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1 Introduction

Modern machine learning algorithms are commonly based on the optimization of arti-
ficial neural networks (ANNs) through gradient based algorithms. The overwhelming
success of these methods in practical applications has encouraged many scientists to build
the mathematical foundations of machine learning and, in particular, to identify univer-
sal structures in the training dynamics that might provide an explanation for the mind-
blowing observations practitioners make. One key component of ANNs is the activation
function. Among the various activation functions that have been proposed, the rectified
linear unit (ReLU), which is defined as the maximum between zero and the input value,
has emerged as the most widely used and most effective activation function. There are
several reasons why ReLU has become such a popular choice, e.g. it is easy to implement,
computational efficient and overcomes the vanishing gradient problem, which is a com-
mon issue with other activation functions when training ANNs. In this work, we point out
and prove a more subtle feature of the ReLU function that separates ReLU from several
other common activation functions and might be one of the key reasons for its popularity
in practice: the existence of global minima in the optimization landscape.
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A popular line of research studies the optimization procedure (also called training) for
ANNs using gradient descent (GD) type methods. Since the error function in a typical
machine learning optimization task is non-linear, non-convex and even non-coercive it re-
mains an open problem to rigorously prove (or disprove) convergence of GD even in the
simple scenario of optimizing a shallow ANN, i.e. an ANN with only one hidden layer.
Existing theoretical convergence results often assume the process to stay bounded, i.e. for
every realization there exists a compact set such that the process does not leave this set
during training, see, e.g. [3, 11, 15] for results concerning gradient flows, [1, 2] for results
concerning deterministic gradient methods, [5, 7, 23, 28] for results concerning stochas-
tic gradient methods and [8] for results concerning gradient based diffusion processes.
Many results go back to classical works by Łojasiewicz concerning gradient inequalities
for analytic target functions and direct consequences for the convergence of gradient flow
trajectories under the assumption of staying bounded [20–22].

In this context, it seems natural to ask for the existence of ANNs that solve the min-
imization task within the search space. More explicitly, if there does not exist a global
minimum in the optimization landscape then every sequence that approaches the mini-
mal loss value diverges to infinity. This might lead to slow convergence or even rule out
convergence of the loss value, which is the property that practitioners are most interested
in. Therefore, it seems reasonable to choose a network architecture, activation function
and loss function such that there exist global optima in the optimization landscape.

Overparametrized networks in the setting of empirical risk minimization (more ReLU
neurons than data points to fit) are able to perfectly interpolate the data (see, e.g. [12,
Lemma 27.3]) such that there exists a network configuration achieving zero error and,
thus, a global minimum in the search space. For shallow feedforward ANNs using ReLU
activation it has been shown that also in the underparametrized regime there exists a glo-
bal minimum if the ANN has a one-dimensional output [18], whereas there are patho-
logical counterexamples in higher dimensions [19]. However, for general measures µ not
necessarily consisting of a finite number of Dirac measures, the literature on the exis-
tence of global minima is very limited. There exist positive results for the approxima-

tion of functions in the space Lp([0, 1]d) with shallow feedforward ANNs using heavyside
activation [16], the approximation of Lipschitz continuous target functions with shallow
feedforward ANNs using ReLU activation and the standard mean square error in the case
where the input and output dimension is one-dimensional [15], and the approximation of
multi-dimensional, real-valued continuous target functions with shallow residual ANNs
using ReLU activation [6]. On the other hand, for several common (smooth) activations
such as the standard logistic activation, softplus, arctan, hyperbolic tangent and softsign
there, generally, do not exist minimizers in the optimization landscape for smooth target
functions (or even polynomials), see [13, 24]. This phenomenon can also be observed in
empirical risk minimization for the hyperbolic tangent activation. As shown in [19], in the
underparametrized setting, there exist input data such that for all output data from a set of
positive Lebesgue measure there does not exist minimizers in the optimization landscape.

In this article, we prove, for the first time, existence results for shallow feedforward
ReLU ANNs with multi-dimensional input space for the population loss. Interestingly,
minimizers exist under very mild assumptions on the optimization problem. This exis-
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tence property indicates the robustness of ReLU activation and may be a reason for its
success in practical applications. For the proof we proceed as follows. First, we show
existence of minimizers in an extended target space that comprises of the representable
responses of ANNs and additional discontinuous generalized responses. Note that for
many activation functions (including ReLU) the set of realization/response functions is
not closed for an appropriate metric, see also [14]. Second, we show that the additional
discontinuous responses perform worse than representable ones under mild conditions
on the optimization problem. Compared to [6], where residual networks are treated, the
situation is more complex for classical feedforward ReLU networks as treated here. This is
caused by the more sophisticated structure of the extended search space, see Definition 2.1.

We present a special case of our main result in the situation where we focus on the
approximation of continuous target functions with shallow ANNs using ReLU activation
under Lp-loss.

Theorem 1.1. Let din, d∈N, p>1 and d=(din+2)d+1. Let f : Rdin →R and h : Rdin → [0, ∞)
be continuous functions and assume that h−1((0, ∞)) is a bounded convex set. For every θ =
(θ1, . . . , θd) ∈ Rd let err : Rd → R be given by

err(θ) =
∫

Rdin
| f (x)−Nθ(x)|ph(x) dx,

where

Nθ(x) = θd +
d

∑
j=1

θ(din+1)d+j max

(

θdind+j +
din

∑
i=1

θ(j−1)din+ixi, 0

)

.

Then there exists θ ∈ Rd such that err(θ) = infϑ∈Rd err(ϑ).

Let us explain the statement of Theorem 1.1 in more detail. We consider the regres-
sion problem of fitting the parameters (i.e. weights and biases) θ = (θ1, . . . , θd) ∈ Rd of
a shallow neural network with input dimension din, d neurons on the hidden layer and

one-dimensional output such that its response Nθ : Rdin → R is a good approximation of

the continuous function f : Rdin → R. If we measure the quality of the approximation in
terms of the Lp-loss, where the data distribution of the input data is assumed to have con-
tinuous Lebesgue density h and a compact and convex support, then there exists a global
minimum of the error function err : Rd → R inside the search space. Theorem 1.1 is a spe-
cial case of the more general Theorem 1.2, which treats a broader class of loss functions
and measures.

