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A SIMPLE PROOF OF THE COMPLETE CONSENSUS OF

DISCRETE-TIME DYNAMICAL NETWORKS

WITH TIME-VARYING COUPLINGS

YOUNG-PIL CHOI AND SEUNG-YEAL HA

Abstract. We discuss the complete consensus problem of the discrete-time dynamical networks
with time-varying couplings, and provide a simple analytic proof for the emergence of asymptotic
complete consensus. Our approach is based on the ”energy estimate argument” and connectivity
of the communication topology. As direct application of our main results, we obtain asymptotic
complete consensus for the discrete-time Kuramoto model with local communication topology.
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1. Introduction

Consensus problem as a dynamic feature of complex networks is an active recent
subject in many different disciplines such as computer sciences, statistical physics,
mathematics, biology, communications and control theory, etc. due to its engineer-
ing applications in the formation controls of robots, unmanned aerial vehicles and
sensor networks [4], [7]. Complete consensus means a status reaching an agreement
regarding certain information of interest that depends on the state of all agents.
Consensus algorithm is a dynamic interaction rule regulating the mutual informa-
tion exchange between agents. In reality, information can be exchanged through
direct communication or sensing. Communication link between agents is change-
able due to the failure of sensing, and range limitations. Hence we need to consider
the dynamically changing communication topology for real applications, e.g. non-
linear interactions between consensus dynamics and dynamically changing network
structures in biological networks. In this paper, we consider the following consensus
algorithm:

(1.1) ωi(t+ h) = ωi(t) +
λh

N

N
∑

j=1

cji(t)F(ωj(t)− ωi(t)), 1 ≤ i ≤ N,

where ωi is the information of i-th agent, t is a discrete time h, 2h, · · · and F
is the state coupling function denoting the interaction rule between agents. The
time-varying network structure is monitored by the communication matrix C(t) :=
(cij(t)).

We next briefly review the related theoretical works on the consensus problem for
networks with time-varying topologies; Tsitsiklis-Bertsekas-Athans [12] developed a
pioneering work on the distributed computation over networks in computer science,
and Jadbabaie et al [3] provide a theoretical explanation for the convergence to the
Viscek type heading alignment model [13] with time-varying topologies in the realm
of flocking context. This Jadbabaie’s seminal work has been further generalized in
several following literature, for instance, for the undirected information flow, Fax
and Murray [2], Olfati-Saber and Murray [10], whereas for a directed information
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flow, Moreau [6], Ren and Beard [8] and Tanner-Jadbabaie-Pappas [11], Fang and
Antsaklis [1], etc. In these previous literature, the consensus analysis is mostly
based on ”algebraic method” such as the matrix theory and spectral graph theory
to estimate the second eigenvalue(algebraic connectivity) (see [9] for a detailed
review).

The purpose of this paper is to present a simple elementary approach for the
asymptotic complete consensus based on the energy type estimates. Our proposed
approach do not use any explicit spectral information on the eigenvalues. Instead,
it is mainly dependent on the elementary inequalities and energy production rates
resulting from the basic energy estimates (see Theorem 3.1 and 3.2 in Section 3).

This paper is divided into four sections after this introduction. In Section 2, we
present a framework for the asymptotic consensus and several a priori estimates.
In Section 3, we present a rigorous complete consensus estimate for the proposed
consensus model. In Section 4, we apply main results in Section 3 to the discrete-
time Kuramoto model. Finally Section 5 is devoted to the summary of main results,
comparison with previous literature and future directions.

2. Preliminaries

In this section, we provide a framework on the complete consensus, and present
several a priori estimates for the discrete-time system (1.1).

