutions.

main is [0,7]×[-2,2], which consists of an unstructured mesh with a maximum size of
0.08 cm. The dense, opaque material with density 10g/cm3 and opacity σ = 2000cm−1

is located in the regions [3,4]×[−1,1], [0,2.5]×[0.5,2], [0,2.5]×[−2,−0.5], [4.5,7]×[0.5,2],
[4.5,7]×[−2,−0.5], [2.5,4.5]×[1.5,2], [2.5,4.5]×[−2,−1.5]. And the optically thin material
with density 0.01g/cm3 and opacity σ=0.2cm−1 occupies the other regions. The heat ca-
pacity is 0.1GJ/g/keV for both optically thin and thick materials. Initially, the system is
in equilibrium at 0.05keV, while a surface source at 0.5keV is located on the left boundary
of the pipe for −0.5< y< 0.5. In addition, five probes are used to track the temperature
evolving in the pipe, placed at [0.25,0], [2.75,0], [3.5,1.25], [4.25,0], and [6.75,0].

The time-dependent material temperature for the five tracking probes is shown in
Fig. 5, compared with the reference results in [47]. The material temperature over time
simulated by the UGKP method is similar to the reference solution. In addition, Fig. 6(a)-
(d) depict the material temperatures simulated by the UGKP method at 20, 80, 150, and
300 ns, respectively. It is shown that the interface between the optically thin and thick
materials is captured sharply by the UGKP method.

5.4 Multi-group transport problem

As shown in the Marshak wave problems and the Tophat problem above, we have vali-
dated the extended UGKP method for the gray radiative transfer cases. The next example
is a multi-group problem which we designed to test the extended UGKP method for the
frequency-dependent radiative transfer cases. In this multi-group problem, we employ
three frequency groups. The layout of this multi-group problem is shown in Fig. 7. The
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Figure 6: The material temperatures simulated by UGKP method at time (a) 20 ns, (b) 80 ns, (c) 150 ns, (d)
300 ns.
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Figure 7: The layout of the multi-group problem.

size of the computational domain is [0,0.2]×[−0.05,0.05], which consists of an unstruc-
tured mesh with a maximum size of 0.02 cm. In addition, it consists of three zones: one
frequency-independent zone (zone A) and two frequency-dependent zones (zone B and
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Table 1: The opacity and specific heat for the 3 zones in the multi-group problem.

Zone Specific heat (GJ/keV/cm3) Opacity G1 (cm−1) Opacity G2 (cm−1) Opacity G3 (cm−1)
A 0.01 10 10 10
B 0.2 1000 100 10
C 0.2 100 10 1000
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Figure 8: The radiation energy of three different frequency groups over time for (a) the left boundary source,
(b) probe 5, (c) probe 6 in the multi-group problem.

C), with detailed opacity and specific heat listed in Table 1. The computational domain is
initially in equilibrium at 0.05keV, and a 0.5keV surface source with a Planck distribution
is located on the left boundary. We also take eight probes to track the material tempera-
ture evolving in the different zone at different places, which are placed at [−0.025,0.05],
[0.025,0.05], [−0.025,0.1], [0.025,0.1], [−0.025,0.15], [0.025,0.15], [−0.025,0.2], [−0.025,0.2].
The location of these probes is also shown in Fig. 7.

To clearly show the difference between the radiation energy of different frequency
groups transmitting over time, we compared the radiation energy at different places.
First, the radiation energy of three frequency groups incident from the left boundary
source is shown in Fig. 8(a). It can be seen that the input radiation energy is dominated
by frequency group 3. Figs. 8(b) and 8(c) give the radiation energy changing over time at
probe 5 and probe 6, respectively. In the beginning, the radiation energy of both probe
5 and probe 6 is dominated by frequency groups 1 and 2. With time increasing, the fre-
quency group 2 becomes the leading group for probe 5, while the leading group changes
into the frequency group 3 for probe 6. This difference is caused by the different opaci-
ties of frequency groups in zone B and C. Zone B has the smallest opacity for frequency
group 3, which make frequency group 3 to be the leading group for probe 6. However,
the frequency group with the smallest opacity changes into frequency group 2 for zone C,
which also leads to a shift in the leading group. With time going on, the radiation energy
of different frequency groups become similar to the input energy for both probe 5 and 6.
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Figure 9: The material temperature over time for the eight probes in the multi-group problem.

