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Abstract. A lattice Boltzmann flux solver (LBFS) is presented in this work for sim-
ulation of incompressible viscous and inviscid flows. The new solver is based on
Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S)
equations and lattice Boltzmann equation (LBE). The macroscopic differential equa-
tions are discretized by the finite volume method, where the flux at the cell interface
is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic
flow variables at cell centers. The new solver removes the drawbacks of conventional
lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing
and time interval, limitation to viscous flows. LBFS is validated by its application to
simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past
a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numer-
ical results compare very well with available data in the literature, which show that
LBFS has the second order of accuracy in space, and can be well applied to viscous
and inviscid flow problems with non-uniform mesh and curved boundary.

AMS subject classifications: 20B40

Key words: Chapman-Enskog analysis, flux solver, incompressible flow, Navier-Stokes equation,
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1 Introduction

Currently, for the simulation of incompressible viscous flows, most of numerical solvers
can be roughly classified into two categories. One is based on the solution of Navier-
Stokes (N-S) equations, while the other is based on the solution of lattice Boltzmann
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equation (LBE). N-S equations are from the application of mass and momentum conser-
vation laws to a control volume. They have strong physical backgrounds. LBE is from the
statistical physics. Both N-S solvers and LBE solvers have their distinguished features.

In the category of incompressible N-S solvers, the dependent variables are the macro-
scopic pressure and velocity. One approach in this category is the artificial compressibil-
ity method [1]. This method adds a weak compressibility into the incompressible N-S
equations so that the well-established compressible N-S solvers can be applied to sim-
ulate incompressible flows. Its drawback is that the artificial compressibility involves a
user-specified parameter, which may not be easy to give for some cases. The most popu-
lar solver in this category is to solve incompressible N-S equations directly. However, un-
like compressible N-S equations, there is no transport equation for pressure in the incom-
pressible N-S equations. In fact, the pressure is only appeared in the momentum equation
but the velocity is involved in both the continuity and momentum equations. When the
velocity is obtained from the momentum equation, there is no guarantee that it will sat-
isfy the continuity equation. To overcome this difficulty, a number of algorithms [2–9],
which are termed projection or pressure correction methods, have been proposed. These
methods mainly resolve the coupling problem between the pressure field and the veloc-
ity field through the fractional step process. Usually, the process involves the solution of
Poisson equation for pressure or pressure correction. The slow convergence of Poisson
equation degrades the computational efficiency of this kind of N-S solvers, especially for
unsteady flow simulation. In addition, to properly consider the effect of pressure oscilla-
tion in the numerical simulation, the staggered grid, on which the velocity components
and pressure are defined at different locations, is often adopted. The use of staggered
grid brings a great inconvenience in programming. Furthermore, as N-S equations are
partial differential equations, N-S solvers need to use numerical schemes such as finite
difference (FD), finite volume (FV) and finite element (FE) methods to discretize the first
and second order spatial derivatives, and solve the resultant ordinary differential equa-
tions or algebraic equations. It is not a trivial job.

In contrast, LBE is a discrete model. At each physical location, a finite number of fic-
titious particles with given velocity (provided by lattice velocity model) are distributed.
The density distribution functions of these particles are taken as unknowns, which can
be determined from a set of algebraic equations (lattice Boltzmann equations). Once the
density distribution functions are known at a physical location, the macroscopic flow
variables such as density and velocity can be computed from mass and momentum con-
servation. LBE was initially developed by Chen et al. [10] and Qian et al. [11]. Since then,
many variants of LBE have been developed in the literature [12–24]. Basically, LBE solver
has two processes: streaming and collision. The streaming process involves particle dis-
tribution functions at two physical locations while the collision process happens locally.
The collision process can be approximated by a linear model with a single relaxation time
(BGK model) [10,11] or multi-relaxation times (MRT model) [16]. As compared with N-S
solvers, the LBE solver has following distinguished features. Firstly, the linear streaming
and collision processes of fictitious particles in the LBE solver can effectively consider the
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nonlinear convection and diffusion effects at the macroscopic level. The manipulation of
complicated nonlinear terms and treatment of high order derivatives in N-S solvers are
avoided. Secondly, LBE is a set of algebraic formulations, which can be easily solved.
No differential equation and solution of resultant algebraic equations are involved in the
LBE solver. These appealing features attract more and more researchers to apply LBE for
solving various flow problems [25–36]. On the other hand, we have to indicate that LBE
solvers also suffer from some drawbacks. Due to uniformity of the lattice, the standard
LBE solver is limited to the simple geometry and uniform mesh. For complex geometry
and application on the non-uniform mesh, additional efforts such as supplemented inter-
polation [12] and built-in interpolation [19] have to be incorporated. This will increase the
complexity of the solver, and requires additional computational effort and virtual stor-
age. The second drawback is the tie-up between the time interval and mesh spacing due
to the streaming process. This drawback makes the adaptive and multi-block computa-
tion of LBE solvers extremely complicated. In addition, LBE solvers need more memory
to store density distribution functions than the N-S solvers. Another drawback is that
LBE solvers can only be applied to simulate viscous flows but N-S solvers can be applied
to solve both inviscid and viscous flows. Furthermore, the physical boundary conditions
such as given velocity and pressure cannot be implemented directly in the LBE solver.
They have to be converted to the boundary conditions for density distribution functions.
Although bounce back rule is an efficient way to implement no-slip boundary condition,
other boundary conditions may not be implemented in a simple way, especially for the
three-dimensional case as it has more than 15 lattice directions.

