
Ann. Appl. Math.
doi: 10.4208/aam.OA-2023-0012

Vol. 40, No. 1, pp. 21-42
February 2024

Empirical Study on Option Pricing under

Markov Regime Switching Economics

Lianfeng (David) Liu∗

Department of Financial and Actuarial Mathematics, Xi’an Jiaotong–Liverpool
University, Suzhou, Jiangsu 215123, China

Received 24 April 2023; Accepted (in revised version) 1 June 2023

Abstract. In this research, we summarize the results of a practical study of
index options based on the option valuation model which was proposed by Siu
and Yang (Acta Math. Appl. Sin. Engl. Ser., 25(3) (2009), pp. 339–388), where
an EMM kernel is integrated which takes into account all risk components of
a regime-switching model. Further, the regime-switching risk of an economy in
the options is priced using a hidden Markov regime-switching model with the
risky underlying asset being modulated by a discrete-time, finite-state, hidden
Markov chain whose states represent the hidden states of an economy. We
apply such a model to the pricing of Hang Seng Index options based on the real-
world financial data from October 2009 to October 2010 (i.e., for the year in
which the model was proposed). We employed the entropy martingale measure
(EMM) approach proposed by Siu and Yang (Acta Math. Appl. Sin. Engl. Ser.,
25(3) (2009), pp. 339–388) to determine the optimal martingale measure for the
Markov-modulated GBM. In addition, we have proposed a numerical technique
called the weighted difference method to compliment the EMM approach. We
have also verified the extended jump-diffusion model under regime-switching
that we proposed recently (Int. J. Finan. Eng., 6(4) (2019), 1950038) using the
50ETF options which are obtained from Shanghai Stock Exchange covering a
time span from January 2018 to December 2022. Further, we have highlighted
the challenges for the EMM kernel-based Markov regime-switching model for
pricing the out-of-the-money index options in the real world.
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1 Introduction

In recent years, option valuation problems under regime-switching have received
considerable interest in literature. A key feature of regime-switching models is that
model parameters are modulated by a Markov chain whose states represent states
of business cycles (see Hamilton (1989)). Some early works on option pricing un-
der regime-switching conditions include Naik (1993), Guo (2001), Buffington and
Elliott (2002), Elliott et al. (2005), Siu (2008) and others. To be more specific, Guo
(2001) investigated an option pricing problem in an incomplete market modelled by
adjoining the Geometric Brownian Motion (GBM) for stock returns with a Markov
chain in a Black-Scholes (1973) economy. Buffington and Elliott (2002) considered
the option pricing problems for European and American options in a Black-Scholes
market in which the states of the economy are described by a continuous-time, finite-
state, Markov chain. Yao et al. (2003) investigated the pricing of European options
under a Markov-modulated GBM and determined an equivalent martingale pricing
measure for the Markov-modulated GBM. Elliott et al. (2005) proposed the use of a
regime-switching version of the Esscher transform to determine an equivalent mar-
tingale measure for valuing options in a Markov-modulated Black-Scholes-Merton
economy. Indeed, Gerber and Shiu (1994) pioneered the use of the Esscher trans-
form in finance, in particular in option valuation. It provides a convenient method
to specify an equivalent martingale measure. Siu (2008) justified the use of the
Esscher transform for option valuation in a regime-switching diffusion model and a
regime-switching jump-diffusion model using a game theoretic approach. Siu and
Yang (2009) considered a modified version of the Esscher transform used in Elliott
et al. (2005) to incorporate explicitly the intensity matrix of the Markov chain in
the specification of an equivalent martingale measure. Siu (2011) demonstrated,
through a rigorous mathematical proof, that an optimal equivalent martingale mea-
sure selected by minimizing the relative entropy between an equivalent martingale
measure and the real-world probability measure does not price the regime-switching
risk. Elliott et al. (2013) investigated the pricing of both European and American-
style options when the price dynamics of the underlying risky assets are governed by
a Markov-modulated constant elasticity of variance process. Liu (2017) conducted
an empirical study using Markov-modulated regime switching model on Hang Seng
index options when the regime switching risk is priced. In recent years, regime-
switching models have been extended to include a jump-diffusion process (Momeya,
e al., 2016), or price different types of options, for instance, bond options (Shen, et
al., 2013), currency options (Bo, et al., 2010; Liu, 2019), and foreign equity options
(Lian, et al., 2016; Fan, et al., 2014).

In terms of option valuation principles, it has been established (see, Harrison
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and Kreps (1979) and Harrison and Pliska (1981) that the absence of arbitrage is
equivalent to the existence of an equivalent martingale measure under which all
discounted price processes are martingales. However, when the market is incom-
plete, there are more than one equivalent martingale measure. How to choose a
consistent pricing measure from the set of equivalent martingale measures becomes
an important problem. For this purpose, the minimal relative entropy approach is
often employed to select an equivalent martingale measure from its canonical space.
As discussed in Siu (2011), Miyahara (1996) was the first to introduce the minimal
entropy martingale measure (MEMM) approach to select an equivalent martingale
measure in an incomplete market. Nowadays, the MEMM approach has become one
of the major approaches for option valuation in an incomplete market. The basic
idea of the MEMM approach is to select an equivalent martingale measure so as to
minimize the “distance” between an equivalent martingale measure and a real world
probability measure described by their relative entropy. Consequently, the MEMM
is the equivalent martingale measure which is closest to the real-world probability
measure. For details about the MEMM approach for option valuation, interested
readers may refer to works by Miyahara (2001), and Fujiwara and Miyahara (2003).