We also compared the material temperature evolving at the eight probes, which are
shown in Fig. 9. With frequency-independent opacity in zone A, the temperature is the
same for probes 1 and 2. For probe 3, its material temperature is higher than probe 4,
which is also caused by the different opacities of frequency groups on zone B and C.
With the highest opacity for frequency group 3 in zone C, the input radiation energy
(dominated by frequency group 3) is more likely to be deposited in zone C. However,
the smallest opacity for frequency group 3 on zone B makes the input radiation energy
unlikely to be absorbed by the material. Thus, the material temperature of probe 4 is
smaller than probe 3. In addition, the more input energy deposited in zone C, the less
input energy transmits in zone C, which makes the radiation transport in zone C slower
than in zone B. This can be clearly seen by the material temperatures of probes 5, 6,
7, and 8 in Fig. 9. The material temperature of probe 5 is smaller than probe 6 during
the radiation transport, and probes 7 and 8 have similar results. These results confirm
the capability of the extended UGKP method for frequency-dependent radiative transfer
cases.

5.5 Marshak wave-scatter problem

To further test the extended UGKP method for both absorption/emission and isotropic
scattering processes considered cases, we include the scattering effect in the Marshak
wave problems. The Marshak wave-scatter problem is similar as the Marhsak wave
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Figure 10: The results of Marshak wave-scatter problem. The radiation and material temperature at times 0.05,
0.1, 0.15, 0.2, and 0.25 ns, compared with the reference solutions.

problem, except that the temperature-dependent coefficient for both scattering and ab-
sorption/emission processes with σs =3.0

/
T3cm−1 are considered.

The material and radiation temperatures from the UGKP simulation for this problem
is given in Fig. 10, as well as the reference results calculated by UGKS. The results of
UGKP and UGKS have good agreement in general, while the slightly difference at wave
front is due to the numerical dissipation of UGKS.

5.6 Marshak wave-2B-scatter problem

The modified Marshak wave-2B-scatter problem is the same as the Marhsak wave-
2B problem, except that a temperature-dependent scattering coefficient with σs =
300.0

/
T3cm−1 is considered. This also makes the total opacity in this problem twice as

the Marhsak wave-2B problem.
Fig. 11(a) shows the material and radiation temperatures from UGKP simulation for

this problem, compared with the reference results calculated by UGKS. Since the absorp-
tion/emission coefficient in Marshak wave-2B problem is large enough to get the equi-
librium diffusion limit solution, twice the total opacity in this problem will also get the
equilibrium diffusion limit solution. Therefore the UGKP results are also close to the dif-
fusive limit results, as shown in Fig. 11(b). In addition, the radiation propagation speed
for both UGKP simulation and the diffusion equation solution is also half as in the Mar-
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Figure 11: The results of Marshak wave-2B-scatter problem. (a) The radiation and material temperature at
times 15, 30, 45, 60, and 74 ns, compared with the reference solutions. (b) The material temperature from
UGKP simulation and the diffusion equation solution at time 15, 45, and 74 ns, compared with the reference
solutions.

shak wave-2B problem, due to the twice total opacity in this problem. This can be seen by
comparing Figs. 4 and 11. These results show that the proposed scheme works well for
problem with both absorption/emission and isotropic scattering processes considered.

5.7 Sinusoidal wave diffusion problem

Next, we consider two wave diffusion problems with only scattering process, under one-
dimensional space. In the first problem, the radiation energy ρ is taken as ρ(x,t= 0) =
10+5cos

(
π
2 x

)
,x∈ [−2,2], with periodic boundary conditions. In the diffusion limit, the

time evolution of the amplitude follows:
δρ(x,t)=ρ(x,t)−10,

∂

∂t
δρ−D

∂2

∂x2 δρ=0
⇒ A(x,t)=δρ(x,t)=cos

(π

2
x
)

e−D( π
2 )

2
t. (5.1)

In the following, we take the time evolution of amplitude at peak and valley location
(A(0,t) and A(2,t), respectively) for comparison with the theory value in (5.1).

Fig. 12 gives the time evolution of amplitude at peak and valley location under differ-
ent cross-section, compared with the theory value. For both σ= 100 and σ= 1000 cases,
the UGKP simulated results show good agreements with the theory value. In addition,
with the coefficient increasing, the flow regime covers the transitional to continuum flow
regimes, and the solution also converges to the diffusion limit solution.
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Figure 12: The time evolution of amplitude at peak and valley location for (a) σ=100, (b) σ=1000, compared
with the theory value in (5.1).