Next, we introduce the central objects and notations of this article. In the following,
we represent ANNs in a more structurized way. We consider networks with din-dimen-
sional input space and one hidden layer consisting of d neurons that apply ReLU acti-
vation, i.e. (x)+ = max(x, 0). We describe the weights of the ANN by a matrix W1 =
(w1

j,i)j=1,...,d,i=1,...,din
and a row vector W2 = (w2

1, . . . , w2
d), and the biases by a column vector

b1 = (b1
i )i=1,...,d and a scalar b2. Moreover, for j = 1, . . . , d, we write w1

j = (w1
j,1, . . . , w1

j,din
)†,

where a† denotes the transpose of a vector or a matrix a. We let

W = (W1, b1, W2, b2) ∈ Rd×din × Rd × R1×d × R =: Wd,
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and call W a network configuration and Wd the parametrization class. We often refer to
a configuration of a neural network as the (neural) network W. A configuration W ∈ Wd

describes a function N
W : Rdin → R via

N
W(x) =

d

∑
j=1

w2
j

(

w1
j · x + b1

j

)+
+ b2, (1.1)

where · denotes the scalar product on Rdin . We call NW realization function or response
of the network W. We allow as parameter d all values from N0 := {0, 1, . . .}, where
a response of a network with zero neurons is a constant function (by definition). For
an introduction into general neural networks with possibly multiple hidden layers see,
e.g. [24].

Note that, in general, the response of a network is a continuous, piecewise affine func-

tion from Rdin to R. We conceive W 7→ N
W as a parametrization of a class of potential

response functions {NW : W ∈ Wd} in a minimization problem. More explicitly, let µ

be a finite measure on the Borel sets of Rdin , let D = supp(µ) and L : D × R → R+ be
a product-measurable function, the loss function. We aim to minimize the error

errL(W) =
∫

D
L
(

x,NW(x)
)

dµ(x)

over all W ∈ Wd for a given d ∈ N0 and let

errLd = inf
W∈Wd

errL(W) (1.2)

be the minimal error for the optimization task when using a neural network with d neu-
rons on the hidden layer.

The aim of this work is to give sufficient conditions on the loss function L and the

measure µ that guarantee existence of a network W ∈ Wd with errL(W) = errLd . We

stress that if there does not exist a neural network W ∈ Wd satisfying errL(W) = errLd
then every sequence (Wn)n∈N ⊂ Wd of networks satisfying limn→∞ errL(Wn) = errLd
diverges to infinity.

We state the main result of this article.

Theorem 1.2. Suppose that D = supp(µ) is compact and that µ has a continuous Lebesgue

density h : Rdin → R+. Assume that for every hyperplane H that intersects the interior of the
convex hull of D, there exists an x ∈ H with h(x) > 0. Moreover, assume that the loss function
L : D × R → R+ satisfies the following assumptions:

(i) (Continuity in the First Argument) For every y ∈ R, D ∋ x 7→ L(x, y) is continuous.

(ii) (Strict Convexity in the Second Argument) For all x ∈ D, y 7→ L(x, y) is strictly convex
and attains its minimum.

Then, for every d ∈ N0, there exists an optimal network W ∈ Wd with errL(W) = errLd .
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Theorem 1.2 is an immediate consequence of Proposition 3.1 below. We stress that the
statement of Proposition 3.1 is stronger in the sense that it even shows that in many sit-
uations the newly added functions to the extended target space perform strictly worse
than the representable responses. We get the statement of Theorem 1.1 as a corollary
of Theorem 1.2 as explained in the following example. Note that if µ has a continuous
Lebesgue density and a compact and convex support then µ satisfies the assumptions in
Theorem 1.2.

Example 1.1 (Regression Problem). Let µ be as in Theorem 1.2 and suppose that f :Rdin→R

is a continuous and L : R → R+ a strictly convex function that attains its minimum. Then

L : Rdin × R → R+ given by
L(x, y) = L

(

y − f (x)
)

,

satisfies the assumptions of the latter theorem and, thus, the infimum

inf
W∈Wd

∫

L
(

N
W(x)− f (x)

)

dµ(x)

is attained for a network W ∈ Wd.

For a general introduction into best approximators in normed spaces we refer the
reader to [26]. A good literature review regarding the loss landscape in neural network
training can be found in [10]. For statements about the existence of non-optimal local
minima in the training of (shallow) networks we refer the reader to [4, 25, 27, 29]. Lastly,
we note that weight regularization can also be used to ensure the existence of a global
optimum. In particular, consider the error function

errL,P (W) :=
∫

L
(

x,NW(x)
)

dµ(x) + P(W),

where P is a penalty term that satisfies P(W) → ∞ as |W| → ∞. Assuming continuity of

errL,P one can use compactness arguments to show that there exists an ANN minimizing
the error function. In that case, there exist results proving boundedness of the SGD paths,
see, e.g., [23, Theorem 1], [17, Proposition 1] and [9, Lemma D.1].

2 Generalized response of neural networks

We will work with more intuitive geometric descriptions of realization functions of net-
works W ∈ Wd as introduced in [6]. We call a network W ∈ Wd non-degenerate if for all
j = 1, . . . , d we have w1

j 6= 0. For a non-degenerate network W, we say that the neuron

j ∈ {1, . . . , d} has

• normal nj = (1/|w1
j |)w

1
j ∈ Sdin−1 := {x ∈ Rdin : |x| = 1},

• offset oj = −(1/|w1
j |)b

1
j ∈ R,

• kink ∆j = |w1
j |w

2
j ∈ R.
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Moreover, we call b = b2 the bias of W. We call (n, o, ∆, b) with

n = (n1, . . . , nd) ∈ (Sdin−1)d, o = (o1, . . . , od) ∈ Rd, ∆ = (∆1, . . . , ∆d) ∈ Rd,

and b ∈ R the effective tuple of W and write Ed for the set of all effective tuples using d
ReLU neurons.

First we note that the response of a non-degenerate network W can be represented in

terms of its effective tuple: One has, for x ∈ Rdin ,

N
W(x) = b+

d

∑
j=1

w2
j

(

w1
j · x + b1

j

)+
= b+

d

∑
j=1

∆j

(

1

|w1
j |

w1
j · x +

1

|w1
j |

b1
j

)+

= b+
d

∑
j=1

∆j(nj · x − oj)
+.

With slight misuse of notation we also write

N
n,o,∆,b : Rdin → R, x 7→ b+

d

∑
j=1

∆j(nj · x − oj)
+,

and

errL(n, o, ∆, b) =
∫

L
(

x,Nn,o,∆,b(x)
)

dµ(x).

Although the tuple (n, o, ∆, b) does not uniquely describe a neural network, it describes
a response function uniquely and thus we will speak of the neural network with effective
tuple (n, o, ∆, b).