Let ωi be the information state of i-th agent whose continuous-time dynamics is
governed by the system with time-dependent communications:

(2.1)
dωi

dt
=

λ

N

N
∑

j=1

cji(t)F(ωj − ωi), 1 ≤ i ≤ N,

where λ is a positive coupling constant and cji = cji(t) is a nonnegative function
denoting the communication weight carried from j-th agent to i-th agent, moreover
F is an odd coupling function. The standard discretization procedure for (2.1)
reduces to the discrete-time dynamical model (1.1). To relate the communication
topology with energy estimates, we associate the system (1.1) with the dynamic
graph G(t) = (V , E(t)) at t = nh ≥ 0:

V : the set of all nodes,
E(t) : the set of all pairs (i, j) ∈ V × V with cij > 0.

2.1. A framework for complete consensus. In this part, we list main assump-
tions on the communication topology and the coupling function:

• (H1) The switching communication topology C(t) = (cij(t)), t = nh is
symmetric and bounded:

cij(t) = cji(t) ≤ Cu < ∞, ∀ i, j, t, Cl := inf
i,j,t

{cij(t) : cij(t) > 0} > 0.

• (H2) The accumulative switching communication topologies contains infin-
itely often completely connected paths in the sense that for some divergent
sequence {Ti}∞i=1,

1 ≤ T1 < T2 < · · · < Tn → ∞,

∪
Ti+1

j=Ti
E(j) contains a connected path,

i.e., every two nodes in V can be reachable from each other in the time
interval [Ti, Ti+1).
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• (H3) The state coupling function F : Rd → R
d is a continuous function

satisfying the following properties: For a given ω ∈ R
d,

(i) F(ω) = −F(−ω), F(ω) · ω ≥ 0.
(ii) There exist positive constants Kl and Ku such that

||F(ω)|| ≤ Ku||ω||, F(ω) · ω ≥ Kl||ω||
2.

We next briefly discuss the above assumptions. The condition (H1) has been em-
ployed in previous literature [3]. This symmetric property of the communication
topology C is rather restricted, but is essential in the energy estimate in Section
3. For the assumption (H2), it is well-known that the existence of connected paths
in C is a sufficient condition to ensure the asymptotic consensus (see [3]). On
the other hand, the condition (H3) means the coupling function F has at most
sublinear growth. For the simplicity of notation, we set

ω(n) := ω(nh), n ≥ 0.

2.2. Basic a priori estimates. We set the first three moments mi as follows:
For n ≥ 0,

m0(n) :=

N
∑

i=1

1 = N, m1(n) :=

N
∑

i=1

ωi(n), m2(n) :=

N
∑

i=1

||ωi(n)||
2.

Lemma 2.1. Suppose the main assumptions (H1)−(H3) hold, and we also assume
the time-step size h satisfies

λhK2
uCu < Kl.

Let ωi be the solution to the system (1.1). Then the first and second moments
mi, i = 1, 2 satisfy

(i) m1(n+ 1) = m1(n).

(ii) m2(n+ 1) +
λh

N

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣

N
∑

i,j=1

cji(n)||ωj(n)− ωi(n)||
2 ≤ m2(n).

Proof. (i) For the conservation of m1, we first establish

m1(n+ 1) = m1(n) +
λh

2N

∑

1≤i,j≤N

(cji − cij)F(ωj(n)− ωi(n)).

We add the equation (1.1) with respect to n to find

m1(n+ 1) =

N
∑

i=1

ωi(n+ 1)

=

N
∑

i=1

ωi(n) +
λh

N

∑

1≤i,j≤N

cjiF(ωj(n)− ωi(n))

= m1(n) +
λh

2N

∑

1≤i,j≤N

(cji − cij)F(ωj(n)− ωi(n)).

We now use the symmetric property cij = cji to find

m1(n+ 1) = m1(n).

(ii) It follows from (1.1) that

m2(n+ 1) = m2(n) +
2λh

N

N
∑

i,j=1

cji(n)ωi(n) · F(ωj(n)− ωi(n))
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+
(λh)2

N2

N
∑

i,j,k=1

cji(n)cki(n)F(ωj(n)− ωi(n)) · F(ωk(n)− ωi(n))

:= m2(n) + I1(n) + I2(n).