In this paper, we conduct the empirical studies on the pricing of both the Hang
Seng Index Options (HSI) and the Shanghai 50ETF options by using the Esscher
transform and the MEMM approach. We model the price dynamics of the underlying
risky asset which are governed either by a Markov-modulated geometric Brownian
motion using a novel model that was proposed by Siu et al. (2009) or a jump-
diffusion process (Liu, 2019), in which the regime-switching risk was supposed to
be priced. We assume that the drift and the volatility of the underlying asset
are modulated by an observable continuous-time, finite-state Markov chain, whose
states represent observable states of an economy. Unlike most of the previous works
of model development, we pay more attention to the option pricing performance of
the model.

The rest of the paper is organized as follows: The next section describes the
model dynamics. In Section 2, we present the two-stage pricing method including the
extended jump-diffusion process. In Section 3, we present the numerical examples
for the computation of the option prices. We also present and discuss the results of
numerical experiments. The final section concludes the paper.

2 The price dynamics

The main goal in this section is to illustrate the price dynamics which is dominated
by a Markov-modulated geometric Brownian motion. Such a framework has been
well documented in Elliott (1993), Elliott et al. (1994), and Siu and Yang (2009).



24 L. Liu / Ann. Appl. Math., 40 (2024), pp. 21-42

Consider the money account B and stock S in a financial model, we shall describe
the price dynamics of these two assets. Firstly, we define the hidden Markov chain
{Xt}t∈T on the complete probability space (Ω,F ,P) with a finite X :=(x1,x2,··· ,xN),
where T denotes the finite time horizon [0,T ] and P denotes a real world probability
measure. According to Elliott et al. (1994), the state space of {Xt}t∈T is defined by
a finite set of unit vectors ε :={e1,e2,··· ,eN}, whereei = (0,··· ,1,··· ,0)∈RN . Then,
Elliott (1993) and Elliott et al. (1994) provide the following semi-martingale de-
composition for {Xt}t∈T :

Xt=X0+

∫ t

0

QXSds+Mt, (2.1)

where Q denotes rate matrix [qij(t)]i,j=1,2,···,N and {Mt} is an RN -valued martingale
with respect to the filtration which generated by {Xt}t∈T and the measure P .

Assume that {rt}t∈T denotes the market interest rate of the money market ac-
count at time t. We suppose that

rt :=r(t,XT )=〈r,Xt〉, (2.2)

where r :=(r1,r2,··· ,rN)∈RN with ri>0 for each i=1,2,··· ,N . Therefore, the price
dynamic of money market account {Bt}t∈T is modeled by

Bt=e−rt=exp

(
−
∫ t

0

rudu

)
. (2.3)

In addition, assume that {µt}t∈T and {σt}t∈T are the appreciation rate and the
volatility of stock S, respectively, which are defined as follows:

µt :=µ(t,XT )=〈µ,Xt〉, (2.4a)

σt :=σ(t,XT )=〈σ,Xt〉, (2.4b)

where µ := (µ1,µ2,··· ,µN)∈RN and σ := (σ1,σ2,··· ,σN)∈RN with σi> 0 for each
i=1,2,··· ,N. Then, we use the Markov-modulated geometric Brownian motion with
jump to define the dynamic of underlying stock {st}t∈T :

dSt=µtStdt+σtStdWt, S0 =s, (2.5)

where {Wt}t∈T denote the standard Brownian motion on (Ω,F ,P). Then the price
dynamic of S can be written as

St=Suexp(Yt−Yu), (2.6)

where Yt denotes the logarithmic return of S over the interval [0,t], and

Yt=

∫ t

0

(
µs−

1

2
σ2
s

)
ds+

∫ t

0

σsdWS. (2.7)
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3 The pricing method

In this section, we shall introduce the Esscher transform first. We will adopt the
method of Esscher Transform to determine a martingale condition, for which the
risk-neutral Esscher parameters will be estimated. Second, we will determine an
optimal set of risk-neutral Esscher parameters for pricing options. Since, in general,
there are more than one set of the parameters which can satisfy the martingale
condition after the Esscher transform, therefore, we shall adopt the method of min-
imizing the maximum entropy between the real-world probability and an equivalent
martingale measure.

3.1 The Esscher transformation

Esscher transformation (Esscher, 1932) is introduced to determine the martingale
condition in the paper. It is a time-honored tool in the actuarial science, and the
definition of the transform is that it takes a probability density f(x) and transform
it to the new probability density f(x,h) with the parameter h. That is, for the
probability density function f(x), let h be a real number such that

M(h)=

∫ ∞
−∞

ehxf(x)dx, (3.1)

exists as the function in x, then

f(x,h)=
eh·xf(x)

M(h)
(3.2)

is a probability density and called Esscher transform.

