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Abstract. We explore the stability of matching boundary conditions in one space di-
mension, which were proposed recently for atomic simulations (Wang and Tang, Int.
J. Numer. Mech. Eng., 93 (2013), pp. 1255–1285). For a finite segment of the linear
harmonic chain, we construct explicit energy functionals that decay along with time.
For a nonlinear atomic chain with its nonlinearity vanished around the boundaries,
an energy functional is constructed for the first order matching boundary condition.
Numerical verifications are also presented.
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1 Introduction

Atomic and multiscale computations are widely used in materials science and engineer-
ing, where the atomic dynamics are resolved only over a subdomain much smaller than
the complete underlying systems [8]. As artificial boundaries are introduced numeri-
cally, spurious wave reflections may appear, propagate backward and corrupt the local
physics. Effective boundary or interfacial conditions are thus crucial for fidel simulations.
A class of time history treatments provide exact conditions in linear lattices, yet convolu-
tions cause heavy computing load and considerably reduce the efficiency [1–3,13,14,17].
In addition, they are not exact and sometimes even not applicable for nonlinear lattices,
and the kernel functions in a finite computing domain are difficult to obtain in multiple
dimensions [9]. In view of these complexities, local approximate boundary treatments
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have been proposed, such as the perfect matched layer method [10, 16], the velocity in-
terfacial conditions [11], and the matching boundary conditions [18]. While the effec-
tiveness for these treatments has been demonstrated numerically, rigorous mathemati-
cal proof for the stability are widely open, except for a lowest order velocity interfacial
condition [4, 11]. We notice that a semi-discrete finite difference scheme of a wave equa-
tion shares the same form with the dynamical equations for atomic chains. For such a
scheme, there are studies on stability for boundary treatments, such as the Gustafsson-
Kreiss-Sundström theory. However, this theory is based on a wave view for semi-infinite
domain, hence only one-sided boundary conditions have been treated [15]. It does not
apply to a finite segment of an atomic chain in general. In fact, stability of a finite seg-
ment can be a delicate issue, and stability for semi-infinite chain may not imply that for
a finite segment [12].

In this work, we establish the stability for several matching boundary conditions on
a finite segment of an atomic chain. This class of boundary conditions were proposed
by matching the dispersion relation of a linear lattice. They are local in both space and
time, hence allow extension to nonlinear lattices by local linearization. Furthermore, for
multiple dimensions, the square, triangular, face-centered-cubic and body-centered-cubic
lattices have been successfully treated through operator multiplication of such conditions
at several selected incident angles [5, 6, 18]. Numerical tests and applications have ver-
ified the effectiveness, with reflections well suppressed. For MBC1, MBC2 and MBC3
shown in the next section, we construct energy functionals that decay along with time.
These energies, as we shall see afterwards, induce semi-norms. Up to a linear dilation,
the atomic chain with these boundary conditions equilibrates. Stability of MBC1 is also
established for a nonlinear chain.

The rest of this paper is organized as follows. In Section 2, we describe these matching
boundary conditions. Energy functionals for the linear lattice are constructed and veri-
fied in Section 3. An energy functional is constructed in Section 4 for nonlinear chains.
Some concluding remarks are made in Section 5.

2 Matching boundary conditions

We consider a one-dimensional chain with nearest neighbor interaction. For the k-th
atom, its displacement away from equilibrium is denoted by uk(t). The total potential of
the chain consists of pair-wise potentials Jl+1/2(ul+1−ul). With a uniform mass m, the
dynamics is governed by the Newton equations.

mük=−∇uk

[

∑
l

Jl+1/2(ul+1−ul)
]

= J′k+1/2(uk+1−uk)− J′k−1/2(uk−uk−1), k∈Z. (2.1)

For a harmonic chain, we have Jl+1/2(ul+1−ul) = κ(ul+1−ul)
2/2, where κ is the elastic

constant. Hence the Newton equations read

mük =κ(uk+1−2uk+uk−1), k∈Z. (2.2)
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Figure 1: Reflection coefficients for matching boundary conditions. The horizontal axis represents the wave
number, and the vertical axis represents the reflection coefficient.