We stress that the response of a degenerate network W can also be described as re-
sponse associated to an effective tuple. Indeed, for every j ∈ {1, . . . , d} with w1

j = 0

the respective neuron has a constant contribution w2
j (b

1
j )

+. Now, one can choose an ar-

bitrary normal nj and offset oj, set the kink equal to zero (∆j = 0) and add the constant

w2
j (b

1
j )

+ to the bias b. Repeating this procedure for every such neuron we get an effective

tuple (n, o, ∆, b) ∈ Ed that satisfies N
n,o,∆,b = N

W. Conversely, for every effective tuple
(n, o, ∆, b) ∈ Ed,Nn,o,∆,b is the response of an appropriate network W ∈ Wd. In fact one

can choose b2 =b and, for j=1, . . . , d, w1
j =nj, b1

j =−oj and w2
j =∆j such that for all x∈Rdin ,

w2
j

(

w1
j · x + b1

j

)+
= ∆j(nj · x − oj)

+.

This entails that

errLd = inf
(n,o,∆,b)∈Ed

∫

L
(

x,Nn,o,∆,b(x)
)

dµ(x),

and the infimum is attained if there is a network W ∈ Wd for which the infimum in (1.2)
is attained. For an effective tuple (n, o, ∆, b) ∈ Ed, we say that the j-th ReLU neuron has
the breakline

Hj =
{

x ∈ Rdin : nj · x = oj

}

,
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and we call
Aj =

{

x ∈ Rdin : nj · x > oj

}

(2.1)

the domain of activity of the j-th ReLU neuron. By construction, we have

N
n,o,∆,b(x) = b+

d

∑
j=1

1lAj
(x)
(

∆j(nj · x − oj)
)

.

Outside the breaklines, the function N
n,o,∆,b is differentiable with

DN
n,o,∆,a(x) =

d

∑
j=1

1lAj
(x)∆jnj.

Note that for each summand j = 1, . . . , d along the breakline the difference of the differen-

tial on Aj and Aj
c

equals ∆jnj (which is also true for the response function N
W provided

that it is differentiable in the reference points and there does not exist a second neuron
having the same breakline Hj).

In empirical risk minimization, one can deduce existence of a global minimum for

the error function ∑
n
i=1 L(yi,N

W(xi)), where (x1, y1), . . . , (xn, yn) ∈ Rdin × R, by show-

ing closedness of the set {(NW(x1), . . . ,NW(xn)) : W ∈ Wd}, see [18, Proposition 3.1].
However, [24, Theorem 3.1] shows that the set {NW : W ∈ Wd} is not closed in Lp(µ) for
any p > 0 and measure µ that has a continuous Lebesgue density and compact support.
The main task of this article is to show that the additional limiting functions provide larger
errors than network responses.

We introduce the class of generalized network responses. This extension of the search
space, consisting of network responses and the additional limiting functions, has the ad-
vantage that under quite mild assumptions minimizers can be found by applying com-
pactness arguments.

Definition 2.1. We call a function R : Rdin → R generalized response if it admits the following

representation: There are K ∈ N0, a tuple of open half-spaces A = (A1, . . . , AK) of Rdin , an affine

mapping a : Rdin → R, vectors δ1, . . . , δK ∈ Rdin and reals b1, . . . , bK ∈ R such that for all

x ∈ Rdin ,

R(x) = a(x) +
K

∑
k=1

1lAk
(x)(δk · x + bk). (2.2)

We assign a representation (2.2) a multiplicity as follows: For every k = 1, . . . , K, we assign the
k-th term the multiplicity mk = 1, if x 7→ 1lAk

(x)(δk · x + bk) is continuous or, equivalently,

∂Ak ⊂ {x ∈ Rdin : δk · x + bk = 0} and otherwise multiplicity mk = 2. Moreover, we assign the
affine term a multiplicity m0 = 0, if

(a) a is a constant function or

(b) (nk : k ∈ {1, . . . , K} with mk = 2) is linearly dependent, where each nk is a normal of the
hyperplane ∂Ak as in (2.1),
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and otherwise multiplicity m0 = 1. Then m0 + · · · + mK is said to be the multiplicity of the
representation (2.2).

A generalized response admits various representations and the minimal multiplicity m0 + · · ·+
mK that can be achieved is called dimension of the generalized response.

We call A1, . . . , AK active half-spaces of the response, m1, . . . , mK the multiplicities of
the half-spaces A1, . . . , AK or summands. For d ∈ N0, we denote by Rd the space of all
generalized responses of dimension at most d. Moreover, we call a response R ∈ Rd strict
at dimension d if it is of dimension d− 1 or lower or if it is discontinuous. Denote by R

strict
d

the set of strict responses at dimension d. Moreover, we call a response representable if it is
continuous or, equivalently, if it admits a representation with all multiplicities m1, . . . , mK

being one.
We conceive the space of generalized responses of dimension d as an extension of the

space {NW : W ∈ Wd}, with the representable responses being responses for neural net-
works with d neurons on the hidden layer and the discontinuous generalized responses
being additional limits in Lp(µ). Strictly speaking, a representable response of dimen-
sion d is not necessarily the response of a network with d neurons on the hidden layer
since in the case where m0 = 1 we might need two ReLU neurons (instead of one) to

generate the linear component of a. However, for every compact set K ⊂ Rdin and every
representable response R ∈ Rd we can find a network with d neurons on the hidden layer
whose response agrees on K with R. Consequently, for compactly supported measures µ,
the subset of representable generalized responses can all be realized on the relevant do-
main by appropriate shallow networks.

For a better understanding of the space of generalized responses, we give the following
lemma.

Lemma 2.1. Let µ be a finite measure on the Borel sets of Rdin with a continuous Lebesgue density

such that D = supp(µ) is compact. Let d ∈ N and R : Rdin → R be a generalized response of
dimension d. Then there exists a sequence (Rn)n∈N ⊂ {NW : W ∈ Wd} of network responses
with d neurons on the hidden layer such that for all p > 0,

Rn → R in Lp(µ).

Proof. Since µ has a continuous Lebesgue density and compact support it suffices to show
that Rn(x) → R(x) for Lebesgue-almost all x ∈ D. [6, Remark 3.3] shows that for every

open half-space A, δ ∈ Rdin and b ∈ R the function R̃(x) = 1lA(δ · x + b) is on Rdin\(∂A)
the limit of the response of two ReLU neurons. Moreover, if R̃(x) is continuous then R̃(x)
is clearly the response of a single ReLU neuron. This implies the statement in the case
where a is a constant function. If m0 = 1 the affine function a can be realized on D as
the response of one neuron such that D completely lies within its domain of activity. It
remains to show the statement for a generalized response R of the form

R(x) = a(x) +
K

∑
k=1

1lAk
(x)(δk · x + bk),
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where K ∈ N, m0 = 0, m1, . . . , mK = 2 and there exists (α1, . . . , αK) ∈ RK with αk 6= 0 for
all k = 1, . . . , K such that

K

∑
k=1

αknk = 0

with n1, . . . , nK being as in (2.1). By switching the sides of the active areas we can assume
without loss of generality that all αk > 0 (indeed this will change the definition of R only
on the respective hyperplanes). Set δ+1 =a

′ + δ1, δ−1 =a
′ (with a

′ being the derivative of a)

as well as δ+k = δk and δ−k = 0 for all k = 2, . . . , K so that for almost all x ∈ D,

R(x) = a(0) +
K

∑
k=1

1lAk
(x)
(

δ+k · x + bk

)

+ 1lAc
k
(x)
(

δ−k · x
)

.