From the above discussion, both N-S solvers and LBE solvers have their distinctive
advantages and disadvantages for simulation of incompressible flows. One may ask
whether we can develop a solver to combine their advantages, and in the meantime,
to remove their drawbacks. This motivates the present work. To address this issue, we
need to look at the relationship between N-S equations and LBE as they are mathemat-
ical models to describe the same physical problem. Indeed, the Chapman-Enskog (C-E)
expansion analysis [13] is a bridge to link the two solvers, from which the macroscopic
variables and fluxes in N-S equations can be computed by density distribution functions
in the LBE solution. Usually, the C-E analysis is applied in the whole flow domain and
at any time level. This lays the foundation that the macroscopic flow variables obtained
by LBE solvers at any physical location and any time level can satisfy the N-S equations.
On the other hand, it was found that the C-E analysis can be applied at a local position
within a small streaming step. In fact, this idea has been well applied by Xu and his
co-workers [37–40] in the development of gas kinetic scheme, where the flux at the cell
interface is computed by local application of Boltzmann equation. Inspired by the work
of Xu [37], in this work, the lattice Boltzmann flux solver is presented. In the solver, the
finite volume method is applied to discretize the governing differential equations (N-S
equations), and the flow variables at the cell center are obtained by marching in time. The
fluxes at the cell interface are evaluated by local reconstruction of LBE solution with the
help of C-E analysis. The present solver effectively combines the advantages of both N-S
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solvers and LBE solvers, and in the meantime removes their disadvantages. To be spe-
cific, only macroscopic flow variables are stored and used as dependent variables, and
physical boundary conditions can be directly implemented. There is no need to approx-
imate the second order derivatives and use staggered grid. The convective and viscous
fluxes are computed simultaneously. Furthermore, the above mentioned drawbacks of
LBE solvers such as limitation of simple geometry and uniform mesh, tie-up between the
time interval and mesh spacing, and limitation to the viscous flow are all removed. As
shown by test cases in the paper, the present solver can be effectively applied to solve
both viscous and inviscid flows with the curved boundary or non-uniform mesh. It has
more flexibility for applications.

2 Navier-Stokes equations, lattice Boltzmann equation and

Chapman-Enskog expansion analysis

2.1 Navier-Stokes (N-S) equations

When we apply the physical conservation laws of mass and momentum to a control vol-
ume, the following continuity and momentum equations, which are often named Navier-
Stokes equations can be derived

∂ρ

∂t
+∇·ρu=0, (2.1a)

∂ρu

∂t
+∇·(ρuu)=−∇p+µ∇·

[

∇ρu+(∇ρu)T]
, (2.1b)

where ρ is the fluid density, u is the flow velocity and p is the pressure. If the density
variation is small and Mach number is low, the above governing equations can be used
to simulate incompressible flows.

2.2 Lattice Boltzmann equation (LBE)

The standard lattice Boltzmann equation with BGK approximation can be written as

fα(r+eαδt,t+δt)= fα(r,t)+
f

eq
α (r,t)− fα(r,t)

τ
, α=0,1,··· ,N, (2.2)

where r represents a physical location, τ is the single relaxation parameter; fα is the den-
sity distribution function along the α direction; f

eq
α is its corresponding equilibrium state;

δt is the streaming time step and eα is the particle velocity in the α direction; N is the num-
ber of discrete particle velocities. Once the density distribution functions at the physical
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location r are obtained, the macroscopic density ρ and momentum ρu are computed by

ρ=
N

∑
α=0

fα, (2.3a)

ρu=
N

∑
α=0

fαeα. (2.3b)

The pressure can be calculated from the equation of state,

p=ρc2
s , (2.4)

where cs is the sound speed. In the application of LBE (2.2), the lattice velocity eα has
to be given first. There are a number of lattice velocity models for the two-dimensional
(2D) and three-dimensional (3D) cases. For the 2D case, the most popular lattice velocity
model is D2Q9 model defined in a square lattice, which can be written as

eα =











0, α=0,

(cos[(α−1)π/2],sin[(α−1)π/2])c, α=1,2,3,4,√
2(cos[(α−5)π/2+π/4],sin[(α−5)π/2+π/4])c, α=5,6,7,8.

(2.5)

Here c = δx/δt, δx is the lattice spacing. For the case of δx = δt, which is often used in
the literature and also adopted in this work, c is taken as 1. There are two key issues in
solving LBE (2.2). One is the specification of equilibrium distribution function f

eq
α , and

the other is the determination of relaxation parameter τ. The equilibrium distribution
function can be given from the truncated Taylor series expansion of Maxwellian function
in terms of Mach number, which reads

f
eq
α (r,t)=ρwα

[

1+
eα ·u

c2
s

+
(eα ·u)2−(cs|u|)2

2c4
s

]

, (2.6)

where the coefficients wα and the sound speed cs depend on the lattice velocity model.
For the D2Q9 model given by Eq. (2.5), they are given as: w0 = 4/9, w1 = w2 = w3 =
w4 =1/9 and w5 =w6 =w7 =w8 =1/36, cs = c/

√
3. The relaxation parameter τ is linked

to the kinematic viscosity of fluid through Chapman-Enskog expansion analysis by the
following relationship

υ=
(

τ− 1

2

)

c2
s δt. (2.7)

Note that in the lattice Boltzmann method (LBM), the equilibrium distribution functions
also satisfy the conservation of mass and momentum at any physical location. Thus, we
have

ρ=
N

∑
α=0

f
eq
α , (2.8a)

ρu=
N

∑
α=0

f
eq
α eα. (2.8b)
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2.3 Chapman-Enskog expansion analysis

As discussed in the introduction, both N-S equations (2.1a)-(2.1b) and LBE (2.2) are math-
ematical models to describe the same physical problem (fluid flow). They should have
some relationship. Indeed, their relationship is given by Chapman-Enskog expansion
analysis [13]. Some basic formulations of this analysis are shown below.