We rescale time by
√

m/κ, and recast the system into

ük=uk+1−2uk+uk−1, k∈Z. (2.3)

Consider an atomic computing domain Ω that contains the atoms k=−N,··· ,N. We illus-
trate the construction of the matching boundary conditions (MBC) at the right boundary
uN as follows.

A monochromatic right-going wave at a wave number ξ ∈ [0,π] takes the form of
uk(t)∼ ei(ωt−ξk), where the frequency is dictated by the dispersion relation

ω=2sin
ξ

2
. (2.4)

A matching boundary condition relates the displacements and velocities near the bound-
ary in a linear form.

P

∑
p=0

cpu̇N−p−
P

∑
p=0

bpuN−p=0. (2.5)

Substituting the wave form into the left hand side and discard the common factor, we
define a matching residual function

∆(ξ)= iω(ξ)
P

∑
p=0

cpeiξ p−
P

∑
p=0

bpeiξ p. (2.6)

This residual function measures the inconsistency for imposing the linear relation
(2.5) on a right-going wave. For a particular choice of parameters {b1,··· ,bP,c1,··· ,cP},
transparent transmission is reached at a certain wave number if the residual function
vanishes there. Obviously such ideal transmission can not hold over the positive half in-
terval of the first Brillouin zone [0,π]. As long waves usually dominate the energy band,
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a class of Taylor type MBC’s were explicitly formulated by enforcing ∆(ξ)= o(ξP) [18].
The first three of them are as follows:

u̇N+u̇N−1=2(−uN+uN−1), (2.7a)

u̇N+6u̇N−1+u̇N−2=4(−uN+uN−2), (2.7b)

u̇N+15u̇N−1+15u̇N−2+u̇N−3=−6uN−14uN−1+14uN−2+6uN−3. (2.7c)

The suppression of reflection waves is progressively enhanced when the order of
MBC increases. See the reflection coefficients in Fig. 1.

3 Energy functionals for harmonic chain

For the linear harmonic chain (2.3), we start with some elemental functionals. Then we
construct energy functionals to establish stability results for the afore-mentioned condi-
tions (2.7a)-(2.7c), respectively.

3.1 Energy functionals

We start with several energy functionals as follows.

I1(K)=
1

2

[ K−1

∑
k=−K+1

u̇2
k+

K

∑
k=−K+1

(uk−uk−1)
2
]

, (3.1a)

I2(K)=
1

2

[ K−1

∑
k=−K+2

(u̇k+u̇k−1)
2+

K

∑
k=−K+2

(uk−uk−2)
2
]

, (3.1b)

I3(K)=
1

2

[ K−1

∑
k=−K+3

(u̇k+u̇k−2)
2+

K

∑
k=−K+3

(uk−uk−1+uk−2−uk−3)
2
]

. (3.1c)

Each functional is non-negative, and may induce a semi-norm in the state space. More-
over, all summands are symmetric with respect to atomic indices.

Making use of the Newton equations, we calculate the derivative of I1(K) as follows.

İ1(K)=
K−1

∑
k=−K+1

u̇k(uk−1−2uk+uk+1)+
K

∑
k=−K+1

(u̇k−u̇k−1)(uk−uk−1)

=
K−1

∑
k=−K+1

u̇k(uk−1−2uk+uk+1)+
K

∑
k=−K+1

u̇k(uk−uk−1)+
K−1

∑
k=−K

u̇k(uk−uk+1)

=u̇K(uK−uK−1)+n.b.t..