Now, for κ > 0 the function

Rκ(x) := b
κ +

K

∑
k=1

N κ
k (x),

where b
κ := a(0) + ∑

K
k=1 καkok with o1, . . . , oK being as in (2.1) and

N κ
k (x) :=

(

δ+k · x + bk + καk(nk · x − ok)
)+

−
(

− δ−k · x − καk(nk · x − ok)
)+

is the response of a neural network having 2K neurons on the hidden layer. Moreover,

Rκ(x) → R as κ → ∞ for all x /∈
⋃K

k=1 ∂Ak.

When analyzing the minimization problem over the class of generalized responses, we
can impose weaker assumptions than in Theorem 1.2. We will use the following concepts.

Definition 2.2. (i) An element x of a hyperplane H ⊂ Rdin is called H-regular if x∈supp µ|A
and x ∈ supp µ|

A
c , where A is an open half-space with ∂A = H.

(ii) A measure µ on Rdin is called nice if all hyperplanes have µ-measure zero and if for every

open half-space A with µ(A), µ(A
c
) > 0 the set of ∂A-regular points cannot be covered by finitely

many hyperplanes different from ∂A.

Proposition 2.1. Assume that µ is a nice measure on Rdin and that the loss function L : D×R →
R+ is measurable and satisfies the following assumptions:

(i) (Lower-Semicontinuity in the Second Argument) For all x ∈ D and y ∈ R, we have

lim inf
y′→y

L(x, y′) ≥ L(x, y).

(ii) (Unbounded in the Second Argument) For all x ∈ D, we have

lim
|y|→∞

L(x, y) = ∞.
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Let d ∈ N0 with errLd < ∞. Then there exists an R ∈ Rd with

∫

L
(

x,R(x)
)

dµ(x) = errLd := inf
R̃∈Rd

∫

L
(

x, R̃(x)
)

dµ(x).

Furthermore, for d ≥ 1 the infimum infR̃∈Rstrict
d

∫

L(x, R̃(x))dµ(x) is attained on R
strict
d .

Proof. Let (R(n))n∈N be a sequence of generalized responses of at most dimension d that
satisfy

lim
n→∞

∫

L
(

x,R(n)(x)
)

dµ(x) = errLd .

We use the representations as in (2.2) and write

R(n)(x) = a
(n)(x) +

Kn

∑
k=1

1l
A
(n)
k

(

δ
(n)
k · x + b

(n)
k

)

.

Moreover, for k = 1, . . . , Kn we denote by n
(n)
k ∈ Sdin−1 and o

(n)
k ∈ R the quantities with

A
(n)
k =

{

x ∈ Rdin : n
(n)
k · x > o

(n)
k

}

,

and by m
(n)
k the multiplicity of the k-th term. We also denote by m

(n)
0 the multiplicity of

the affine term and assume that the representation satisfies m
(n)
0 + · · · + m

(n)
Kn

≤ d.

Step 1. Deriving a limit admitting a representation (2.2).

We choose a subsequence (nl)l∈N along which always the K-number and the multi-

plicities are the same and so that, in the case that m
(nl)
0 ≡ 0, always the same case (a), (b)

enters. Moreover, we assume that for each k=1, . . . , K, (n
(nl)
k )l∈N converges in Sdin−1 to nk

and (o
(nl)
k )l∈N in R ∪ {±∞} to ok. For ease of notation we will assume that this is the case

for the full sequence.

We call
Ak =

{

x ∈ Rdin : nk · x > ok

}

the asymptotic active area of the k-th term and let Hk = ∂Ak. Let J denote the collection of
all subsets J ⊂ {1, . . . , K} for which the set

AJ =
⋂

j∈J

Aj ∩
⋂

j∈Jc

A
c
j

satisfies µ(AJ) > 0. We note that the sets (AJ : J ∈ J) are non-empty, open and pairwise
disjoint and their union has full µ-measure since

µ

(

Rdin\
⋃

J⊂{1,...,K}

AJ

)

≤
K

∑
j=1

µ(Hj) = 0.
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Moreover, for every J ∈ J and every compact set B with B ⊂ AJ one has from a B-depen-

dent n onwards that the generalized response R(n) satisfies for all x ∈ B that

R(n)(x) = D
(n)
J · x + β

(n)
J ,

where
D

(n)
J := a

′(n) + ∑
j∈J

δ
(n)
j , β

(n)
J := a

(n)(0) + ∑
j∈J

b
(n)
j .

Let J ∈ J. Next, we show that along an appropriate subsequence, we have convergence

of (D
(n)
J )n∈N in Rdin . First assume that along a subsequence one has that (|D

(n)
J |)n∈N

converges to ∞. For ease of notation we assume without loss of generality that one has

|D
(n)
J | → ∞. We let

H
(n)
J =

{

x ∈ Rdin : D
(n)
J · x + β J = 0

}

.

For every n with D
(n)
J 6= 0,H

(n)
J is a hyperplane which can be parametrized by taking

a normal and the respective offset. As above we can argue that along an appropriate
subsequence (which is again assumed to be the whole sequence) one has convergence

of the normals in Sdin−1 and of the offsets in R̄. We denote by HJ the hyperplane being
associated to the limiting normal and offset (which is assumed to be the empty set in

the case where the offsets do not converge in R). Since the norm of the gradient D
(n)
J

tends to infinity we get that for every x ∈ AJ\HJ one has |R(n)(x)| → ∞ and, hence,

L(x,R(n)(x)) → ∞. Consequently, Fatou’s lemma implies that

lim inf
n→∞

∫

AJ\HJ

L
(

x,R(n)(x)
)

dµ(x) ≥
∫

AJ\HJ

lim inf
n→∞

L
(

x,R(n)(x)
)

dµ(x) = ∞

contradicting the asymptotic optimality of (R(n))n∈N. We showed that the sequence

(D
(n)
J )n∈N is precompact and by switching to an appropriate subsequence we can guar-

antee that the limit DJ = limn→∞ D
(n)
J exists.