We next estimate the terms Ii, i = 1, 2 separately.
Case 1 (I1): By direct calculation, we have

I1 =
2λh

N

N
∑

i,j=1

cji(n)ωi(n) · F(ωj(n)− ωi(n))

= −
2λh

N

N
∑

i,j=1

cji(n)ωj(n) · F(ωj(n)− ωi(n))

= −
λh

N

N
∑

i,j=1

cji(n)(ωj(n)− ωi(n)) · F(ωj(n)− ωi(n))

≤ −
λhKl

N

N
∑

i,j=1

cji(n)||ωj(n)− ωi(n)||
2.

Case 2 (I2): By direct calculation, we have

|I2| ≤
(λh)2K2

u

N2

N
∑

i,j,k=1

cji(n)cki(n)||ωj(n)− ωi(n)||||ωk(n)− ωi(n)||

≤
(λh)2K2

u

2N2

N
∑

i,j,k=1

(

c2ji(n)||ωj(n)− ωi(n)||
2 + c2ki(n)||ωk(n)− ωi(n)||

2
)

≤
(λh)2K2

uCu

N

N
∑

i,j=1

cji(n)||ωj(n)− ωi(n)||
2.

We finally combine the estimates for I1 and I2 to find the desired results. �

3. Asymptotic consensus estimates

In this section, we present asymptotic complete consensus estimates under the
”spatial-temporal connectivity” assumption (H2). For the case of the space-time
connectivity assumption (H2) and the time interval Ti − Ti−1 > 1, we show that
the states ωi and ωj become asymptotically equal as time goes on.

3.1. Asymptotic consensus estimate I. Before we present a asymptotic con-
sensus estimate without decay rate, we first study a vertical estimate which controls
the time-variation in terms of spatial estimates.

Lemma 3.1. (Vertical estimate) In each time zone [Tn−1, Tn), time-variation of
fluctuations is uniformly bounded by the spatial variations, more precisely, we have

Tn−1
∑

k=Tn−1+1

N
∑

i=1

||ωi(k)−ωi(k−1)||2 ≤
(λhCuKu)

2

N

Tn−1
∑

k=Tn−1+1

∑

(i,j)∈E(k)

||ωj(k)−ωi(k)||
2.

Proof. For i ∈ {1, · · · , N} and 1 ≤ k ≤ Tn − Tn−1 − 1, we use the system (1.1) to
find

||ωi(Tn−1 + k)− ωi(Tn−1 + k − 1)||

≤
λhCuKu

N

∑

j∈Ei(Tn−1+k−1)

||ωj(Tn−1 + k − 1)− ωi(Tn−1 + k − 1)||.
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where Ei(t) := {j : (j, i) ∈ E(t)}.
We next square the above inequality to find

||ωi(Tn−1 + k)− ωi(Tn−1 + k − 1)||2

≤
(λhCuKu)

2

N

∑

j∈Ei(Tn−1+k−1)

||ωj(Tn−1 + k − 1)− ωi(Tn−1 + k − 1)||2.

Here we used the fact that

(

M
∑

k=1

|ak|
)2

≤ M

M
∑

k=1

|ak|
2, |Ei(Tn−1 + k − 1)| ≤ N.

Finally we take a sum with respect to i ∈ {1, · · · , N} and 1 ≤ k ≤ Tn − Tn−1 − 1
to get

Tn−1
∑

k=Tn−1+1

N
∑

i=1

||ωi(k)−ωi(k−1)||2 ≤
(λhCuKu)

2

N

Tn−1
∑

k=Tn−1+1

∑

(i,j)∈E(k)

||ωj(k)−ωi(k)||
2.

�

Theorem 3.1. Suppose the main assumptions (H1) − (H3) hold, and we assume
that the parameters satisfy

(3.1) λhK2
uCu < Kl.