By introducing multi-scale expansion, the density distribution function, the temporal
derivative and the spatial derivative can be expanded respectively as

fα= f
(0)
α +ε f

(1)
α +ε2 f

(2)
α , (2.9a)

∂

∂t
= ε

∂

∂t0
+ε2 ∂

∂t1
, (2.9b)

∇r = ε∇r1, (2.9c)

where ε is a small parameter proportional to the Knudsen number. By performing Taylor
series expansion in time and space for Eq. (2.2), the following differential equation with
the second order of accuracy is obtained,

( ∂

∂t
+eα ·∇

)

fα+
δt

2

( ∂

∂t
+eα ·∇

)2

fα+
1

τδt

(

fα− f
eq
α

)

+O
(

δ2
t

)

=0. (2.10)

Substituting Eq. (2.9) into Eq. (2.10) gives the following 3 equations in terms of ε order,

O(ε0) : ( fα
(0)− fα

eq)/(τδt)=0, (2.11a)

O(ε) :
( ∂

∂t0
+eα ·∇1

)

f
(0)
α +

1

τδt
f
(1)
α =0, (2.11b)

O(ε2) :
∂ f

(0)
α

∂t1
+
(

1− 1

2τ

)( ∂

∂t0
+eα ·∇1

)

f
(1)
α +

1

τδt
f
(2)
α =0. (2.11c)

From Eq. (2.11a), we have

fα
(0)= fα

eq, (2.12)

and from Eq. (2.11b), we get

ε f
(1)
α =−τδtε

( ∂

∂t0
+eα ·∇1

)

f
eq
α . (2.13)

By taking summation of Eqs. (2.11b) and (2.11c) over α and combining the resultant for-
mulations on the t0 and t1 time scales, the following equation is derived

∂ρ

∂t
+∇·

( N

∑
α=0

eα f
eq
α

)

=0. (2.14)
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Furthermore, by taking the first-moment summation of Eqs. (2.11b) and (2.11c) over α and
combining the resultant formulations on the t0 and t1 time scales, the following equation
is obtained:

∂ρu

∂t
+∇·Π=0, (2.15)

where Π is the momentum flux tensor defined by

Πβγ=
N

∑
α=0

(eα)β(eα)γ

[

f
eq
α +

(

1− 1

2τ

)

ε f
(1)
α

]

. (2.16)

Here, (eα)β is the component of the lattice velocity vector eα in the β-coordinate direction.
From the expressions of Eqs. (2.14)-(2.16), it can be seen clearly that to the zero order of
ε, that is, fα is approximated by f

eq
α as shown by Eq. (2.9a), Eqs. (2.14) and (2.15) recover

Euler equations. And to the first order of ε, in which fα is approximated by f
eq
α +ε f

(1)
α

as shown by Eq. (2.9a), Eqs. (2.14) and (2.15) recover N-S equations (2.1a)-(2.1b) with the
relationship between τ and viscosity ν given by Eq. (2.7). In this case, Eqs. (2.13) and
(2.16) can be approximated by

f
neq
α = fα− f

eq
α = ε f

(1)
α =−τδt

( ∂

∂t
+eα ·∇

)

f
eq
α , (2.17a)

Πβγ=
N

∑
α=0

(eα)β(eα)γ

[

f
eq
α +

(

1− 1

2τ

)

f
neq
α

]

. (2.17b)

Here f
neq
α is the non-equilibrium distribution function. Note that Eq. (2.17a) is also ap-

plied in the gas kinetic scheme [37].

3 Lattice Boltzmann Flux Solver (LBFS)

3.1 Finite volume discretization of macroscopic differential equations

The multi-scale Chapman-Enskog expansion analysis provides a solid foundation for
LBM. It guarantees that the macroscopic flow variables obtained by LBM would sat-
isfy N-S equations. As discussed in the introduction, LBE is usually applied globally
in the whole computational domain and for all time levels. As such, it causes some lim-
itations for application. On the other hand, if we start from Eqs. (2.14) and (2.15) given
from Chapman-Enskog analysis, we can combine the solution algorithms of N-S solvers
with LBE solvers. To be specific, we can apply the finite volume method to discretize
Eqs. (2.14) and (2.15) so that the conservative variables ρ and ρu defined at the cell center
can be obtained by marching in time. Unlike N-S solvers where the inviscid and vis-
cous fluxes are approximated differently and the derivative approximation is needed,
the inviscid and viscous fluxes at the cell interface in the present lattice Boltzmann flux
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solver (LBFS) are evaluated simultaneously by local reconstruction of LBE solution from
macroscopic flow variables at cell centers. For simplicity, we will consider the 2D case to
illustrate the details of LBFS. For the 2D case, the flow velocity u has components u and
v and in the x and y direction respectively. Similarly, the particle velocity eα also has two
components eαx and eαy in the x and y directions. With these notations, Eqs. (2.14) and
(2.15) can be written as:

∂ρ

∂t
+

∂Px

∂x
+

∂Py

∂y
=0, (3.1a)

∂ρu

∂t
+

∂Πxx

∂x
+

∂Πxy

∂y
=0, (3.1b)

∂ρv

∂t
+

∂Πyx

∂x
+

∂Πyy

∂y
=0, (3.1c)

where

Px=
N

∑
α=0

eαx f
eq
α , (3.2a)

Py=
N

∑
α=0

eαy f
eq
α , (3.2b)

Πxx=
N

∑
α=0

eαxeαx

[

f
eq
α +

(

1− 1

2τ

)

f
neq
α

]