3.2 Option pricing under regime switching

In this section, the regime-switching Esscher Transform and risk-neutral Esscher
parameters will be described. Let GT be the σ-algebra FXt

∨
FSt , which is generated

by {Xt}t∈T and {st}t∈T under the P-argumentation of natural filtrations. Moreover,
let θt be the regime switching Esscher parameter at time t, which can be written as
follows:

θt :=θ(t,X(t))=〈θ,Xt〉, (3.3)

where θ :=(θ1,θ2,··· ,θN)∈RN . Following Elliott (1982), write

(θ·Y )t=

∫ t

0

θ(u)dY (u) for each t∈T.
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Then we define the regime-switching Esscher Transform on Qθ∼P on GT as follows:

dQ

dP
:=

e(θ·Y )T

E
[
e(θ·Y )T

∣∣
X(0)

]=ΛT , (3.4)

where E[·] denotes an expectation under P . We then consider the European option
with payoff V (ST ) at maturity T . Therefore, the conditional price of option given
G(t) is :

Vt :=Eθ

[
exp

(
−
∫ T

t

rudu

)
V (ST )

∣∣∣
Gt

]
. (3.5)

When the St=s and Xt=x, the value of option is:

V (t,s,x)=Eθ

[
exp

(
−
∫ T

t

rudu

)
V (ST )

∣∣∣
St=s, Xt=x

]
. (3.6)

For a European call option, it can be evaluated as follow according to (3.6), i.e.,

C (0,S0,X0)=Eθ

[
exp

(
−
∫ t

0

rudu

)
(ST−K)+

∣∣∣
S0, X0

]
. (3.7)

The function can be re-written as follow by using regime-switching Esscher Trans-
form as proposed in Siu et al. (2009):

C (0,S0,X0)=E

[
dQ

dP
exp

(
−
∫ t

0

rudu

)
(ST−K)+

∣∣∣
S0, X0

]

=

E

[
e(θ·Y )T exp

(
−
∫ T

0
rudu

)
(sT−K)+

∣∣∣
s0,X0

]
E [e(θ·Y )T |X0 ]

. (3.8)

We will use Monte Carlo simulations to estimate the call option prices. First, we
divided the time horizon [0,T ] into N subintervals [tj,tj+1], (j= 0,1,··· ,J−1) with
equal length ∆t=T/J, where t0 =0 and tJ =T. Then, for each l=1,2,··· ,L, simulate

the discrete-time version of Markov chain X and obtain {X(l)
tj }

J
j=1 and its’ corre-

sponding {µ(l)
tj }

J
j=1, {γ

(l)
tj }

J
j=1, {θ

(l)
tj }

J
j=1, and {σ(l)

tj }
J
j=1, Finally, the Yt(j+1) is defined

as f :

Ytj+1
=Ytj +

(
µtj−

1

2
σ2
tj

)
∆+σtjξtj+1

, (3.9)

where
{
ξtj+1

}
j=0,1,···.j−1

and ξtj+1
∼N(0,∆). The parameters in Eq. (3.8) can be

obtained in practice except for the risk-neutral Esscher parameters θt. Therefore, in
the next section we will present the method to calculate θt.



L. Liu / Ann. Appl. Math., 40 (2024), pp. 21-42 27

3.3 Determination of risk-neutral Esscher parameters

First, we need to define a (G,P)-martingale {Λt}t∈T as defined in Siu and Yang,
(2009), i.e.,

Λt :=E
[
ΛT

∣∣Gt], t∈T . (3.10)

Let

S̃ :=e−
∫ t
0 r(u)duS(t)

for each t∈T . Here, the martin is given by considering an enlarged filtration as
follows:

S̃(u)=Eθ[S̃(t)
∣∣G(u)] for any t,u∈T with t≥u,

where Eθ denotes expectation under Qθ.

Lemma 3.1. Define

λi(θi) :=θiµi−
1

2
θiσ

2
i +

1

2
θ2
i σ

2
i , i=1,2,··· ,N, (3.11a)

λ̃t(θi) :=−ri+(θi+1)µi−
1

2
(θi+1)σ2

i +
1

2
(θi+1)2σ2

i , (3.11b)

where λ(θ):=(λ1(θ1),λ2(θ2),··· ,λN (θN))∈RN and λ(θ):=
(
λ1(θ1),λ2(θ2),··· ,λN (θN)

)
,

i=1,2,··· ,N. Then, the martingale condition is satisfied if and only if〈
e(Q+diag(λ̃(θ))(t−u)Xu,1N

〉
−
〈
e(Q+diag(λ(θ))(t−u)Xu,1N

〉
=0 (3.12)

for all Xu and for all t,u∈T with t≥u.

The proof of the above theorem employs a version of Bayes’ rule and the definition
of Λt in Eq. (3.10), and can be found in Siu et al. (2009) and Elliott and Osakwe
(2006), so we don’t repeat here.

To expanse the term
〈
e(Q+diag(λ̃(θ))(t−u)Xu,1N

〉
, we will use the equation

exp(M)=
∞∑
n=0

Mn

n!
.

The first-order approximation may be used to estimate the risk-neutral Esscher
parameters (θ1,θ2,··· ,θN) that corresponds to the Esscher parameters generated in
the works by Elliott et al. (2005), whilst the second-order approximation may
be used to estimate (θ1,θ2,··· ,θN) as well. Siu and Yang (2009) proved that the
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Esscher parameters can first be evaluated by Eq. (3.13) when using the first-order
approximation of exp(M), i.e.,

θi=
ri−µi
σ2
i

for ith economic state. (3.13)

In this paper, apart from using the first order approximation, we will also use the
second-order approximation to estimate the risk-neutral Esscher parameters. Conse-
quently, there will be more than one pair of (θ1,θ2) in the latter case when Eq. (3.12)
is solved for the regime-switching problem of two states. The min-max entropy
method will therefore be used to select an optimal pair of (θ1,θ2).