Let ωi be the global solution to the system (1.1). Then for each i, j, we have

lim
n→∞

||ωi(n)− ωj(n)|| = 0.

Proof. By the assumption (3.1) and Lemma 3.1, we have

(3.2) m2(k + 1) +
λh

N

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣

N
∑

i,j=1

cji(k)||ωj(k)− ωi(k)||
2 ≤ m2(k).

We now iterate the above relation (3.2) with respect to k = 0, · · · , n to find

m2(n+ 1) +
λhCl

N

∣

∣

∣
Kl − λhK2

i Cu

∣

∣

∣

n
∑

k=0

∑

(i,j)∈ E(k)

||ωj(k)− ωi(k)||
2 ≤ m2(0).

By letting n → ∞, we have

λhCl

N

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣

∞
∑

k=0

∑

(i,j)∈ E(k)

||ωj(k)− ωi(k)||
2 < ∞.

In particular, this yields

(3.3) lim
n→∞

Tn+1−1
∑

k=Tn

∑

(i,j)∈ E(k)

||ωj(k)− ωi(k)||
2 = 0.

Let (i, j) be any pair of nodes, and n ≫ 1. Then since ∪
Tq+1−1
k=Tq

E(k), q ≥ 0 contains

a completely connected path, for each i, j, there exist m such that

n ∈ [Tm, Tm+1),
i = i0, i1, · · · iM = j, n := t0, t1, · · · tM = n satisfying
ωi(n) = ωi0(t0) → ωi1(t1) → · · · → ωiM (tM ) = ωj(n),
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where ik and tk may not be different each other. Then by the standard triangle

inequality, elementary inequality
(

∑M

k=1 |ak|
)2

≤ M
∑M

k=1 |ak|
2, and Lemma 3.1,

we have

||ωi(n)− ωj(n)||
2 ≤ M

M
∑

l=1

||ωil(tl)− ωil−1
(tl−1)||

2

≤ O(1)

Tm+1−1
∑

k=Tm

∑

(i,j)∈E(k)

||ωj(k)− ωi(k)||
2,

(3.4)

where O(1) is a bounded constant depending on M,λ, h, Cu, N but independent of
n. Let ε be given, then there exists a positive integer L = L(ε) ≫ 1 such that

n ≥ L(ε) =⇒

Tm+1−1
∑

k=Tm

∑

(i,j)∈ E(k)

||ωj(k)− ωi(k)||
2 < ε.

Hence for sufficiently large n, the estimate (3.4) implies

||ωi(n)− ωj(n)||
2 ≤ O(1)ε, i.e., lim

n→∞
||ωi(n)− ωj(n)|| = 0.

�

Remark 3.1. Note that the assumption (3.1) is not restrictive since the time-step
size h can be chosen to be sufficiently small so that

λh ≪ 1.

3.2. Asymptotic consensus estimate II. In this part, we consider the special
situation of (H2) which is

Tn = nh,

so that the communication topology is connected at each instant t = nh (the
symmetry and existence of a spanning tree imply the connectivity of C(n) =
(cij(n)): For each i, j and n, there is a shortest directed path from i to j satis-
fying

(3.5) (H2)′ : i = k0 → k1 → · · · → kdij
= j, (kl, kl+1) ∈ E(n).

We set dij(n) to be the smallest length among all directed path from i to j at time
t = nh. We set the diameter of the communication matrix C = (cij) by

diam(C(n)) := max
1≤i,j≤N

dij(n).

Then it is easy to see that

diam(C(n)) ≤ N.

Lemma 3.2. (Horizontal estimate) Suppose the spatial connectivity assumption
(H2)′ holds. Then there exists a positive constant Kc such that for each n,

Kc(n)
∑

1≤l,k≤N

||ωl(n)−ωk(n)||
2 ≤

∑

(l,k)∈ E(n)

||ωl(n)−ωk(n)||
2 ≤

∑

1≤l,k≤N

||ωl(n)−ωk(n)||
2.

where the positive constant Kc(n) is given by the following relation:

(3.6) Kc(n) :=
1

1 + diam(C(n))(N − |E(n)|)
≥

1

1 +N2
.
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Proof. We first show that for any (l, k) ∈ Ec(n),

||ωl − ωk||
2 can be controlled by the quantity

∑

(l,k)∈ E(n)

||ωl − ωk||
2.