, (3.2c)

Πxy=
N

∑
α=0

eαxeαy

[

f
eq
α +

(

1− 1

2τ

)

f
neq
α

]

, (3.2d)

Πyx=
N

∑
α=0

eαyeαx

[

f
eq
α +

(

1− 1

2τ

)

f
neq
α

]

, (3.2e)

Πyy=
N

∑
α=0

eαyeαy

[

f
eq
α +

(

1− 1

2τ

)

f
neq
α

]

. (3.2f)

In the above equations, τ is computed by Eq. (2.7), and the lattice velocity is given by the
chosen lattice velocity model. If we define the vectors W, E and F as

W=







ρ
ρu
ρv







, E=







Px

Πxx

Πyx







, F=







Py

Πxy

Πyy







, (3.3)

then Eqs. (3.1a)-(3.1c) can be put into the following form,

∂W

∂t
+

∂E

∂x
+

∂F

∂y
=0. (3.4)
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Integrating Eq. (3.4) over a control cell Ωi gives

dWi

dt
=− 1

dVi
∑

k

(nxE+nyF)
k
dSk, (3.5)

where dVi is the volume of the control cell, and dSk is the area of the kth control surface
enclosed Ωi, nx and ny are the x and y components of the unit normal vector on the
kth control surface. Obviously, once the fluxes at all cell interfaces are known, Eq. (3.5)
can be solved by well established numerical schemes such as the 4-satge Runge-Kutta
method. Thus, the evaluation of fluxes E and F at the cell interface is the key in the
solution process.

3.2 Flux evaluation at cell interface by LBFS

Consider a cell interface between control cells Ωi and Ωi+1 as shown in Fig. 1. We need
to evaluate fluxes E and F at the interface from flow variables at 2 cell centers. As can
be seen from Eqs. (3.2a)-(3.3), to evaluate fluxes E and F, we have to know the equilib-
rium distribution functions f

eq
α and non-equilibrium distribution functions f

neq
α at the cell

interface. In the following, we will discuss how to obtain f
eq
α and f

neq
α respectively.

It is indicated in Section 2 that, to the Navier-Stokes level, f
neq
α can be approximated

by Eq. (2.17a). Now, we assume that the physical location for the two cell centers and
their interface is respectively ri, ri+1 and r. Using Taylor series expansion, we have

f
eq
α (r,t)− f

eq
α (r−eαδt,t−δt)=δt

( ∂

∂t
+eα ·∇

)

f
eq
α +O(δ2

t ). (3.6)

From Eqs. (3.6) and (2.17a), we can get the following form

f
neq
α (r,t)= f

neq
α (r−eαδt,t−δt)=−τ

[

f
eq
α (r,t)− f

eq
α (r−eαδt,t−δt)

]

+O(δ2
t ). (3.7)

Eq. (3.7) shows that once we have the equilibrium distribution functions at the cell inter-
face and its surrounding points, we can have the full information of distribution function

Figure 1: Local reconstruction of LBE solution at cell interface, W=(ρ,ρu,ρv).
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at the interface. Note that the approximation for Eq. (3.7) is the second order of accuracy

in δt. Using Eq. (2.6), the equilibrium distribution function f
eq
α can be computed from

the fluid density ρ and flow velocity u. With the given density and velocity at the cell
center, the respective density and velocity at location (r−eαδt) can be easily obtained by
interpolation. One of interpolation forms can be written as

ρ(r−eαδt)=

{

ρ(ri)+(r−eαδt−ri) ·∇ρ(ri), when r−eαδt is in the cell Ωi,

ρ(ri+1)+(r−eαδt−ri+1) ·∇ρ(ri+1), when r−eαδt is in the cell Ωi+1,
(3.8a)

u(r−eαδt)=

{

u(ri)+(r−eαδt−ri) ·∇u(ri), when r−eαδt is in the cell Ωi,

u(ri+1)+(r−eαδt−ri+1) ·∇u(ri+1), when r−eαδt is in the cell Ωi+1.
(3.8b)

With computed ρ(r−eαδt) and u(r−eαδt) by Eqs. (3.8a) and (3.8b), f
eq
α (r−eαδt,t−δt) can

be given by Eq. (2.6). Now, we are only left to determine f
eq
α (r,t) as shown in Eq. (3.7).

Again, with Eq. (2.6), the determination of f
eq
α (r,t) is equivalent to computing ρ(r,t) and

u(r,t). Using Eq. (2.3), the conservative variables ρ and ρu can be computed by

ρ(r,t)=
N

∑
α=0

fα(r,t), (3.9a)

ρ(r,t)u(r,t)=
N

∑
α=0

fα(r,t)eα , (3.9b)

where fα(r,t) is given by the lattice Boltzmann equation (2.2). As shown in Fig. 1, we can
locally apply Eq. (2.2) at the cell interface, and have

fα(r,t)= fα(r−eαδt,t−δt)−
fα(r−eαδt,t−δt)− f

eq
α (r−eαδt,t−δt)

τ
, α=0,1,··· ,N. (3.10)

Here fα(r−eαδt,t−δt) is the initial distribution function in the reconstruction process of
local LBE solver. In general, fα(r−eαδt,t−δt) consists of two parts: equilibrium part and
non-equilibrium part. That is, fα(r−eαδt,t−δt) can be written as

fα(r−eαδt,t−δt)= f
eq
α (r−eαδt,t−δt)+ f

neq
α (r−eαδt,t−δt). (3.11)

Substituting Eq. (3.11) into Eq. (3.10) gives

fα(r,t)= f
eq
α (r−eαδt,t−δt)+

(

1− 1

τ

)

f
neq
α (r−eαδt,t−δt). (3.12)