3.4 Relative entropy for equivalent martingale measure

The concept of entropy plays an important role in mathematical finance. Miya-
hara (1999) was the first to introduce the minimal entropy martingale measure
(MEMM) approach to select an equivalent martingale measure in an incomplete
market. Nowadays, the MEMM approach has become one of the major approaches
for option valuation in an incomplete market. As we have discussed before, there
are more than one set of (θ1,θ2,··· ,θN) satisfying Eq. (3.12). We will choose an
optimum set of risk-neutral Esscher parameters (θ1,θ2,··· ,θN) by minimizing the
maximum entropy between an equivalent martingale measure and the real world
probability measure over different states. The principle of maximum entropy in-
dicate that the probability distribution which best represents the current state of
knowledge is the one with largest entropy. To maximize entropy, we should define
the entropy between Qθ and P conditional on X0 ∈ ε. The entropy is defined as
below

I
(
Qθ,P

∣∣∣X0

)
:=E

[
d`θ
P

ln

(
d`θ
P

)∣∣∣
X0

]
=
E
[
(θ·Y )T e

(θ·Y )T
∣∣
X0

]
E
[
e(θ·Y )T

∣∣
X0

] −lnE
[
e(θ·Y )T

∣∣
X0

]
=

〈
e(Q+diag(λz(θ))TX0,12

〉
〈e(Q+diag(λ(θ))TX0,12〉

−ln
〈
e(Q+diag(λ(θ))TX0,12

〉
, (3.14)

where X0 =ei, i=1,2 for state 1 and state 2.
Define the I(Qθ

∣∣P) is the maximum entropy between Qθ and P over the different
values X0,

I
(
Qθ

∣∣∣P) := max
i=1,2,···,N

I

(
Qθ,P

∣∣∣
X0=ei

)
. (3.15)
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Note that N=2 in our research.
Then, a set of risk-neutral Esscher parameters are selected when I(Qθ|P) is

minimized.

3.5 Regime-switching jump-diffusion model

We have recently extended Siu and Yang’s model to its Markov-modulated jump-
diffusion model (see, Liu, 2019) in order to price the regime-switching risk for cur-
rency options, which is given by:

dSt
st−

=(αt−kλtΓ)dt+σtdWt+(ezt−−1)dNt, (3.16)

Where {Wt}t∈T denote the standard Brownian motion on (Ω,F ,P), and the ap-
preciation rate {αt}t∈T , the stochastic volatility {σt}t∈T of the underlying and the
stochastic jump intensity {λt}t∈T of the Poisson process N={Nt}t∈T are all modu-
lated by a common continuous-time, finite-state Markov chain ξ={ξt}t∈T .

We decompose the log return of the underlying asset Yt=log(St/S0), (0≤ t≤T )
into a continuous part and a jump part

Yt=Ct+Jt, (3.17)

where Ct and Jt are the continuous diffusive part and the jump part of Yt, and they
admit the following forms:

Ct=

∫ t

0

(
αs−kλs−

1

2
σ2
s

)
ds+

∫ t

0

σsdWS, (3.18a)

Jt=

∫ t

0

Zs−dNS. (3.18b)

Then, we can write two family Esscher parameters {θct}t∈T and {θJt }t∈T as follows:

θct :=〈θc,ξt〉, (3.19a)

θJt :=
〈
θJ ,ξt

〉
, (3.19b)

where θc :=(θc1,θ
c
2,··· ,θcN)∈RN , and θJ :=(θJ1 ,θ

J
2 ,··· ,θJN)∈RN .

Note that we now have an enlarged set of Esscher parameters, i.e., (θc,θJ) sat-
isfying the martingale condition in general. We need to choose an optimum set of
risk-neutral Esscher parameters by minimizing the maximum entropy between an
equivalent martingale measure and the real-world probability measure over different
states. Such a process is similar to that summarized in Sections 2.2-2.4.
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3.6 An alternative method for selecting an equivalent
martingale measure

As shown in the previous sections, the basic idea of the MEMM approach is to select
a proper equivalent martingale measure so as to minimize the “distance” between
an equivalent martingale measure and the real-world probability measure described
by their relative entropy. Consequently, the MEMM is the equivalent martingale
measure which is closest to the real-world probability measure. However, in practice,

the entropy may not be evaluated as the term E[e(θ·Y )T
∣∣∣X0] is estimated by〈

e(Q+diag(λ(θ))TX0,12

〉
≈
〈(
I+Q+diag(λi(θi))T+

(
Q+diag(λi(θi))

2T 2
)
X0,12

〉
,

which can become negative for some Esscher parameters θt. To overcome this dif-
ficulty, we propose an alternative empirical method called the “weighted difference
method” to directly minimize the “distance” between an equivalent martingale mea-
sure and the real world probability measure. Denote Bt=rt− 1

2
σ2
t , and let θt be the

regime switching Esscher parameters at time t, which solves the martingale condi-
tion. Let Yt be the logarithmic return of S as defined in (2.7), and the I(Qθ|P) be
the relative entropy between Qθ and P as defined in (3.14), then we minimize the
following parameter d by a set of Esscher parameters θ∗t , that is

d
∣∣
θ=θ∗t

:=minEθ

[∫ t

0

(θs(Ys−Bs)−Ys)ds
]
. (3.20)

The proof can be found in the appendix. In the equation, the term θs(Ys−Bs)
represents the “weighted” returns of the risky underlying asset at time s under an
equivalent martingale measure described by θs, while Ys is the observed returns of
the asset under the real world probability measure at time s. The expected value of
the modulus of the differences between these two quantities conditional on X0 over
the time interval [0,T ] can represent the “explicit distance” between an equivalent
martingale measure and a real world probability measure. The optimal equivalent
martingale measure is the one that corresponds to the selected Esscher parameters
which minimizes the “distance” d.