For such a pair (l, k) ∈ Ec(n), we can find the shortest path from l to k, for example,

l = i0 → · · · → im = k, cijij+1 6= 0, j = 0, · · · ,m− 1.

We now use the standard triangle inequality to see

||ωl − ωk|| ≤ ||ωi0 − ωi1 ||+ ||ωi1 − ωi2 ||+ · · ·+ ||ωim−1 − ωim ||.

This yields

||ωl − ωk||
2 ≤ m(||ωi0 − ωi1 ||

2 + ||ωi1 − ωi2 ||
2 + · · ·+ ||ωim−1 − ωim ||2)

≤ diam(C(n))(||ωl − ωi1 ||
2 + ||ωi1 − ωi2 ||

2 + · · ·+ ||ωim−1 − ωk||
2)

≤ diam(C(n))
∑

(l,k)∈E(n)

||ωl − ωk||
2.

We now sum over all pairs (l, k) ∈ Ec(n) to find

(3.7)
∑

(l,k)∈Ec(n)

||ωl − ωk||
2 ≤ diam(C(n))|Ec(n)|

∑

(l,k)∈E(n)

||ωl − ωk||
2.

We use the above estimate (3.7) to obtain
∑

1≤k,l≤N

||ωl − ωk||
2 =

∑

(l,k)∈E(n)

||ωl − ωk||
2 +

∑

(l,k)∈Ec(n)

||ωl − ωk||
2

≤ (1 + diam(C(n))|Ec(n)|)
∑

(l,k)∈E(n)

||ωk − ωl||
2.

Therefore we have
∑

(l,k)∈E(n)

||ωl − ωk||
2 ≥

1

1 + diam(C(n))|Ec(n)|

∑

1≤l,k≤N

||ωl − ωk||
2.

�

We introduce an average quantity and fluctuations around it as follows.

ωc(n) :=
1

N

N
∑

i=1

ωi(n), ω̂i(n) := ωi(n)− ωc(n), m̂2(n) :=

N
∑

i=1

||ω̂i(n)||
2.

In the following theorem, we show that the asymptotic consensus occurs for any
initial configurations as long as the communication topology is symmetric and con-
nected at each instant.

Theorem 3.2. Suppose the main assumptions (H1), (H2)′ and (H3) hold, and the
parameters satisfy

λhK2
uCu < Kl.

Let ωi be the global solution to the system (1.1). Then we have an exponential
asymptotic consensus:

m̂2(n) ≤ m̂2(0)e
−Kdn, n ≥ 0,

where Kd is a positive constant explicitly defined by

Kd := 2λhKcCl

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣
.
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Proof. It follows from Lemma 2.1 that

m̂2(n+ 1) +
λhCl

N

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣

∑

(i,j)∈E(n)

||ω̂j(n)− ω̂i(n)||
2 ≤ m̂2(n).

We use the above inequality and Lemma 3.2 to find

m̂2(n+ 1) +
λhKc(n)Cl

N

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣

∑

1≤i,j≤N

||ω̂j(n)− ω̂i(n)||
2 ≤ m̂2(n).

On the other hand, note that the first moment of ω̂i is zero, hence we have
∑

1≤i,j≤N

||ω̂j(n)− ω̂i(n)||
2 = 2Nm̂2(n).

This yields

m̂2(n+ 1) ≤ m̂2(n){1− 2Kc(n)λhCl(Kl − λhK2
uCu)}.