Similarly, we show that along an appropriate subsequence, (β
(n)
J )n∈N converges to

a value β J ∈ R. Suppose this were not the case, then there were a subsequence along

which |β
(n)
J | → ∞. Again we assume for ease of notation that this were the case along the

full sequence. Then, for every x ∈ AJ , one has that |R(n)(x)| → ∞ and we argue as above

to show that this would contradict the optimality of (R(n))n∈N. Consequently, we have
on a compact set B ⊂ AJ uniform convergence

lim
n→∞

R(n)(x) = DJ · x + β J . (2.3)

Since
⋃

J∈J AJ has full µ-measure we get with the lower semicontinuity of L in the

second argument and Fatou’s lemma that for every measurable function R : Rdin → R
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satisfying for each J ∈ J and x ∈ AJ that

R(x) = DJ · x + β J , (2.4)

we have
∫

L
(

x,R(x)
)

dµ(x) ≤
∫

lim inf
n→∞

L
(

x,R(n)(x)
)

dµ(x)

≤ lim inf
n→∞

∫

L
(

x,R(n)(x)
)

dµ(x) = errLd .

We call a summand j ∈ {1, . . . , K} degenerate if Aj or A
c
j has µ-measure zero. Now,

let j be a non-degenerate summand. Since µ is nice there exists a ∂Aj-regular point x that

is not in
⋃

A∈A:∂A 6=∂Aj
∂A, where A := {Ai : i is non-degenerate}. We let

Jx
− = {i : x ∈ Ai} ∪

{

i : A
c
i = Aj

}

, Jx
+ = {i : x ∈ Ai} ∪ {i : Ai = Aj}.

Since x ∈ supp(µ|
A

c
j
) we get that the cell AJx

−
has strictly positive µ-measure so that Jx

− ∈ J.

Analogously, x ∈ supp(µ|Aj
) entails that Jx

+ ∈ J. (Note that Jx
+ and Jx

− are just the cells

that lie on the opposite sides of the hyperplane ∂Aj at x.) We thus get that

δ
(n)
Aj

:= ∑
i:Ai=Aj

δ
(n)
i − ∑

i:A
c
i =Aj

δ
(n)
i = D

(n)
Jx
+

−D
(n)
Jx
−

→ DJx
+
−DJx

−
=: δAj

,

where the definitions of δ
(n)
Aj

and δAj
do not depend on the choice of x. Analogously,

b
(n)
Aj

:= ∑
i:Ai=Aj

b
(n)
i − ∑

i:A
c
i =Aj

b
(n)
i = β

(n)
Jx
+
− β

(n)
Jx
−

→ β Jx
+
− β Jx

−
=: bAj

.

We form the set A0 by thinning A in such a way that for two active areas that share
the same hyperplane as boundary only one is kept (meaning that for two active areas
on opposite sides of a hyperplane only one is kept). Then there exists an affine function

a : Rdin → R such that for x ∈
⋃

J∈J AJ ,

R(x) = a(x) + ∑
A∈A0

1lA(x)(δA · x + bA). (2.5)

We use the latter identity to define R on the whole space Rdin .

Step 2. Analyzing the multiplicities of representation (2.5).

We assign the active areas in A ∈ A0 multiplicities. If

∂A ⊂
{

x ∈ Rdin : δA · x + bA = 0
}

,

or, equivalently, x 7→ 1lA(x)(δA · x + bA) is continuous, then we assign A the multiplicity
one and otherwise two.
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Next, we show that an active area A ∈ A0 whose breakline is only served by one
summand k of multiplicity one is again assigned multiplicity one. For this it remains to
show continuity of x 7→ 1lA(x)(δA · x + bA) for such an A. Suppose that the k-th summand

is the unique summand that contributes to A. Then δ
(n)
k =δ

(n)
A → δA and b

(n)
k =b

(n)
A → bA.

Moreover, one has

{

x ∈ Rdin : n
(n)
k · x − o

(n)
k = 0

}

⊂
{

x ∈ Rdin : δ
(n)
k · x + b

(n)
k = 0

}

,

which entails that, in particular, δ
(n)
k is a multiple of n

(n)
k . Both latter vectors converge and

|nk| = 1 which also entails that the limit δA is a multiple of nk. To show that

∂A ⊂
{

x ∈ Rdin : δA · x + bA = 0
}

,

it thus suffices to verify that one point of the hyperplane on the left-hand side lies also in
the set on the right-hand side. Indeed, this is the case for x = oknk since for n → ∞,

δA · (oknk) + bA = lim
n→∞

δ
(n)
k ·

(

o
(n)
k n

(n)
k

)

+ b
(n)
k = 0.

This entails contains continuity and we also showed that for such a k,

1l
A
(n)
k

(x)
(

δ
(n)
k · x + b

(n)
k

)

→ 1lA(δA · x + bA)

pointwise in x.

Note that the sum over all multiplicities assigned to the active areas A ∈ A0 is strictly
smaller than d if

(1) for all n ∈ N, m
(n)
0 = 1,

(2) at least one of the summands j ∈ {1, . . . , K} is degenerate, or

(3) there is an active area A ∈ A0 whose contributing terms have a cumulated multiplicity
that is strictly larger than the one assigned to A.

In the latter cases we can choose m0 = 1 and R as in (2.5) is of dimension at most d.

Step 3. Separate treatment of the cases where the R(n) are of type (a), (b).

If m
(n)
0 ≡ 1, we are done since property (1) above is satisfied.

Now suppose that the R(n) are all of type (b) and let I ⊂ {1, . . . , K} denote the indices

of the summands with multiplicity two. Then linear dependence of (n
(n)
j : j ∈ I) implies

linear dependence of the limits (nj : j ∈ I). If there is no degenerate asymptotic active

area and the entries of (∂Aj : j ∈ I) are pairwise different, then the representation (2.5)
satisfies property (b) and we verified that R is in Rd. On the other hand, in the case that
the entries in (∂Aj : j ∈ I) are not pairwise different, then there is an active area A ∈ A0

whose contributing summands contribute multiplicity at least four and thus property (3)
above holds and we are done.
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It remains to consider the case (a). We can assume that there are no degenerate active
areas and that every A ∈ A0 is served by terms of total multiplicity at most two since
otherwise property (2) or (3) from above holds and we are done. Then every A ∈ A0 is
served by

(i) a single summand,

(ii) two summands of multiplicity one that have the same asymptotic active area or

(iii) two summands of multiplicity one that have their asymptotic areas on opposite sides
of the related hyperplane.