4 Numerical experiments

Example 4.1. Let us consider some specimen values for option pricing under regime
switching. In our case, we suppose that there are two states in economy (N = 2).
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State 1 denotes a “high state” economy while State 2 denotes a “low state” economy.
The transition probability is (I+Q∆), where

Q=

[
q11 q12

q21 q22

]
, q11 =−q12 =−η and q21 =−q22 =η.

The model parameters are given by:

r1 =0.05, (µ1,σ1)=(0.35,0.1),

r1 =0.01, (µ2,σ2)=(0.05,0.2),

η=0.5.

It is straight forward to obtain the Esscher parameters for the case that the mar-
tingale condition is approximated by the first order expansion of exp(M), which are
θ1 =−30, and θ2 =−1.

Now consider that the second order approximation of exp(M), and let T = 0.5
year and ∆=0.00025, we can obtain the following two equations using Eq. (3.12)

0.0000125θ3
1 +0.0013θ2

1 +0.031θ1+0.145+0.0025θ2 =0,

0.0002θ3
2 +0.0007θ2

2 +0.0182θ2+0.03645+0.000625θ1 =0.

Solve the equations (
θ̂1,θ̂2

)
I
(
Qθ

∣∣P) Weighted differen

(−30,−1) 0.2572 1285.2
(−5.8083,−1.8658) 0.0498 372.5
(−64.1894,0.1999) 0.5471 3059.0

The above results are a little different from those obtained by Siu and Yang (2009) for
the same example, however, we believe that the roots of the equations being solved
should include a pair of (θ̂1,θ̂2) that is for the case when the first order approximation
is used (see, Elliott et al. (2005)). According to the principle of minimizing the
maximum entropies, we select a set of risk-neutral Esscher parameters which can give
minimum I(Qθ

∣∣P). Hence, we pick the set of solution (θ̂1,θ̂2)=(−5.80826,−1.86580).
Similarly, we can choose the same set of Esscher parameters that correspond to the
minimum d that is given by the weighted difference method. In Table 1, some other
cases have studied and the results are summarized there. It has clearly demonstrated
that the weighted difference method can produce the same results as the minimizing
the maximum entropy approach. This means that the weighted difference method
can help to pick the right Esscher parameters that describe the optimal equivalent
martingale measure.
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Table 1: Esscher parameter selection by the MEMM and the weight difference method.

options Esscher parameters (θ̂1,hatθ2) Entropy (I1,I2) Max Entropy Weighted difference d Selected (θ̂1,hatθ2)
K=80, T =0.25 (-56.174, -0.564) (0.4804, 0.0042) 0.4804 366.062 (-13.826, -1.270)

(-30.0, -1.0) (0.2567,0.0004) 0.2567 328.453
(-13.826, -1.270) (0.1187,0.0011) 0.1187] 119.852∗

K=100, T =0.75 (-66.45, 0.949) (0.5684,0.0003) 0.5684 6716.5 (-3.541, -2.499)
(-30.0, -1.0) (0.2576,0.0022) 0.2576 2378.5

(-3.541, -2.499) (0.0301,0.0012) 0.0301] 489.9∗

K=110, T =1.0 (-30.0, -1.0) (0.2572,0.0014) 0.2572 5121.0 (-2.435, -3.128)
(-67.540, 1.603) (0.5794,0.0012) 0.5794 1256.0
(-2.435, -3.128) (0.0208,0.0017) 0.0208] 628.0∗

∗ The minimum d based on which the Esscher parameters are selected using the weighted

difference method.

] The minimum max-entropy based on which the Esscher parameters are selected using MEMM.

Table 2: Call option prices with first-order and second order approximations (S0=100). FI–First order
approximation; and SE–Second order approximation.

Strike price, K
T =0.25 T =0.5 T =0.75 T =1.0

FI SE FI SE FI SE FI SE

80 21.63 21.86 21.78 25.94 22.51 32.04 23.07 35.48
90 11.16 15.08 11.95 17.59 12.57 23.59 13.33 25.35
100 2.24 3.23 2.12 7.51 2.59 12.14 3.54 18.05
110 0 0 0.07 2.13 0.04 6.18 0.05 10.79
120 0 0 0 0 0.003 2.63 0.0028 6.25
130 0 0 0 0 0 0.0003 0.0005 2.31

Finally, options with different strike prices and maturity times in this example
are priced and the results are given in Table 2.

As seen in the table, the option prices evaluated are usually higher when the
second order approximation is used than those using the first approximation. This
is consistent with the findings in the work of Siu et al. (2009). The usual effects
of strike price and maturity time on option price apply here, i.e., The larger the
strike price is, the lower the option price is, and the longer the maturity time is, the
higher the option price is. The results have demonstrated that both the MEMM
approach and the weighted difference method are effective for deciding the correct
Esscher parameters, and, the subsequent option prices.