5.8 Gauss wave diffusion problem

Besides the sinusoidal wave diffusion problem, we have also considered a Gauss wave
diffusion problem. In this problem, the radiation energy ρ is taken as ρ(x,t= 0)= δ(0).
With this initial condition, the time evolution of the amplitude under the diffusion limit
follows: 

ρ(x,t)=
1

2π

∫ ∞

−∞
ρ̃(k,t)eikxdk,

∂

∂t
ρ−D

∂2

∂x2 ρ=0
⇒ A(x,t)=ρ(x,t)=

(
1

4πDt

)1/2

e−
x2

4Dt . (5.2)

In the following, we take the initial simulation time as 1 ns, and compare both the time
evolution of amplitude at x=0 and the distribution under different time with the theory
value in (5.2), under different cross-section.

Fig. 13 compare the time evolution of amplitude at x= 0 and the distribution under
different time with the theory value, under different cross-section. For both σ=100 and
σ = 1000 cases, the UGKP simulated results also show good agreements with the the-
ory value. These results confirm the capability of the extended UGKP method for pure
scattering cases.

6 Conclusion

This work extends the UGKP method to solve the frequency-dependent radiative system
with both absorption/emission and scattering processes under the unstructured mesh.
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Figure 13: The time evolution of amplitude at x=0 for (a) σ=100, (c) σ=1000, and the distribution under
different time for (b) σ=100, (d) σ=1000, compared with the theory value in (5.2).

The proposed UGKP method has the asymptotic preserving (AP) property in both op-
tically thin and thick regimes for a continuum spectrum in the frequency domain. In
addition, a smooth transition in the regime between the diffusion and free transport limit
could be achieved by the extended UGKP method. Numerical simulation results are pre-
sented to verify the capability of the extended UGKP method and the code performance.
The results of the one-dimensional Marshak wave problems and the two-dimensional
Tophat problem confirm that the extended UGKP method captures the multiscale phys-
ical flow field in a wide range of regimes. The results of the sinusoidal and Gauss wave
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diffusion problems prove the extended UGKP method for the pure scattering cases. The
results of a self-designed multi-group problem verify the extended UGKP method for the
frequency-dependent radiation cases, and the Marshak wave problems with the scatter-
ing effect verify the extended UGKP method for capturing both the absorption/emission
and the scattering effect. The proposed UGKP for the multi-frequency radiative transfer
problem shows advantages in the simulation of multiscale photon transport problems.
The scheme and code will be applied in high-energy-density physics engineering appli-
cations.
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[6] José A Carrillo, Thierry Goudon, Pauline Lafitte, and Francesco Vecil. Numerical schemes of
diffusion asymptotics and moment closures for kinetic equations. Journal of Scientific Com-
puting, 36:113–149, 2008.



Y. Hu et al. / Commun. Comput. Phys., 35 (2024), pp. 181-211 209

[7] V Vikas, Cory D Hauck, Zhi Jian Wang, and Rodney O Fox. Radiation transport modeling
using extended quadrature method of moments. Journal of Computational Physics, 246:221–
241, 2013.

[8] Graham W Alldredge, Ruo Li, and Weiming Li. Approximating the M2 method by the
extended quadrature method of moments for radiative transfer in slab geometry. Kinetic &
Related Models, 9(2), 2016.

[9] Zhenning Cai, Ruo Li, and Yanli Wang. An efficient NRxx method for Boltzmann-BGK
equation. Journal of Scientific Computing, 50:103–119, 2012.

[10] Zhengyi Li, Bin Dong, and Yanli Wang. Learning invariance preserving moment closure
model for Boltzmann-BGK equation. arXiv preprint arXiv:2110.03682, 2021.

[11] Brian Hunter and Zhixiong Guo. Comparison of quadrature schemes in DOM for
anisotropic scattering radiative transfer analysis. Numerical Heat Transfer, Part B: Fundamen-
tals, 63(6):485–507, 2013.

[12] Pedro J Coelho. Advances in the discrete ordinates and finite volume methods for the so-
lution of radiative heat transfer problems in participating media. Journal of Quantitative
Spectroscopy and Radiative Transfer, 145:121–146, 2014.