For an A ∈ A0 of type (i) or (ii) the asymptotic contribution of the related summands
satisfies outside the hyperplane ∂A

lim
n→∞

∑
j:Aj=A

1l
A
(n)
j

(x)
(

δ
(n)
j · x + b

(n)
j

)

= 1lA(x)(δA · x + bA).

If there is a single summand of multiplicity one contributing the limit will be continu-
ous for the same reason as above. Hence, if there exists no A ∈ A0 of type (iii) we use

that (R(n))n∈N converges on
⋃

J∈J AJ in order to deduce that limn→∞ b
(n) =: b exists and

obtain a representation (2.2) with a ≡ b and are in case (a).

Now let A∗
0 denote the subset of all A ∈ A0 that are of type (iii) and assume that

A∗
0 6= ∅. We say that A ∈ A∗

0 is served by the pair of twins (i, j) if Ai = A and Aj = A
c
.

Moreover, we call a summand k to be of type (iii) if it contributes to one active area of
type (iii). By switching to an appropriate subsequence we can ensure that there exists

a summand k of type (iii) such that |δ
(n)
k | is maximal over all summands of type (iii) for all

n ∈ N.

We distinguish two cases. If there is a subsequence along which (|δ
(n)
k |)n∈N is uni-

formly bounded, then again by switching to appropriate subsequences we get that for ev-

ery summand j of type (iii), limn→∞ δ
(n)
j =: δj ∈ Rdin exists. Since 1l

A
(n)
j (x)

(δ
(n)
j · x + b

(n)
j )

is continuous we get for a sequence (xn)n∈N that satisfies xn ∈ ∂A
(n)
j for all n ∈ N, and

that converges to an x ∈ ∂Aj that

b
(n)
j = −δ

(n)
j · xn → −δj · x =: bj,

where the left-hand side does not depend on the choice of (xn)n∈N or x. Moreover, the
limit 1lAj

(x)(δj · x + bj) is continuous. Thus, for a pair of twins (i, j) the contributing terms

i and j to Ai have in total multiplicity two but the respective term

1lAi
(x)(δAi

· x + bAi
) = 1lAi

(x)
(

(δi − δj) · x + bi − bj

)

is continuous and thus has multiplicity one. Hence, we are in case (3) above and are done.

It remains to consider the case where (|δ
(n)
k |)n∈N tends to infinity. For every twin (i, j)

and n ∈ N we can choose α
(n)
i ∈ [−1, 1] and α

(n)
j ∈ [−1, 1] with
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1
∣

∣δ
(n)
k

∣

∣

δ
(n)
i = α

(n)
i n

(n)
i ,

1
∣

∣δ
(n)
k

∣

∣

δ
(n)
j = −α

(n)
j n

(n)
j

and along an appropriate subsequence we have convergence of all (α
(n)
i )n∈N, (α

(n)
j )n∈N

to limits αi ∈ [−1, 1] and αj ∈ [−1, 1]. Since (δ
(n)
i − δ

(n)
j )n∈N converges to δAi

, |δ
(n)
k | → ∞

and
lim

n→∞
n
(n)
i = ni = −nj = lim

n→∞
−n

(n)
j ,

we get that αi = αj. Consequently, for x ∈
⋃

J∈J AJ , one has

lim
n→∞

1

|δ
(n)
k |

(

R(n)(x)− b
(n)) = ∑

i:Ai∈A∗
0

αi(ni · x − oi).

If ∑i:Ai∈A∗
0

αini is not equal to zero, then the linear term on the right-hand side does not

vanish. This contradicts convergence of R(n) on
⋃

J∈J AJ . Hence, we have ∑i:Ai∈A∗
0

αini=0.

Note that not all αi’s are equal to zero since αk ∈ {±1} and either k or its twin appears in
the sum. Thus we showed that the normals belonging to the active areas in A∗

0 are linearly
dependent. Hence, we are in case (b) and the proof is achieved.

Step 4. Discussion of the minimization problem for strict responses at dimension d.

Now we choose a sequence of responses (R(n))n∈N from R
strict
d with

lim
n→∞

∫

L
(

x,R(n)(x)
)

dµ(x) = inf
R̃∈Rstrict

d

∫

L
(

x, R̃(x)
)

dµ(x).

If infinitely many of the responses R(n) are in Rd−1 then the response constructed above
is a minimizer and in Rd−1. On the other hand, if all but finitely many responses are
discontinuous, then the construction above yields a limit R ∈ Rd that minimizes the
error. Note that there is at least one summand that contributes multiplicity two to one of
the active areas of the limit R. If R is continuous along the respective hyperplane, then it
is of dimension at most d − 1 and otherwise the response is discontinuous. In both cases
we have R ∈ R

strict
d .

3 Strict generalized responses are not better than representable

ones

In this section, we finish the proof of Theorem 1.2. Recall that

errLd := inf
W∈Wd

∫

L
(

x,NW(x)
)

dµ(x) and errLd := inf
R∈Rd

∫

L
(

x,R(x)
)

dµ(x),

i.e. errLd denotes the infimum of the error function taken over all neural networks with d

neurons on the hidden layer and errLd denotes the infimum over all generalized responses
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of at most dimension d. Note that the latter infimum is attained due to Proposition 2.1. We

will show that, in the setting of Theorem 1.2, for every d∈{2, 3, . . .} with errLd < errLd−1, the
infimum taken over the strict generalized responses produces a larger error than the best
representable response. This will entail Theorem 1.2. For a discussion on sufficient and

necessary assumptions on the loss function L that implies errLd < errLd−1, see [6, Proposi-
tion 3.5, Example 3.7].

Proposition 3.1. Suppose that the assumptions of Theorem 1.2 are satisfied. Let d ∈ N0. Then
there exists an optimal network W ∈ Wd with

errL(W) = errLd = errLd .

If, additionally, d ≥ 2 and errLd < errLd−1, then one has that

inf
R∈Rstrict

d

∫

L
(

x,R(x)
)

dµ(x) > errLd . (3.1)

Proof. We can assume without loss of generality that µ 6= 0. First we verify the assump-
tions of Proposition 2.1 in order to conclude that there are generalized responses R ∈ Rd

with
∫

L
(

x,R(x)
)

dµ(x) = errLd .