Furthermore, by substituting Eq. (3.7) into Eq. (3.12), we obtain

fα(r,t)=(1−τ) f
eq
α (r,t)+τ f

eq
α (r−eαδt,t−δt). (3.13)
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Eq. (3.13) is actually equivalent to fα(r,t)= f
eq
α (r,t)+ f

neq
α (r,t). Finally, application of com-

patibility conditions (2.3) and (2.8) gives

ρ(r,t)=
N

∑
α=0

f
eq
α (r−eαδt,t−δt), (3.14a)

ρ(r,t)u(r,t)=
N

∑
α=0

f
eq
α (r−eαδt,t−δt)eα, (3.14b)

Eqs. (3.14a) and (3.14b) show a very interesting result. That is, the conservative flow vari-
ables at the cell interface are fully determined from the equilibrium distribution functions
of particles at the surrounding points, which stream to the cell interface within a short
streaming time step δt. As equilibrium distribution functions only depend on the macro-
scopic flow variables, there is no need to store the density distribution functions for all
the time levels. In fact, at any time step, we locally construct a LBE solution at any cell in-
terface in order to evaluate fluxes there. The reconstruction process is applied locally and
repeated from one time level to another time level. Overall, the basic solution procedure
of LBFS can be summarized below:

1. At first, we have to choose a lattice velocity model such as D2Q9 model. Then
we need to specify a streaming time step δt. The choice of δt should satisfy the
constraint that the location of (r−eαδt) must be within either the cell Ωi or the cell
Ωi+1. Note that as local LBE solution is reconstructed at each cell interface, different
interfaces could use different δt. This provides a great flexibility for application if
we use non-uniform mesh or solve problems with curved boundary. Once δt is
chosen, the single relaxation parameter τ in LBFS is calculated by Eq. (2.7).

2. For the considered interface position r, identify its surrounding positions (r−eαδt),
and then use Eqs. (3.8a) and (3.8b) to compute the macroscopic flow variables at
those positions.

3. Use Eq. (2.6) to calculate the equilibrium density distribution function f
eq
α (r−eαδt,t−

δt).

4. Compute the macroscopic flow variables at the cell interface by using Eqs. (3.14a)
and (3.14b), and further calculate f

eq
α (r,t) by Eq. (2.6).

5. Calculate f
neq
α (r,t) by using Eq. (3.7).

6. Compute the fluxes at the cell interface by Eqs. (3.2a)-(3.3).

7. Once fluxes at all cell interfaces are obtained, solve ordinary differential equations
(3.5) by using 4-stage Runge-Kutta scheme.

It is noted that the present LBFS can not only be used to simulate incompressible
viscous flows, but also be applied to simulate incompressible inviscid flows. For the in-
viscid flow, we just simply set τ=0.5. Another point to note is that the time marching step
used in solving Eq. (3.5) and the streaming time step δt used in LBFS are independent. δt

can be selected differently at different location and different time level. As shown in the
following section, its effect on the solution accuracy is very little.



C. Shu, Y. Wang, C. J. Teo and J. Wu / Adv. Appl. Math. Mech., 6 (2014), pp. 436-460 447

4 Numerical results and discussion

In this section, the developed LBFS is validated by applying it to simulate some test
problems. At first, the decaying vortex problem is solved on the uniform mesh to study
the order of solution accuracy. Then the driven cavity flow is simulated. For the case
of Re = 100, numerical simulation on the uniform mesh is carried out to show that the
choice of streaming time step δt in the reconstruction of local LBE solution has no effect
on the solution accuracy. After that, numerical simulation for other Reynolds numbers
on the non-uniform mesh is presented to show flexibility and capability of LBFS on the
non-uniform grid. The comparison of computational time required by LBFS and a con-
ventional LBM is also shown. The third test problem is the flow past a circular cylinder.
On one hand, we will use this example to test the ability of LBFS for problems with
curved boundary. On the other hand, through this example, we will demonstrate that
LBFS has capability to accurately simulate both viscous and inviscid flows. Note that for
all test cases, D2Q9 lattice velocity model is adopted. For the steady flow, the following
convergence criterion is applied,

∑
ij

∣

∣

∣

(
√

u2+v2
)n+1−

(
√

u2+v2
)n
∣

∣

∣

∑
ij

(
√

u2+v2
)n+1

≤10−6. (4.1)

4.1 Simulation of decaying vortex flow

The numerical accuracy of LBFS is examined by simulating the decaying vortex flow,
which has an analytic solution given by

u(x,y,t)=−Ucos(πx/L)sin(πy/L)e−2π2Ut/(ReL), (4.2a)

v(x,y,t)=−Usin(πx/L)cos(πy/L)e−2π2Ut/(ReL), (4.2b)

ρ(x,y,t)=ρ0−
ρ0U2

4c2
s

[cos(πx/L)+sin(πy/L)]e−4π2Ut/(ReL). (4.2c)

In the present test, the computational domain of [−L,L]×[−L,L] is chosen where six
different uniform grids (N×N, N = 21,41,61,81,101 and 161) are used. The Reynolds
number is selected as Re=UL/ν=10 and the relaxation parameter τ is set as τ=0.65, ρ0

is taken as 1. The solution at t= L/U = 1 is computed and the relative error of velocity
component u is measured by L2 norm which is defined as

L2(u)retative=

√

√

√

√

1

N×N

N×N

∑
k=1

(unumerical−uexact

uexact

)

2

, (4.3)
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Figure 2: L2 norm of relative error of u versus h for the decaying vortex flow.

where unumerical and uexact represent the numerical result and the exact solution, respec-
tively. Fig. 2 shows the L2 norm of the relative error of u versus the mesh spacing in the
log scale. As can be seen, the slope of the line is 1.971 which is close to 2. This indicates
that the accuracy of the present LBFS solution is roughly the second order in space.