[13] Shang-Shang Chen, Ben-Wen Li, and Ya-Song Sun. Chebyshev collocation spectral method
for solving radiative transfer with the modified discrete ordinates formulations. International
Journal of Heat and Mass Transfer, 88:388–397, 2015.

[14] TH Roos, TM Harms, and CG Du Toit. Conservation of scattered energy and asymmetry
factor in the new rotationally symmetric spherical discretisation scheme. International Journal
of Heat and Mass Transfer, 101:205–225, 2016.

[15] Luc Mieussens. Discrete velocity model and implicit scheme for the BGK equation of rar-
efied gas dynamics. Mathematical Models and Methods in Applied Sciences, 10(08):1121–1149,
2000.

[16] Jinxue Fu, Weiming Li, Peng Song, and Yanli Wang. An asymptotic-preserving IMEX
method for nonlinear radiative transfer equation. Journal of Scientific Computing, 92(1):27,
2022.

[17] Joseph A Fleck Jr and JD Cummings Jr. An implicit Monte Carlo scheme for calculating time
and frequency dependent nonlinear radiation transport. Journal of Computational Physics,
8(3):313–342, 1971.

[18] LB Lucy. Computing radiative equilibria with Monte Carlo techniques. Astronomy and As-
trophysics, 344:282–288, 1999.

[19] Carole K Hayakawa, Jerome Spanier, and Vasan Venugopalan. Coupled forward-adjoint
Monte Carlo simulations of radiative transport for the study of optical probe design in het-
erogeneous tissues. SIAM Journal on Applied Mathematics, 68(1):253–270, 2007.

[20] NA Gentile and Ben C Yee. Iterative implicit Monte Carlo. Journal of Computational and
Theoretical Transport, 45(1-2):71–98, 2016.

[21] JA Fleck Jr and EH Canfield. A random walk procedure for improving the computational
efficiency of the implicit Monte Carlo method for nonlinear radiation transport. Journal of
Computational Physics, 54(3):508–523, 1984.

[22] J Giorla and R Sentis. A random walk method for solving radiative transfer equations.
Journal of Computational Physics, 70(1):145–165, 1987.

[23] NA Gentile. Implicit Monte Carlo diffusion—an acceleration method for Monte Carlo time-
dependent radiative transfer simulations. Journal of Computational Physics, 172(2):543–571,
2001.

[24] Jeffery D Densmore, Todd J Urbatsch, Thomas M Evans, and Michael W Buksas. A hy-



210 Y. Hu et al. / Commun. Comput. Phys., 35 (2024), pp. 181-211

brid transport-diffusion method for Monte Carlo radiative-transfer simulations. Journal of
Computational Physics, 222(2):485–503, 2007.

[25] Jeffery D Densmore, Kelly G Thompson, and Todd J Urbatsch. A hybrid transport-diffusion
Monte Carlo method for frequency-dependent radiative-transfer simulations. Journal of
Computational Physics, 231(20):6924–6934, 2012.

[26] H Park, DA Knoll, RM Rauenzahn, AB Wollaber, and JD Densmore. A consistent, moment-
based, multiscale solution approach for thermal radiative transfer problems. Transport The-
ory and Statistical Physics, 41(3-4):284–303, 2012.

[27] H Park, Dana A Knoll, Rick M Rauenzahn, Christopher K Newman, JD Densmore, and
AB3120767 Wollaber. An efficient and time accurate, moment-based scale-bridging al-
gorithm for thermal radiative transfer problems. SIAM Journal on Scientific Computing,
35(5):S18–S41, 2013.

[28] JD Densmore, H Park, Allan B Wollaber, Rick M Rauenzahn, and Dana A Knoll. Monte Carlo
simulation methods in moment-based scale-bridging algorithms for thermal radiative-
transfer problems. Journal of Computational Physics, 284:40–58, 2015.

[29] Hans Hammer, HyeongKae Park, and Luis Chacon. A multi-dimensional, moment-
accelerated deterministic particle method for time-dependent, multi-frequency thermal ra-
diative transfer problems. Journal of Computational Physics, 386:653–674, 2019.

[30] H Park, Luis Chacón, Anna Matsekh, and Guangye Chen. A multigroup moment-
accelerated deterministic particle solver for 1-D time-dependent thermal radiative transfer
problems. Journal of Computational Physics, 388:416–438, 2019.

[31] Shi Jin. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations.
SIAM Journal of Scientific Computing, 21:441—-454, 1999.