We verify that µ is a nice measure: In fact, since µ has Lebesgue density h, we have µ(H)=0

for all hyperplanes H ⊂ Rdin . Moreover, for every half-space A with µ(A), µ(A
c
) > 0 we

have that ∂A intersects the interior of the convex hull of D so that there exists a point

x ∈ ∂A with h(x) > 0. Since {x ∈ Rdin : h(x) > 0} is an open set, {x ∈ ∂A : h(x) > 0}
cannot be covered by finitely many hyperplanes different from ∂A. Moreover, since for all

x ∈ Rdin the function y 7→ L(x, y) is strictly convex and attains its minimum we clearly

have for fixed x ∈ Rdin continuity of y 7→ L(x, y) and

lim
|y|→∞

L(x, y) = ∞.

We prove the statement via induction over the dimension d. If d ≤ 1, all generalized
responses of dimension d are, on the compact set D, representable by a neural network
and we are done. Now let d ≥ 2 and suppose that R is a strict generalized response at
dimension d that satisfies

∫

L
(

x,R(x)
)

dµ(x) = inf
R̃∈Rstrict

d

∫

L
(

x, R̃(x)
)

dµ(x).

It suffices to show that one of the following two cases enters: One has
∫

L
(

x,R(x)
)

dµ(x) ≥ errLd−1 (3.2)

or
∫

L
(

x,R(x)
)

dµ(x) > errLd . (3.3)
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Indeed, then in the case that (3.3) does not hold, we have as consequence of (3.2) that

errLd−1 ≤
∫

L
(

x,R(x)
)

dµ(x) = errLd ,

and the induction hypothesis entails that errLd−1 = errLd−1 ≤ errLd ≤ errLd ≤ errLd−1 so that

errLd = errLd and errLd = errLd−1. Thus, an optimal representable response R of dimension
at most d − 1 (which exists by induction hypothesis) is also optimal when taking the min-
imum over all generalized responses of dimension d or smaller. Conversely, if (3.3) holds,
an optimal generalized response (which exists by Proposition 2.1) is representable so that,

in particular, errLd = errLd . This shows that there always exists an optimal representable

response. Moreover, it also follows that in the case where errLd < errLd−1, either of the
properties (3.2) and (3.3) entail property (3.1).

Suppose that the optimal strict generalized response R at dimension d is given in the
standard representation (2.2)

R(x) = a(x) +
K

∑
j=1

1lAj
(x)(δj · x + bj)

with A1, . . . ,AK being the half-spaces with pairwise distinct boundaries and m0, m1, . . . ,mK

being the respective multiplicities. Suppose that R is an optimal response with the mini-
mal number of terms of multiplicity two.

First note that for every k = 1, . . . , K for which ∂Ak does not intersect the interior
of the convex hull of D, Ak has either zero or full µ-measure. In both cases we can re-
move the k-th summand, set m0 = 1 and adapt the affine function a appropriately to
get to a response that agrees µ-almost everywhere with the former response and is again
of dimension at most d. Thus we can without loss of generality assume that for every
k = 1, . . . , K, ∂Ak intersects the interior of the convex hull of D.

We distinguish cases. If one has m0 = 1 or a ≡ b ∈ R (case (a)), then the proof of [6,
Proposition 3.3] shows that an appropriate replacement of a summand of multiplicity two
by two summands of multiplicity one reduces the error which shows (3.3).

It remains to treat the case (b). Let I be the set of indices with multiplicity two. Now
we have that the vectors (nj : j ∈ I) are linear dependent. If the set is not minimal in the
sense that we can remove one of the vectors and still have a linearly dependent set, then
we can argue as above and apply an appropriate replacement of this particular summand
by two summands of multiplicity one that still satisfies (b) and has strictly smaller error.
Hence, we can assume without loss of generality that the set (nj : j ∈ I) is minimal in the
sense that for a nontrivial linear combination

∑
j∈I

αjnj = 0, (3.4)

one has that αj 6= 0 for all j ∈ I. For x ∈ D and y ∈ R let

L̃(x, y) = L

(

x, y + ∑
j∈Ic

1lAj
(x)(δj · x + bj)

)
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and note that due to continuity of x 7→ ∑j∈Ic 1lAj
(x)(δj · x + bj) the function L̃ satisfies

the same assumptions as imposed on L in the proposition. If we can find a representable

response R̂ of dimension 2#I with
∫

L̃
(

x, R̂(x)
)

dµ(x) <
∫

L̃
(

x, R̃(x)
)

dµ(x),

where
R̃(x) = a(x) + ∑

j∈I

1lAj
(x)(δj · x + bj),

then
∫

L

(

x, R̂(x) + ∑
j∈Ic

1lAj
(x)(δj · x + bj)

)

dµ(x) <
∫

L
(

x,R(x)
)

dµ(x)

and it follows validity of (3.3).
Therefore, we can assume without loss of generality that I = {1, . . . , K} and the opti-

mal strict response is given by

R(x) = a(x) +
K

∑
j=1

1lAj
(x)(δj · x + bj).

We fix a non-trivial vector (αj)j∈I satisfying (3.4) and choose (δ+j , δ−j ) ∈ Rdin × Rdin ,

(b+j , b−j ) ∈ R2 and b ∈ R with δj = δ+j − δ−j and bj = b
+
j − b

−
j such that for all x ∈ Rdin ,

R(x) = b+
K

∑
j=1

1lAj
(x)
(

δ+j · x + b
+
j

)

+ 1lAc
j
(x)
(

δ−j · x + b
−
j

)

.

By switching the sides of the active areas we can assume without loss of generality that all
αj > 0 (indeed this will change the definition of R only on the respective hyperplanes).

We will replace Nj(x) := 1lAj
(x)(δ+j · x + b

+
j ) + 1lAc

j
(x)(δ−j · x + b

−
j ) by

N κ
j (x) :=

(

δ+j · x + b
+
j + καj(nj · x − oj)

)+
−
(

− δ−j · x − b
−
j − καj(nj · x − oj)

)+
,

where κ > 0. Let

Qκ
j :=

{

x ∈ Rdin : N κ
j (x) 6= Nj(x) + καj(nj · x − oj)

}

,

and compare R with

Rκ(x) := b
κ +

K

∑
j=1

N κ
j (x),

where b
κ := b+ ∑

K
j=1 καjoj. Since ∑

K
j=1 αjnj = 0, we have Rκ = R on Rdin\(

⋂

j=1,...,K Qκ
j ).