We iterate the above inequality to obtain the following estimate:

m̂2(n) ≤ m̂2(0)(1−Kd)
n

≤ m̂2(0)e
−Kdn,

where we used an inequality 1 − x ≤ e−x, x ≥ 0 and Kd is a positive constant
defined by

Kd := 2λhKcCl

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣
≥

2λhCl

1 +N2

∣

∣

∣
Kl − λhK2

uCu

∣

∣

∣
.

�

4. A discrete-time Kuramoto model with local communication topology

In this section, we show that how the consensus estimates in previous section can
be applied to a physical model arising from synchronization problem in statistical
physics.

Consider the discrete-time Kuramoto model with local communication topology
[5]: For i = 1, · · · , N, n = 0, 1, · · · ,

(4.1) θi(n+ 1) = θi(n) +
λh

N

N
∑

j=1

cji(n) sin(θj(n)− θi(n)).

We define maximal and minimal phase indices M(n) and m(n) at time t = nh:

θM(n)(n) := max
1≤i≤N

θi(n), θm(n)(n) := min
1≤i≤N

θi(n),

Dθ(n) := θM(n)(n)− θm(n)(n).
(4.2)

Before we present a complete phase synchronization estimate, we consider the mono-
tonicity of extremal fluctuations.

Lemma 4.1. Suppose that the parameters λ, h and the communication topology
(cji), initial configurations satisfy

(i) 0 < λh < 1, cji(n) ∈ {0, 1}.
(ii) Dθ(0) < π.

Then we have

sup
n≥0

Dθ(n) ≤ Dθ(0).
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Proof. (Proof by induction): Suppose that the size of Dθ(n) satisfies

Dθ(n) < π.

Then we will show that

Dθ(n+ 1) ≤ Dθ(n).

For this, we consider the evolution of θM(n) and θm(n) separately.
Case 1: We will show

θM(n+1)(n+ 1) ≤ θM(n)(n).

Without loss of generality, we may assume

θM(n+1)(n+ 1) 6= θM(n)(n).

We next consider two cases:

Either θM(n+1)(n) = θM(n)(n) or θM(n+1)(n) 6= θM(n)(n).

Subcase 1.1: Suppose θM(n+1)(n) = θM(n)(n). It follows from (4.1) that

θM(n+1)(n+ 1) = θM(n+1)(n) +
λh

N

N
∑

j=1

cjM(n+1)(n) sin(θj(n)− θM(n+1)(n)).

We now replace θM(n+1)(n) by θM(n)(n) to find

θM(n+1)(n+ 1)− θM(n)(n) =
λh

N

N
∑

j=1

cjM(n+1)(n) sin(θj(n)− θM(n)(n)) ≤ 0.

Since −π ≤ θj(n)− θM(n)(n) ≤ 0, the above relation yields

θM(n+1)(n+ 1) ≤ θM(n)(n).

Subcase 1.2: Suppose θM(n+1)(n) 6= θM(n)(n).
If θM(n+1)(n+ 1) > θM(n)(n), then

θM(n)(n) < θM(n+1)(n+ 1)

= θM(n+1)(n) +
λh

N

N
∑

j=1

cjM(n+1)(n) sin(θj(n)− θM(n+1)(n)).

This yields

0 < θM(n)(n)− θM(n+1)(n)

<
λh

N

N
∑

j=1

cjM(n+1)(n) sin(θj(n)− θM(n+1)(n))

=
λh

N

∑

j∈NM(n+1)(n)

sin(θj(n)− θM(n+1)(n)),

(4.3)

where the set NM(n+1)(n) is the communication neighbor of M(n + 1) at time
t = nh:

NM(n+1)(n) = {j ∈ {1, · · · , N} | cjM(n+1)(n) = 1}.

On the other hand, we set

D(n) = {j ∈ {1, · · · , N} | θj(n)− θM(n+1)(n) ≥ 0}.