4.2 Simulation of lid-driven flow in a square cavity

The lid-driven flow in a square cavity is a standard test case for validating new numerical
methods in simulation of incompressible viscous lows. At first, we use this example to
simulate the flow at Re= 100 on the uniform grid of 49×49 with 5 different streaming
steps δt. The Reynolds number for the problem is defined as Re=UL/ν, where U is the
velocity of the top lid and L is the length of the square cavity.

In the present application of D2Q9 lattice velocity model, c is taken as 1. Thus the
streaming distance δx and the streaming step δt in the LBFS have the same value, that
is, δt = δx. Suppose that the mesh spacing for the uniform grid is noted as δ= 1/48. 5
streaming distances in the LBFS, that is, δx=0.1δ,0.2δ,0.3δ,0.4δ,0.5δ, are selected to study
the effect of δt. Numerical simulation shows that all 5 different streaming distances give
the same results. This can be seen clearly in Fig. 3, which depicts the velocity compo-
nent u-profile along the vertical centerline and the velocity component v-profile alone
the horizontal centerline with 5 different streaming distances. The results are also in good
agreement with available data in the literature [19, 41]. This is a very interesting result.
It clearly shows that numerical results of LBFS are independent on the choice of stream-
ing distance. It implies that the streaming distance for any interface between 2 control
cells is selective and could be different for different interfaces. This feature ensures that
the present solver could be applied easily on non-uniform and body-fitted grids which
removes the limitation of the standard LBM and makes the solver be more flexible. In
the following, we will study the performance of LBFS for the application on non-uniform
grids.
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(a) (b)

Figure 3: u (a) and v (b) velocity along vertical and horizontal centerlines at Re=100 using 5 different streaming
distances.

The non-uniform grid for the simulation of driven cavity flow can be generated by
using the following formulation,

xi =
1

2

[

1−cos
( i−1

N−1
π
)]

, i=1,2,··· ,N, (4.4a)

yj =
1

2

[

1−cos
( j−1

M−1
π
)]

, j=1,2,··· ,M, (4.4b)

where N and M are respectively the total number of mesh points in the x and y direction.
With Eq. (4.4), the non-uniform grids of 61×61 for Re=400, 81×81 for Re=1000, 121×121
for Re = 5000 and 10000 are used respectively. For these non-uniform grids, the mesh
spacing near the wall is taken very small to capture the thin boundary layer, and in the
middle region, mesh spacing is relatively large. This distribution on one hand can well
capture the physics, and on the other hand, can reduce the computational effort, espe-
cially for high Reynolds number cases. We have to indicate that when the LBM is applied
globally to solve this problem with non-uniform grids, the streaming distance in the LBE
solver is restricted by the minimum mesh spacing in the whole domain, which greatly de-
grades the computational efficiency. In contrast, in the LBFS, LBM is applied locally, and
the local streaming distance is pegged to the local mesh spacing. In other words, in the
fine mesh region, we can use a small streaming distance, while in the coarse mesh region,
we can take a larger streaming distance. As a result, less time steps and computational
effort could be needed. Table 1 compares the converged iteration numbers and run time
(s) on Lenovo Laptop (2.53GHz and 4G RAM) required respectively by LBFS and Taylor
series expansion- and least square-based lattice Boltzmann method (TLLBM) [19]. The
case is for Re=1000, and 3 non-uniform grids of 81×81, 101×101, 121×121 are used. It
can be seen clearly from Table 1 that to satisfy the convergence criterion (4.1), LBFS needs
less iteration numbers than TLLBM. In addition, the run time per iteration number by
LBFS is also less than that by TLLBM. This test case well demonstrates the computational
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Table 1: Comparison of computational time by LBFS and TLLBM for lid-driven cavity flow at Re=1000.

Grid Size
Iteration numbers Run time (s) on Lenovo Laptop (2.53GHz)
LBFS TLLBM LBFS TLLBM LBFS/TLLBM

81×81 42924 66722 130.75 471.34 27.74%
101×101 51884 76821 252.44 764.36 33.03%
121×121 60920 87356 441.69 1145.66 38.55%

Table 2: Locations of primary vortex centers at different Reynolds numbers.

Re
Vortex center

Ghia et al. [41] LBFS
400 (0.5547,0.6055) (0.5571,0.6047)

1000 (0.5313,0.5625) (0.5320,0.5662)
5000 (0.5117,0.5352) (0.5162,0.5364)

10000 (0.5117,0.5333) (0.5136,0.5323)

efficiency of LBFS.

Table 2 compares the locations of the primary vortex centers at different Reynolds
numbers obtained by LBFS with those given by Ghia et al. [41]. As shown in the table,
the vortex center moves toward the cavity center as Re increases and the maximum rela-
tive error between present solutions and those of Ghia et al. [41] is less than 0.9%. Fig. 4
displays u-velocity profile along the horizontal centerline and v-velocity profile along
the vertical centerline at Re = 400, 1000, 5000 and 10000. As can be seen from this fig-
ure, the present results agree very well with those of Ghia et al. [41]. Fig. 5 shows the
streamlines for the four Reynolds numbers. The most striking aspect of this figure is that
the Reynolds number apparently has unique effect on flow patterns. Secondary and ter-
tiary vortices appear and evolve into larger ones as Re becomes large. These results and
observations are in good agreement with those of Ghia et al. [41].