[32] Shi Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equa-
tions: A review. Lecture Notes for Summer School on Methods and Models of Kinetic Theory
(M&MKT), Porto Ercole (Grosseto, Italy), pages 177–216, 2010.

[33] Zhaoli Guo, Jiequan Li, and Kun Xu. Unified preserving properties of kinetic schemes.
Physical Review E, 107(2):025301, 2023.

[34] Kun Xu and Juan-Chen Huang. A unified gas-kinetic scheme for continuum and rarefied
flows. Journal of Computational Physics, 229(20):7747–7764, 2010.

[35] Luc Mieussens. On the asymptotic preserving property of the unified gas kinetic scheme
for the diffusion limit of linear kinetic models. Journal of Computational Physics, 253:138–156,
2013.

[36] Wenjun Sun, Song Jiang, and Kun Xu. An asymptotic preserving unified gas kinetic scheme
for gray radiative transfer equations. Journal of Computational Physics, 285:265–279, 2015.

[37] Wenjun Sun, Song Jiang, Kun Xu, and Shu Li. An asymptotic preserving unified gas ki-
netic scheme for frequency-dependent radiative transfer equations. Journal of Computational
Physics, 302:222–238, 2015.

[38] Wenjun Sun, Song Jiang, and Kun Xu. An implicit unified gas kinetic scheme for radiative
transfer with equilibrium and non-equilibrium diffusive limits. Communications in Computa-
tional Physics, 22(4):889–912, 2017.

[39] Wenjun Sun, Song Jiang, and Kun Xu. A multidimensional unified gas-kinetic scheme for
radiative transfer equations on unstructured mesh. Journal of Computational Physics, 351:455–
472, 2017.

[40] Wenjun Sun, Song Jiang, and Kun Xu. An asymptotic preserving implicit unified gas ki-
netic scheme for frequency-dependent radiative transfer equations. International Journal of
Numerical Analysis & Modeling, 15, 2018.



Y. Hu et al. / Commun. Comput. Phys., 35 (2024), pp. 181-211 211

[41] Yi Shi, Peng Song, and WenJun Sun. An asymptotic preserving unified gas kinetic particle
method for radiative transfer equations. Journal of Computational Physics, 420:109687, 2020.

[42] Yi Shi, Wenjun Sun, Lingxiao Li, and Peng Song. An improved unified gas kinetic particle
method for radiative transfer equations. Journal of Quantitative Spectroscopy and Radiative
Transfer, 261:107428, 2021.

[43] Weiming Li, Chang Liu, Yajun Zhu, Jiwei Zhang, and Kun Xu. Unified gas-kinetic
wave-particle methods III: Multiscale photon transport. Journal of Computational Physics,
408:109280, 2020.

[44] Pauline Godillon-Lafitte and Thierry Goudon. A coupled model for radiative transfer:
Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics. Multiscale Mod-
eling & Simulation, 4(4):1245–1279, 2005.

[45] Christophe Buet and Bruno Despres. Asymptotic analysis of fluid models for the coupling
of radiation and hydrodynamics. Journal of Quantitative Spectroscopy and Radiative Transfer,
85(3-4):385–418, 2004.

[46] Zhiqiang Sheng and Guangwei Yuan. A nine point scheme for the approximation of dif-
fusion operators on distorted quadrilateral meshes. SIAM Journal on Scientific Computing,
30(3):1341–1361, 2008.

[47] Xiaojing Xu, Song Jiang, and Wenjun Sun. A positive and asymptotic preserving filtered PN
method for the gray radiative transfer equations. Journal of Computational Physics, 444:110546,
2021.


	Introduction
	Frequency-dependent radiative transfer equations
	UGKP for frequency-dependent radiative transfer system
	Frequency space discretization
	Spatial and time discretization
	Construction of the macroscopic flux
	Macroscopic solver for the radiation energy and material temperature
	Microscopic solver for the radiation intensity
	Summary

	Asymptotic analysis
	Free transport regime
	Single-temperature diffusion regime
	Two-temperature diffusion regime

	Numerical examples
	Marshak wave-2A problem
	Marshak wave-2B problem
	Tophat problem
	Multi-group transport problem
	Marshak wave-scatter problem
	Marshak wave-2B-scatter problem
	Sinusoidal wave diffusion problem
	Gauss wave diffusion problem

	Conclusion