Then it is easy to see that

|NM(n+1)(n) ∩ D(n)| ≤ N.
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We now return to (4.3):

0 < θM(n)(n)− θM(n+1)(n)

=
λh

N

∑

j∈NM(n+1)(n)∩D(n)

sin(θj(n)− θM(n+1)(n))

≤
λh

N

∑

j∈NM(n+1)(n)∩D(n)

(θj(n)− θM(n+1)(n)) using sinx ≤ x for x ≥ 0

≤
λh

N

∑

j∈NM(n+1)(n)∩D(n)

(θM(n)(n)− θM(n+1)(n))

=
λh

N
|NM(n+1)(n) ∩D(n)|(θM(n)(n)− θM(n+1)(n)) ≤ (λh)(θM(n)(n)− θM(n+1)(n)).

In conclusion, we have

0 < θM(n)(n)−θM(n+1)(n) ≤ (λh)(θM(n)(n)−θM(n+1)(n)) < θM(n)(n)−θM(n+1)(n).

This gives a contradiction. Therefore we have

θM(n+1)(n+ 1) ≤ θM(n)(n).

By induction, we also have

θM(n)(n) ≤ θM(0)(0).

Case 2: By the similar arguments as in Case 1, we have

θm(n)(n) ≥ θm(0)(0).

Hence Case 1 and Case 2 yield

θM(n+1)(n+ 1) ≤ θM(n)(n), θm(n+1)(n+ 1) ≥ θm(n)(n),

i.e., we have

Dθ(n+ 1) = θM(n+1)(n+ 1)− θm(n+1)(n+ 1) ≤ θM(n)(n)− θm(n)(n) = Dθ(n).

Hence if Dθ(n) < π, then

Dθ(n+ 1) ≤ Dθ(n) < π.

This again implies

Dθ(n) ≤ Dθ(0), for all n.

�

Lemma 4.2. Suppose that the parameters λ, h and the communication topology
(cji), and initial configurations satisfy

(i) cji(n) ∈ {0, 1}.
(ii) 0 < λh < 1, Dθ(0) < π.

Then we have

(θj(n)− θi(n)) sin(θj(n)− θi(n)) ≥
sinDθ(0)

Dθ(0)
|θj(n)− θi(n)|

2.

Proof. Without loss of generality, we assume

θj(n)− θi(n) ≥ 0.

Then it follows from Lemma 4.1 that

0 ≤ θj(n)− θi(n) ≤ Dθ(n) ≤ Dθ(0) < π.
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Hence we have

sin(θj(n)− θi(n)) ≥
sinDθ(0)

Dθ(0)
(θj(n)− θi(n)) ≥ 0.

This again yields the desired result. �

Lemma 4.1 and 4.2 yield the following proposition.

Proposition 4.1. Suppose that the parameters and initial configurations satisfy

(i) 0 < λh < 1, Dθ(0) < π.

(ii) cji(n) ∈ {0, 1}, and (cji(n)) is spatial-temporal connected as in (H2).

Then we have asymptotic complete consensus:

lim
n→∞

|θi(n)− θj(n)| = 0.

Proof. We apply Theorem 3.1 with

Cl = 1, Cu = 1, Ku = 1, Kl =
sinDθ(0)

Dθ(0)
< 1,

to get the desired result. �

5. Conclusion

In this paper, we presented a simple alternative approach for the asymptotic
complete consensus based on the energy type estimates. For the case of spatial-
temporal connected communication topology, we show that two states of different
agents approach to the consensus along divergent time sequences. In contrast,
for the case of spatial connected topology, the asymptotic consensus occurs ex-
ponentially fast. We have applied our estimates to the discrete-time Kuramoto
model. Since our estimates are simply based on energy estimates, we do not need
any conventional spectral information on the communication topology. Under the
spatial-temporal connected condition on the communication topology, we recover
the well-known Jadbabaie-Lin-Morse’s type consensus theorem in [3]. Although
our approach in present form do not give new results, but we believe our simple
approach can be useful for other consensus problems.
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