4.3 Simulation of viscous flow past a circular cylinder

Although the complex lid-driven cavity flows have been successfully simulated to vali-
date the present solver, the geometry of the cavity which only involves straight bound-
aries is nevertheless simple. To further illustrate the capability of LBFS for problems
with curved boundary, the flow past a circular cylinder is simulated. This problem is
very attractive and has been investigated extensively. There are an increasing number of
numerical and experimental results available in the literature.

The flow behaviors for this problem are characterized by the Reynolds number which
is defined as Re=U∞D/ν, where U∞ is the free stream velocity; D is the diameter of the
cylinder and ν is the kinematic viscosity of the fluid. The drag and lift coefficients are
useful parameters and commonly used to check the accuracy of numerical results. In
order to compute these two coefficients, the drag and lift forces should be computed first



C. Shu, Y. Wang, C. J. Teo and J. Wu / Adv. Appl. Math. Mech., 6 (2014), pp. 436-460 451

Re=400,61×61 Re=400,61×61

Re=1000,81×81 Re=1000,81×81

Re=5000,121×121 Re=5000,121×121

Re=10000,121×121 Re=10000,121×121

Figure 4: u and v velocity profiles along horizontal and vertical centerlines for a lid-driven cavity flow at various
Reynolds numbers.
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Re=400,61×61 Re=1000,81×81

Re=5000,121×121 Re=10000,121×121

Figure 5: Streamlines for a lid-driven cavity flow at various Reynolds numbers.

by integrating the momentum equations over the surface of the circular cylinder,

Fd=−
∮

[(

p−µ
∂u

∂x

)

nx−µ
∂u

∂y
ny

]

ds, (4.5a)

Fl =−
∮

[

µ
∂v

∂x
nx−

(

p−µ
∂v

∂y

)

ny

]

ds, (4.5b)

where Fd and Fl are the drag force and lift force respectively; n = (nx,ny), is the outer
normal vector on the cylinder surface; µ is the dynamic viscosity. Then the drag and lift
coefficients can be calculated by

Cd=
Fd

1
2 ρ∞U2

∞

, (4.6a)

Cl =
Fl

1
2 ρ∞U2

∞

. (4.6b)
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Figure 6: Typical O-type grid.

The pressure coefficient is defined as

cp=
pw−p∞

1
2 ρ∞U2

∞

, (4.7)

where ρ∞ and p∞ are the free stream density and pressure respectively, pw is the pressure
on the cylinder surface.

Another important parameter for the unsteady flow is the Strouhal number which
examines the vortex shedding frequency from the cylinder. As a non-dimensional pa-
rameter, it can be defined as

St=
fqD

U∞

. (4.8)

Here, fq is the vortex shedding frequency.
In the present study, the typical O-type structured grid is adopted which is shown

in Fig. 6. For simulation of steady and unsteady flows, the computational grids are set,
respectively, as 301×201 and 301×501. The far-field boundaries are put respectively
at 25.5 diameters and 55.5 diameters away from the center of the cylinder. In order to
well capture the boundary layer and vortex structures near the solid boundary and in
the meantime to reduce the computational cost, the grid is fine around the cylinder and
coarse near the far field. The free stream density ρ∞ is set as 1.0 and the free stream
velocity U∞ is taken as 0.1. Initially, the flow properties are set the same as the free
stream values.

Numerical simulation shows that when Re=20 and 40, the flow reaches a steady state.
The streamlines of these two cases are displayed in Fig. 7. As shown in this figure, the
streamlines are symmetric about the x axis, and a pair of stationary recirculation eddies
are attached behind the cylinder. The scales and strength of these eddies are enlarged as
the Reynolds number increases. To show geometrical quantities of the eddies, the recir-
culation length ls, which is set as the distance between the rearmost point of the cylinder
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Figure 7: Streamlines for the steady flow past a circular cylinder at Re=20,40.

and the end of the wake, and separation angle, θs, are measured. The drag coefficient Cd

is also an essential parameter for the steady flow. Table 3 gives the detailed comparison
of these three parameters between present solutions and those of previous studies (Den-
nis and Chang [42], Nieuwstadt and Keller, [43], He and Doolen, [44], Shukla et al. [45]).
Obviously, for both Reynolds numbers of 20 and 40, the present results agree well with
the solutions in the literature. To further demonstrate the performance of present solver,
the pressure coefficient distribution around the cylinder surface at Re = 40 is depicted
in Fig. 8. The numerical solutions obtained by interpolation-based LBM on curvilinear
coordinates of He and Doolen [44] and the experimental data of Park et al. [46] are also
included in this figure. The orientation angle θ is measured in degree from the leading
stagnation point to the trailing stagnation point. Due to the fact that the flow flied is sym-
metric about the x-axis, only the pressure coefficient distribution on the upper surface of
the cylinder is shown. As can be seen in the figure, good agreement between the present
results and those of previous studies is achieved.

For the case of Re=100 and 200, the flow is unsteady and eventually reaches a periodic
state. The temporal evolution of the lift and drag coefficients of Re=100, 200 is shown in
Fig. 9. As can be seen from this figure, both the lift and drag coefficients show periodic

Table 3: Comparison of drag coefficient, recirculation length and separation angle for steady flow past a circular
cylinder at Re=20,40.

Re References Cd ls/D θs

20

Dennis and Chang [42] 2.05 0.94 43.7
Nieuwsdadt and Keller [43] 2.053 0.893 -
He and Doolen [44] 2.152 0.921 42.96
Shukla et al. [45] 2.07 0.92 43.3
Present 2.062 0.935 42.94

40

Dennis and Chang [42] 1.52 2.35 53.8
Nieuwsdadt and Keller [43] 1.54 2.18 -
He and Doolen [44] 1.499 2.245 52.84
Shukla et al. [45] 1.55 2.34 52.7
Present 1.53 2.240 52.69
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Figure 8: Comparison of pressure coefficient distribution on cylinder surface at Re=40.