Furthermore, the set {x ∈ Rdin : x is in two Qκ
j } ∩ D is of size O(κ−2). Hence,

∫

L
(

x,Rκ(x)
)

−L
(

x,R(x)
)

dµ(x)
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=
K

∑
j=1

∫

Qκ
j

h(x)
(

L
(

x,Rκ(x)
)

−L
(

x,R(x)
))

dx +O(κ−2). (3.5)

Moreover, using the uniform continuity of h on the compact set D and the uniform bound-
edness of |L(x,Rκ(x))−L(x,R(x))| over all x ∈ D and κ ≥ 1 we conclude that as κ → ∞,

∫

Qκ
j

h(x)
(

L
(

x,Rκ(x)
)

−L
(

x,R(x)
))

dx

=
∫

Hj

∫

(x′+Rnj)∩Qκ
j

h(z)
(

L
(

z,Rκ(z)
)

−L
(

z,R(z)
))

dz dx′

=
∫

Hj

h(x′)
∫

(x′+Rnj)∩Qκ
j

(

L
(

x′,Rκ(z)
)

−L
(

x′,R(z)
))

dz dx′ + o(κ−1), (3.6)

where Hj = ∂Aj. Now note that for a fixed x′ ∈ Hj for which (x′ + njR) ∩ Qκ
j does not

intersect one of the Qκ
i with i 6= j, one has

∫

(x′+Rnj)∩Qκ
j

L
(

x′,R(z)
)

dz =
∣

∣

(

x′ + Rnj

)

∩ Qκ
j ∩ Aj

∣

∣

(

L+
j (x′) + o(1)

)

+
∣

∣

(

x′ + Rnj

)

∩ Qκ
j ∩ Ac

j

∣

∣

(

L−
j (x′) + o(1)

)

,

where | · | denotes the one-dimensional Hausdorff measure (i.e. the length of the segment),

L+
j (x′) = L

(

x′, δ+j · x′ + b
+
j + R̂j(x′)

)

,

L−
j (x′) = L

(

x′, δ−j · x′ + b
−
j + R̂j(x′)

)

with
R̂j(x′) = b+ ∑

i 6=j

(

1lAi
(x′)

(

δ+i · x′ + b
+
i

)

+ 1lAc
i
(x′)

(

δ−i · x′ + b
−
i

))

.

Moreover, for the same x′

∫

(x′+Rnj)∩Qκ
j

L
(

x′,Rκ(z)
)

dz =
∣

∣

(

x′ + njR
)

∩ Qκ
j

∣

∣

(

Lj(x′) + o(1)
)

,

where Lj(x′) is the average of L(x′, ·) on the segment [δ−j · x′ + b
−
j + R̂j(x′), δ+j · x′ + b

+
j +

R̂j(x′)].

We calculate the Hausdorff measure of the segments (x′ + Rnj) ∩ Qκ
j ∩ Aj and (x′ +

Rnj) ∩ Qκ
j ∩ Ac

j . We note that for t ∈ R, x′ + tnj lies in Qκ
j if t lies between the solutions

tκ
+/− of

δ+/−
j ·

(

x′ + tκ
+/−nj

)

+ b
+/−
j + καjt

κ
+/− = 0,

so that
∣

∣

(

x′ + Rnj

)

∩ Qκ
j ∩ Aj

∣

∣ =
∣

∣[tκ
−, tκ

+] ∩ [0, ∞)
∣

∣.
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Since

lim
κ→∞

κ tκ
+/− = −

1

αj

(

δ+/−
j · x′ + b

+/−
j

)

=: t+/−(x′),

we get that

q+j (x′) := lim
κ→∞

κ
∣

∣

(

x′ + Rnj

)

∩ Qκ
j ∩ Aj

∣

∣ =
∣

∣[t−(x′), t+(x′)] ∩ [0, ∞)
∣

∣.

Analogously, it follows that

q−j (x′) := lim
κ→∞

κ
∣

∣

(

x′ + Rnj

)

∩ Qκ
j ∩ Ac

j

∣

∣ =
∣

∣[t−(x′), t+(x′)] ∩ (−∞, 0]
∣

∣.

Combining the estimates gives that for every x′ ∈ Hj\
⋃

i 6=j Hi one has

lim
κ→∞

κ
∫

(x′+Rnj)∩Qκ
j

(

L
(

x′,Rκ(z)
)

−L
(

x′,R(z)
))

dz

=
(

q+j (x′) + q−j (x′)
)

Lj(x′)−
(

q−j (x′)L+
j (x′) + q+j (x′)L−

j (x′)
)

By (3.5), (3.6) and dominated convergence, we get that

lim
κ→∞

κ
∫

(

L
(

x,Rκ(x)
)

−L
(

x,R(x)
))

dµ(x)

=
K

∑
j=1

∫

Hj

h(x′)
((

q+j (x′) + q−j (x′)
)

Lj(x′)−
(

q+j (x′)L+
j (x′) + q−j (x′)L−

j (x′)
))

dx′,

where we used that κ
∫

(x′+Rnj)∩Qκ
j
(L(x′,Rκ(z)) − L(x′,R(z)))dz is uniformly bounded

over all j = 1, . . . , K, x′ ∈ Hj ∩ D and κ ≥ 1.

Now consider R−κ given by

R−κ(x) = b
−κ +

K

∑
j=1

−
(

− δ+j · x− b
+
j + καj(nj · x− oj)

)+
+
(

δ−j · x+ b
−
j − καj(nj · x− oj)

)+
,

where b
−κ := b− ∑

K
j=1 καjoj. Following the same arguments as above we get that

lim
κ→∞

κ
∫

L
(

x,R−κ(x)
)

−L
(

x,R(x)
)

dµ(x)

=
K

∑
j=1

∫

Hj

h(x′)
((

q+j (x′) + q−j (x′)
)

Lj(x′)−
(

q−j (x′) L+
j (x′) + q+j (x′) L−

j (x′)
))

dx′.

Adding the estimates we get with qj(x′) = q+j (x′) + q−j (x′) that

lim
κ→∞

κ
∫

(

L
(

x,R−κ(x)
)

+ L
(

x,Rκ(x)
)

− 2L
(

x,R(x)
))

dµ(x)

=
K

∑
j=1

∫

Hj

h(x′)qj(x′)
(

2Lj(x′)−
(

L+
j (x′) + L−

j (x′)
))

dx′. (3.7)
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By strict convexity of L(x′, ·), one has 2Lj(x′) ≤ L+
j (x′) + L−

j (x′) with strict inequality

whenever δ−j · x′ + b
−
j 6= δ+j · x′ + b

+
j . Since ∂A1 6⊂ {x ∈ Rdin : δ1 · x + b1 = 0} we have

that the set H′
1 consisting of all x′ ∈ H1 such that h(x′) > 0, q1(x′) > 0 and δ−j · x′ + b

−
j 6=

δ+j · x′ + b
+
j has strictly positive (din − 1)-dimensional Hausdorff measure. Consequently,

the limit in (3.7) is strictly negative and there exists κ > 0 for which either Rκ or R−κ is
a better response than R which contradicts optimality of R.
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