Example 4.2 (HK HSI Options). In the part, we present a real data example to
illustrate the problem with the MEMM approach and the application of the weighted
difference method for determination of an optimal equivalent martingale measure.
We then compare the call prices estimated by the model with the market prices for
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different strike prices and maturities.
We use a data set of daily closing prices of Hang Seng Index (HSI), from 31

October 2009–31 October 2010, which was retrieved from the HK stock exchange
for the year when the model was just established. There are in total 252 observations.
In this investigation, the number of regime states is taken to be two. The estimated
Markov regime-switching parameters are

(µ1,σ1)=(0.0017,0.0084), r1 =0.007,

(µ2,σ2)=(−0.0003,0.0131), r2 =0.007.

The transition probabilities are estimated to be

P =

(
0.99 0.01
0.05 0.95

)
.

We extend the work of Siu et al. (2009) so that the model can deal with the cases
when the rate matrix are controlled by two different components, i.e., the rate matrix
components can be calculated as follows,

q12 =−q11 =−P12 ln(1−P12−P21)

∆(P12+P21)
,

q21 =−q22 =−P21 ln(1−P12−P21)

∆(P12+P21)
.

Suppose the current time is t0. Without loss of generality, we put t0 =0 and S0 (the
index HIS) is 23,652.94 as observed on 1 November 2010 on the HK stock exchange.

Firstly, we present the results of selecting optimal martingale measures in Ta-
ble 3 for some typical cases using both MEMM and the Weighted difference ap-
proaches. It shows that the MEMM approach fails to identify a suitable martingale
measure for option valuation for all the cases shown in Table 3. Taking the case
that K = 21,000 and T = 0.417 as an example, there are three pairs of Esscher
parameters (θ̂1,θ̂2) that satisfy the equivalent martingale conditions Eq. (3.12), i.e.,
(75.11,42.54), (−1889.67,1507.73), and (1968.81,−1500.49). However, the computed
entropy (i.e., I1) corresponding to one of the Esscher parameters (i.e., θ̂1) given by
Eq. (3.14) is a complex number. This causes difficulty in deciding a set of maximum
entropies based on which the min-max entropy needs to be selected in order to iden-
tify an optimal martingale measure. In contrast, the weighted difference method
gives three different “distance” values, i.e., 15.59, 418.79, and 428.79, from which
the minimum “distance” is chosen to be 15.59. Then, the right Esscher parameters
(θ̂1,θ̂2) are selected as (75.11,42.54). The option prices are then evaluated using the
selected Esscher parameters.
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Table 3: Esscher parameter selection by the MEMM and weight difference method.

Options Esscher parameters (θ̂1,hatθ2) Entropy (I1,I2) Max Entropy Weighted difference, d Selected (θ̂1,hatθ2)

K=21000, T =0.417 (75.11, 42.54) (-7.15- 3.14i, -7.16) N/A 15.59 (75.11, 42.54)
(-1889.67, 1507.73) (-3.56, -1.84) -1.84 418.79
(1968.81, -1500.49) (-4.04, -2.18) -2.18 428.17

K=21400, T =0.67 (75.11, 42.54) (-8.11-3.14i, -8.11) N/A 41.5 (75.11, 42.54)
(1974.33,-1504.03) (-4.97, -3.09) -3.09 1133.3
(-1895.64,1511.26) (-4.48, -2.75) -2.75 1098.6

K=22000, T =0.917 (75.11, 42.54) (-8.74-3.14i, -8.74) N/A 77.0 (75.11, 42.54)
(-1898.30,1512.82) (-5.10, -3.36) -3.36 2062.7
(1976.78,-1505.59) (-5.58, -3.70) -3.70 2114.7

Table 4: Market and estimated HSI option values at t0 =0 for different strike prices and maturities.

Strike Market price (T =0.25) T =0.25 T =0.417 T =0.67 T =0.917

20,800 3,102 3,229.4 3,231.3 3,232.8 3,235.5
21,200 2,757 2,830.3 2,832.2 2,835.0 2,838.2
21,600 2,424 2,430.8 2,433.4 2,437.3 2,440.9
22,000 2,104 2,031.7 2,034.2 2,038.7 2,043.3
22,400 1,799 1,632.3 1,636.0 1,641.4 1,646.2
22,800 1,505 1,232.8 1,236.7 1,242.7 1,248.3
23,200 1,250 834.1 838.4 844.5 851.1
23,600 973 434.6 439.0 446.6 453.2
24,000 821 35.0 40.2 47.9 55.8
24,400 653 0.0 0.0 0.0 0.0

Finally, a number of Hang Seng index options for 1 November 2010 have been
evaluated and the results are summarized in Table 4 in together with their market
prices. The strike prices range from 20,800 to 24,400, and the maturities of the
options are 3 months, 5 months, 8 months, and 11 months respectively. It can be
seen that, firstly, the regime-switching model yields comparable results with the
market option prices, especially, for the options in the money. General trends of the
option prices along with the strike prices and the maturity times seem reasonable,
for instance, the index option’s price decreases when the strike price increases in
all the cases studied, whilst it increases slightly when the maturity time becomes
longer.

Example 4.3 (Shanghai 50ETF options). The data of 50ETF options are acquired
from Shanghai Stock Exchange covering a time span from January 2018 to December
2022. The option type is European option. The following table (Table 5) shows some
typical option contracts with their trading particulars.