(a) (b)

Figure 9: Evolution of lift and drag coefficients for the flow past a cylinder at Re=100 and 200.

(a) (b)

Figure 10: Instantaneous streamlines for unsteady flow past a circular cylinder at Re=100 and 200.

feature and the period of the lift coefficient is twice of that of drag coefficient for the two
Reynolds numbers. The periodic distribution clearly shows that the flow field reaches the
periodic state. Table 4 shows the quantitative comparison of the lift and drag coefficients
as well as the Strouhal number. It can be seen from this table that, the present results
are compared well with those of Braza et al. [47], Benson et al. [48] and Ding et al. [49].
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Table 4: Comparison of dynamic parameters for unsteady flow past a circular cylinder at Re=100,200.

Re References Cl Cd St

100

Braza et al. [47] ±0.30 1.28 ±0.02 0.16
Benson et al. [48] ±0.38 1.46 ±0.01 0.17
Ding et al. [49] ±0.28 1.325 ±0.008 0.164
Present ±0.33 1.334 ±0.009 0.164

200

Braza et al. [47] ±0.78 1.38 ±0.07 0.19
Benson et al. [48] ±0.65 1.45 ±0.04 0.193
Ding et al. [49] ±0.60 1.327 ±0.045 0.196
Present ±0.69 1.338 ±0.045 0.197

Another distinctive feature of the results in Table 4 is that, the effect of Reynolds number
from 100 to 200 on the mean values of both lift and drag coefficients is not obvious, but
the effect on amplitude of these coefficients is substantial. This feature could also be seen
from Fig. 9. Fig. 10 depicts the instantaneous flow flied. As shown in this figure, the
well-known Karman vortex street can be clearly seen from the streamlines.

4.4 Simulation of inviscid flow past a circular cylinder

It is well known that the standard LBM is only applicable for the viscous flow due to
stability condition, that is, τ cannot be taken as 0.5. As shown in Eqs. (3.2a)-(3.2f), in the
present LBFS, when τ is set as 0.5, the contribution from the non-equilibrium distribution
function is vanished, and only the equilibrium distribution function has contribution to
the flux calculation. In fact, the present LBFS can be well applied to both viscous and
inviscid flows. The performance of LBFS for simulation of viscous flows has been tested
for the decaying vortex flow, driven cavity flow and the flow past a circular cylinder. In
the following, we will further test LBFS for simulation of inviscid flows by setting τ=0.5.

The test problem we consider is the inviscid flow past a circular cylinder. Since there
is no boundary layer around the cylinder surface for this case, the computational grid
used is much coarser than that for the viscous flow. In the present simulation, the grid
size of 121×51 is used. The far-field boundary is taken 20.5 diameters away from the
geometrical center of the cylinder. The no-penetration condition is applied at the cylinder
surface.

Fig. 11 shows the pressure coefficient distribution around the cylinder surface. Also
included in the figure is the theoretical result. The horizontal axis is the orientation an-
gle θ which is measured from the trailing stagnation point along the counterclockwise
direction. As shown in Fig. 11, good agreement is achieved between the present result
and theoretical solution. The streamlines past the circular cylinder are depicted in Fig. 12,
which clearly shows that the streamlines pass through the cylinder smoothly and no vor-
tex emerges. This feature for inviscid flows is quite different from that for viscous flows.
Fig. 13 shows the pressure flied for this inviscid flow. As can be seen from the figure, the
pressure field is basically symmetric about x axis and y axis. All these observations agree
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Figure 11: Comparison of pressure coefficient distribution on cylinder surface for the inviscid flow past a circular
cylinder.

Figure 12: Streamlines of the inviscid flow past a circular cylinder.

Figure 13: Pressure contours for the inviscid flow past a circular cylinder.

well with theoretical results. This well demonstrates the capability of LBFS for simulation
of inviscid flows.
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5 Conclusions

In this paper, a lattice Boltzmann flux solver (LBFS) is presented for simulation of incom-
pressible viscous and inviscid flows. The work is based on Chapman-Enskog expansion
analysis, which links Navier-Stokes equations and lattice Boltzmann equation. By apply-
ing the finite volume method to discretize the Navier-Stokes equations recovered from
lattice Boltzmann equation through the Chapman-Enskog analysis, the conservative flow
variables at cell centers can be updated by marching in time. The key step in LBFS is to
evaluate the inviscid and viscous fluxes simultaneously at cell interface by local recon-
struction of LBE solution within a short streaming step from macroscopic flow variables
at cell centers.

The present LBFS is well validated by its application to simulate the viscous decay-
ing vortex flow, the driven cavity flow and the flow past a circular cylinder, as well as
the inviscid flow past a circular cylinder. Numerical results show that LBFS has the
second order of accuracy in space, and the selected streaming distance in local recon-
struction of LBE solution has no effect on the solution accuracy. For the driven cavity
flow at Re=1000, when the same non-uniform mesh is used, LBFS requires less iteration
numbers and about one-third of computational time on Lenovo Laptop (2.53GHz and 4G
RAM) than the Taylor series expansion- and least square-based lattice Boltzmann method
(TLLBM). The solver can be well applied to problems with non-uniform mesh and curved
boundary. It can also be used to simulate both the viscous and inviscid flows. It is be-
lieved that LBFS has a great potential for solving various incompressible flow problems
in practice.
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