Here, n.b.t.=u̇−K(u−K−u−K+1). In the sequel, we use n.b.t. to denote the negative bound-
ary term(s), which is symmetric with respect to K.
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In a similar fashion, we calculate

İ2(K)=
K−1

∑
k=−K+2

(u̇k+u̇k−1)(uk−2−uk−1−uk+uk+1)+
K

∑
k=−K+2

(u̇k−u̇k−2)(uk−uk−2)

=
K−1

∑
k=−K+2

u̇k(uk−2−uk−1−uk+uk+1)+
K−2

∑
k=−K+1

u̇k(uk−1−uk−uk+1+uk+2)

+
K

∑
k=−K+2

u̇k(uk−uk−2)+
K−2

∑
k=−K

u̇k(uk−uk+2)

=(u̇K+u̇K−1)(uK−uK−2)+n.b.t.,

İ3(K)=
K−1

∑
k=−K+3

(u̇k+u̇k−2)(uk−3−2uk−2+2uk−1−2uk+uk+1)

+
K

∑
k=−K+3

(u̇k−u̇k−1+u̇k−2−u̇k−3)(uk−uk−1+uk−2−uk−3)

=
K−1

∑
k=−K+3

u̇k(uk−3−2uk−2+2uk−1−2uk+uk+1)

+
K−3

∑
k=−K+1

u̇k(uk−1−2uk+2uk+1−2uk+2+uk+3)

+
K

∑
k=−K+3

u̇k(uk−uk−1+uk−2−uk−3)+
K−1

∑
k=−K+2

u̇k(−uk+1+uk−uk−1+uk−2)

+
K−2

∑
k=−K+1

u̇k(uk+2−uk+1+uk−uk−1)+
K−3

∑
k=−K

u̇k(−uk+3+uk+2−uk+1+uk)

=(u̇K+u̇K−2)(uK−uK−1+uK−2−uK−3)+n.b.t..

We remark that the above energy functionals suggest the following stable and dissipative
boundary conditions.

u̇N =α(uN−1−uN), (3.2a)

u̇N+u̇N−1=β(uN−2−uN), (3.2b)

u̇N+u̇N−2=γ(uN−3−uN−2+uN−1−uN). (3.2c)

Here, α, β, γ are arbitrary positive constants. The condition (3.2a) gives the velocity
interfacial condition if α=1 is chosen [11].

Next, we express each following term as the sum of a complete derivative and terms
in İl(K), (l=1,2,3).

u̇KuK−1=−u̇K(uK−uK−1)+
(u2

K

2

)

�

, (3.3a)
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u̇KuK−2=−(u̇K+u̇K−1)(uK−uK−2)+u̇K(uK−uK−1)

+u̇K−1(uK−1−uK−2)+
(

uKuK−1−
u2

K−1

2

)

�

, (3.3b)

u̇KuK−3=−(u̇K+u̇K−2)(uK−uK−1+uK−2−uK−3)+u̇K(uK−uK−1)

−u̇K−1(uK−1−uK−2)+u̇K−2(uK−2−uK−3)

+
(u2

K−1

2
+uKuK−2−uK−1uK−2)

)

�

. (3.3c)

3.2 Energy functional for MBC1

Based on the above functionals, we construct a suitable linear combination of them, and
add some boundary terms to form a new functional. The new functional is expected to
decay along with time under the proposed boundary conditions. In particular, for MBC1
(2.7a), we calculate the product of its left and right hand sides.

(u̇N+u̇N−1)(uN−uN−1)

=−2u̇NuN−1+u̇NuN−u̇N−1uN−1+(uNuN−1)
�

=2u̇N(uN−uN−1)−
1

2
[(uN−uN−1)

2]�.

Noticing the form of I1, we define an energy functional

E1(t)=
N−1

∑
k=−N+1

u̇2
k+

N−1

∑
k=−N+2

(uk−uk−1)
2+

1

2
(u−N−u−N+1)

2+
1

2
(uN−uN−1)

2. (3.4)

We have

Ė1(t)=−2(uN−uN−1)
2−2(u−N−u−N+1)

2≤0. (3.5)

This proves that E1(t) is a non-negative energy functional for MBC1, which decreases
along with time.

3.3 Energy functional for MBC2

For MBC2 (2.7b), similar calculations are performed. Multiplying the two sides of (2.7b),
we express the product with full derivatives and afore-mentioned terms in İl(K).