There are in total 75,873 call option contracts in the dataset. Suppose that the
hidden Markov chain has two states, which means that we consider the domestic
macroeconomic shifts between two states: e1 (“good”) and e2 (“bad”) in economy.
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Table 5: Sample 50ETF options.

code open high low close K t

510050C1803M02650 0.4831 0.4991 0.4507 0.455 2.65 0.230
510050C1803M03100 0.1042 0.1131 0.0803 0.0845 3.1 0.230
510050C1803M03200 0.0594 0.066 0.044 0.0469 3.2 0.230
510050C1803M03300 0.0329 0.037 0.023 0.025 3.3 0.230
510050C1803M03400 0.0184 0.0203 0.0121 0.0136 3.4 0.230
510050C1803M03500 0.0106 0.0116 0.0068 0.0075 3.5 0.230
510050C1806M03400 0.0675 0.0725 0.0562 0.0567 3.4 0.59

Table 6: The estimated parameter values (for similarity, we assume jumps follow the same distribution
in both states).

Parameter name Value in state e1 Value in state e2

Annual interest rate r1 =0.025 r2 =0.015
Volatility σ1 =0.1 σ2 =0.3

Appreciation of S µ1 =0.61 µ2 =−0.18
Annual jump intensity λ1 =7 λ2 =9

Mean jump size µJ =0.06 µJ =0.06
Standard deviation of the jump size µJ =0.10 µJ =0.10

We estimate that the transition probability matrix of the two state Markov chain is
given by

(
p11 p12

p21 p22

)
=

(
0.99 0.01
0.03 0.97

)
.

Moreover, we shall adopt the values for the model parameters, which are given in
Table 6. The parameter values related to the continuous diffusive component and
the jump component.

Denote the current time is t0, and S0 is 2.818 as observed on 1 Auguat 2022
on the 50ETF (510050). For each of the fixed maturity years T = 0.0575, 0.06301,
0.1589, and 0.40548 years, we are concerned with a range of strike price K from
2.65 to 3.5 RMB where appropriate. Taking the case of T = 0.0575 and K = 2.65
for example, it is straight forward to obtain the Esscher parameters for the case
that regime-switching risk is not priced, which are θc1 =−11.4886829, θc2 =8.882569,
θJ1 =−6.50, and θJ2 =−6.50. For the case of pricing regime-switching risk under the
jump-diffusion process, we can compute the maximum entropies and the Esscher



36 L. Liu / Ann. Appl. Math., 40 (2024), pp. 21-42

parameters as follows: (
θc1,θ

c
2,θ

J
1 ,θ

J
2

)
I
(
Qθ

∣∣∣P)
(48.176979,-8.82816,-6.5,-6.5) 0.768779
(-11.48868,8.882569,-6.5,-6.5) 1.3778387

(-73.05528, -26.31811, -6.5, -6.5) 2.941906

According to the principle of minimizing the maximum entropies, we select a set of
risk-neutral Esscher parameters which can give a minimum I(Qθ

∣∣P). Hence, we pick
the Esscher parameters

(
θc1,θ

c
2,θ

J
1 ,θ

J
2

)
= (48.176979,−8.82816,−6.5,−6.5) for deter-

mining the equivalent martingale measure. The above process will yield two different
call option prices, i.e., the call price without regime-switching risk is 0.13814265, and
the call price with regime-switching risk is 0.1323195, whilst the market close price
is quoted as 0.13.

Finally, we follow the similar approach to price more ETF50 options, and their
computed prices are given in Table 7 together with their market prices. The results
in Table 7 confirm that the jump-diffusion model under Markov regime-switching is
effective in pricing Chinese options.

Table 7: Market and estimated ETF50 option values at t0=0 for different strike prices and maturities.

T =0.0575 T =0.06301 T =0.1589 T =0.40548
Strike Market Estimat Market Estimat Market Estimat Market Estimat
2.65 0.130 0.133997 0.1398 0.13538 0.1661 0.1552 0.2192 0.199692
2.7 0.0907 0.090219 0.1014 0.090322 0.1348 0.124369 0.1891 0.167401
2.75 0.0614 0.059964 0.0687 0.060187 0.1025 0.09658 0.1625 0.144212
2.8 0.0371 0.03527 0.0433 0.038049 0.0771 0.075261 0.1379 0.131922
2.85 0.0211 0.02528 0.0254 0.026161 0.0566 0.059245 0.1157 0.114996
2.9 0.0123 0.020513 0.0147 0.021045 0.0401 0.046739 0.096 0.095054
2.95 0.0063 0.016197 0.0077 0.017 0.0282 0.040693 0.08 0.083803
3.0 0.0038 0.013342 0.0034 0.012909 0.0137 0.034684 0.0535 0.07437

However, in the above two examples, the regime-switching models (either with
Jump-diffusion or not) do not give good performance for the out-of-the-money op-
tions. This is true with both the Hong Kong Hangsheng index option data and
Shanghai ETF50 option data. As seen in Fig. 1, the prediction error can be as large
as 279% for some ETF50 options. The finding is consistent with what was found in
the works by Liew et al. (2010) that their regime-switching option model could not
give good results for certain options such as out-of-the-money options.

The explanations on such deviations can be vary. One may contribute the cause
to estimations of regime-switching parameters, real-world arbitrage opportunities
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Figure 1: The absolute percentage errors between estimated option prices and market prices as a
function of Moneyness Ratio (S0/X).