(u̇N+6u̇N−1+u̇N−2)(uN−uN−2)

=−6u̇NuN−1−2u̇NuN−2−6u̇N−1uN−2+u̇NuN−u̇N−2uN−2+(6uNuN−1+uNuN−2)
�

=2(u̇N+u̇N−1)(uN−uN−2)+4[u̇N(uN−uN−1)+u̇N−1(uN−1−uN−2)]

−
[1

2
(uN−uN−2)

2+2(uN−uN−1)
2
]

�

.
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Noticing the forms of I1 and I2, we define

E2(t)=2I2(N)+4I1(N)+4I1(N−1)−
[1

2
(uN−uN−2)

2

+2(uN−uN−1)
2+

1

2
(u−N−u−N+2)

2+2(u−N−u−N+1)
2
]

=4
N−2

∑
k=−N+2

u̇2
k+

N−2

∑
k=−N+1

(u̇k+u̇k+1)
2+2u̇2

N−1+2u̇2
−N+1

+4
N−2

∑
k=−N+1

(uk+1−uk)
2+

N−2

∑
k=−N+2

(uk+1−uk−1)
2

+
1

2

[

(uN−2−uN)
2+(u−N+2−u−N)

2
]

. (3.6)

Then we get
Ė2(t)=−4(uN−uN−2)

2−4(u−N−u−N+2)
2≤0. (3.7)

3.4 Energy functional for MBC3

For MBC3 (2.7c), the calculations are more involved. The procedure is still the same.
We first calculate the product of the two sides of (2.7c), and express it as the sum of full
derivatives and derivatives in the form of u̇KuK−k. Then we recast them in terms of the
derivatives of Il(K).

More precisely, we calculate

(u̇N+15u̇N−1+15u̇N−2+u̇N−3)(3uN+7uN−1−7uN−2−3uN−3)

=−u̇N(38uN−1+52uN−2+6uN−3)−u̇N−1(210uN−2+52uN−3)−38u̇N−2uN−3

+
[3

2
u2

N+
105

2
u2

N−1−
105

2
u2

N−2−
3

2
u2

N−3+uN(45uN−1+45uN−2+3uN−3)

+uN−1(105uN−2+7uN−3)−7uN−2uN−3

]

�

=−20u̇N(uN−uN−1)+112u̇N−1(uN−1−uN−2)−20u̇N−2(uN−2−uN−3)

+52(u̇N+u̇N−1)(uN−uN−2)+52(u̇N−1+u̇N−2)(uN−1−uN−3)

+6(u̇N+u̇N−2)(uN−uN−1+uN−2−uN−3)

+
1

2

[

7(uN−uN−1)
2−39(uN−uN−2)

2−59(uN−1−uN−2)
2

−3(uN−uN−3)
2−7(uN−1−uN−3)

2+7(uN−2−uN−3)
2
]

�

.

Accordingly, we define the following energy functional.

E3(t)=−20I1(N)+112I1(N−1)−20I1(N−2)+52I2(N)+52I2(N−1)+6I3(N)

+
1

2

[

7(uN−uN−1)
2−39(uN−uN−2)

2−59(uN−1−uN−2)
2
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−3(uN−uN−3)
2−7(uN−1−uN−3)

2+7(uN−2−uN−3)
2
]

+n.b.t.

=36
N−3

∑
k=−N+3

u̇2
k+52

N−2

∑
k=−N+3

(u̇k+u̇k−1)
2+3

N−1

∑
k=−N+3

(u̇k+u̇k−2)
2

+16u̇2
N−1+52u̇N−1u̇N−2+72u̇2

N−2+16u̇2
−N+1+52u̇−N+1u̇−N+2+72u̇2

−N+2

+36
N−3

∑
k=−N+4

(uk−uk−1)
2+52

N−2

∑
k=−N+4

(uk−uk−2)
2

+3
N

∑
k=−N+3

(uk−uk−1+uk−2−uk−3)
2

+
1

2

[

−13(uN−uN−1)
2+13(uN−uN−2)

2+33(uN−1−uN−2)
2

−3(uN−uN−3)
2+97(uN−1−uN−3)

2+79(uN−2−uN−3)
2
]

+
1

2

[

−13(u−N−u−N+1)
2+13(u−N−u−N+2)