(see, for example, Liew et al. (2010)), financial market characteristics, and most
importantly, model bias. In reality, there may have existed a significant market
sentiment that the market index could go higher in the near future. Although our
study on the index options using the Markov regime-switching model is preliminary,
and is restricted to the financial data studied, we assume that a highlight of such
an issue may be beneficial for the better development of pricing models in terms
of their accurate option pricing in the real world. Indeed, there are recent studies
(Zghal, et al. 2020; Li, et al. 2021) that are in consideration of market sentiment
and information asymmetry so that there will be reasonable corrections to the model
mispricing of options in real market.

5 Conclusions

In conclusion, the main purpose of the paper is to conduct an empirical analysis of
index options in real-worlds, namely Hang Seng Index (HIS) options and ETF50 op-
tions, using the framework of the Markov regime switching model that was originally
proposed by Siu et al. (2009) and extended by Liu (2019), where the price dynam-
ics of the risky underlying asset is modulated by a hidden Markov chain of finite
number of states. In the study, we have addressed the potential problem with the
method of maximum entropy martingale measure (MEMM) adopted for determining
the Esscher parameters for an optimal equivalent martingale measure. We find that
such an approach may not work well in some real-world option pricing applications
due to the difficulty in obtaining a meaningful maximum entropy I

(
Qθ

∣∣,P|X0

)
. We

have further proposed an alternative empirical remedy, i.e., the weighted difference
method, for the purpose of estimating the “distance” directly between an equiva-



38 L. Liu / Ann. Appl. Math., 40 (2024), pp. 21-42

lent martingale measure and the real-world probability measure. We show that this
approach is efficient in selecting the right Esscher parameters in the cases that the
MEMM may not be capable of. Some theoretical proof for the proposed method
needs to be developed. Further, through the empirical applications of both Siu and
Yang’s model and the Markov jump-diffusion model to index options, we have also
highlighted the current challenges for the Markov Regime-Switching models in the
real-world problems for pricing the out-of-the-money options.

Appendix

Proposition A.1. Denote Bt=rt−1/2σ2
t , and let θt be the regime switching Esscher

parameters at time t, which solves the martingale condition. Let Yt be the logarithmic
return of S as defined in (2.7), and the I

(
Qθ

∣∣P) be the relative entropy between Qθ

and P as defined in (3.14), then the lower bound of the entropy I
(
Qθ

∣∣P) is the
following minimized parameter d by a set of Esscher parameters θ∗t , that is

d
∣∣
θ=θ∗t

:=minEθ

[∫ t

0

(θs(Ys−Bs)−Ys)ds
]
. (A.1)

Proof. By the definition of dQ
dP , we have the following

I
(
Qθ
∣∣P) :=Eθ

[
ln

(
dQ

dP

)]
=Eθ

[
ln

{
e(θ·Y )

t

E
[
e(θ·Y )

t |Fξt
]}]]

≥Eθ
[
ln

{
exp

[∫ t

0
θs

(
µs−

1

2
σ2
s

)
ds+

∫ t

0
θsσsdWS−

∫ t

0
θs

(
µs−

1

2
σ2
s

)
ds

−
∫ t

0
(θsσs)

2ds

]
−exp

(∫ t

0
Ysds

)}]
=Eθ

[∫ t

0
θsYsds−

∫ t

0
Ysds−

∫ t

0
θs

(
µs−

1

2
σ2
s

)
ds−
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0
(θsσs)

2ds

]
=Eθ
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0
θsYsds−
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0
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0
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(
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1

2
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s+θsσ

2
s

)
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]
=Eθ
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0
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0
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0

[
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(
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2
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)
+θs

(
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.
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Due to the martingale condition (3.12), we have

Eθ
[
ln

(
dQ

dP

)]
≥Eθ

[∫ t

0
θsYsds−

∫ t

0
Ysds−

∫ t

0
θs

(
rs−

1

2
σ2
s

)
ds

]
=Eθ

[∫ t

0
θs

[
Ys−

(
rs−

1

2
σ2
s

)]
ds−

∫ t

0
Ysds

]
=Eθ

[∫ t

0

{
θs

[
Ys−

(
rs−

1

2
σ2
s

)]
−Ys

}
ds

]
.

Since the left-hand side is the relative entropy, it is clearly seen that the minimization
of Eθ[

∫ t
0
(θs(Ys−Bs)−Ys)ds] yields the lower bound of the relative entropy I(Qθ |P).

This proves the proposition.

Remark A.1. First, in Eq. (A.1), the term θtYt represents the “weighted” returns
of the risky underlying asset at time t under an equivalent martingale measure de-
scribed by θt, while Yt is the “observed” returns of the asset under the real world
probability measure at time t. The expected value of the modulus of the difference
terms over a time interval [0,t] can represent the “explicit distance” between an
equivalent martingale measure and the real world probability measure. The optimal
equivalent martingale measure is the one that corresponds to the selected Esscher
parameters which minimize the “distance” d. This gives a “better” sense of mean-
ing than the concept of relative entropy. Second, Bt=rt−1/2σ2

t . The quantity θtBt

represents the combined “contributions” by the risk-free rate and asset price volatil-
ity to the asset returns under an equivalent martingale measure described by θt. In
practice, if both the risk-free rate and the price volatility (or Bt itself) are sufficiently
small, Eq. (A.1) can be reduced to:

d=Eθ

[∫ t

0

(θsYs−Ys)ds

]
.

The method is useful when pricing an option under Markov-regime switching using
Esscher transform as an equivalent martingale measure needs to described by θt.
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