2+33(u−N+1−u−N+2)
2

−3(u−N−u−N+3)
2+97(u−N+1−u−N+3)

2+79(u−N+2−u−N+3)
2
]

. (3.8)

It may be readily checked that 16u̇2
N−1+52u̇N−1u̇N−2+72u̇2

N−2 is non-negative,
so is the negative boundary part. The boundary quadratic terms 3(uN−
uN−1+uN−2−uN−3)

2+0.5[−13(uN−uN−1)
2+13(uN−uN−2)

2+33(uN−1−uN−2)
2−3(uN−

uN−3)
2+97(uN−1−uN−3)

2+79(uN−2−uN−3)
2] may be put into a quadratic form

1

2
[ uN uN−1 uN−2 uN−3 ]









3 7 −7 −3
7 123 −39 −91
−7 −39 131 −85
−3 −91 −85 179

















uN

uN−1

uN−2

uN−3









.

The coefficient matrix has four eigenvalues, 0, 1.584, 83.392 and 133.023. So it is non-
negative. The other boundary is also non-negative. In conclusion, E3(t) is non-negative.

Moreover, the above derivations guarantee the dissipation of MBC3 with

Ė3(t)=−2(3uN+7uN−1−7uN−2−3uN−3)
2−2(3u−N+7u−N+1−7u−N+2−3u−N+3)

2

≤0. (3.9)

3.5 Numerical verifications

We compute over an atomic chain with 201 atoms by the speed verlet algorithm with a
time step size ∆t=0.01. Following [13], we take the standard benchmark initial data

un(0)=







0.005[1+0.1cos(0.4π(n−10))]
e−0.0025(n−101)2 −e−6.25

1−e−6.25
, 51<n<151,

0, elsewhere.

(3.10)
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Figure 2: Snapshots of atomic motion: (a) un(0); (b) un(50); (c) un(100); (d) un(150). The horizontal axis
represents the atomic numbering, and the vertical axis represents the displacement.

0 50 100 150 200
−3

−2

−1

0

1

2

3 x 10−5

Figure 3: Comparison of un(200) with different boundary conditions: circles for MBC1, dots for MBC2, and
solid curve for MBC3. The horizontal axis represents the atomic numbering, and the vertical axis represents
the displacement.

The velocity is uniformly zero initially. The evolution is depicted in Fig. 2, where MBC1
is adopted for boundary treatment. The evolution is essentially the same when the other
two MBC’s are used, but the reflection is considerably reduced. See Fig. 3. In fact, at
t = 200, the amplitude of the reflected wave with MBC3 is about 1% that with MBC1.
Moreover, it is observed that un(200) with MBC1 contains oscillations corresponding to
considerably larger components of shortwaves. In contrast, the shortwaves are well re-
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0

1
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3 x 10−7

Figure 4: Energy decay rate for MBC1: solid curve for numerically calculated −Ė1(t) and dots for 2(uN−
uN−1)

2+2(u−N−u−N+1)
2. The horizontal axis represents time, and the vertical axis represents the rate.

0 50 100 150 200
0

1

2 x 10−6

Figure 5: Energy decay rate for MBC2: solid curve for numerically calculated −Ė2(t) and dots for 4(uN−
uN−2)

2+4(u−N−u−N+2)
2. The horizontal axis represents time, and the vertical axis represents the rate.

solved by MBC3. This agrees with the previous study of reflection coefficients for these
three boundary conditions.

The energy decay rates are depicted in Figs. 4, 5 and 6, respectively. The numeri-
cally calculated decay rate and the one calculated by the boundary terms coincide almost
exactly in each case. The theoretical results are thus verified. We notice that the en-
ergy decay profiles are almost exactly the same for three boundary conditions, except for
different scales resulted from the definition of the energy functionals. The data shown
in these figures are basically during the stage when the wave propagates outward and
through the boundaries for the first time. The differences in these three boundary condi-
tions become observable when the reflected waves propagate across the boundaries for a
second time, which are in an even smaller scale. These are indicated from the comparison
of reflected waves at t=200 in Fig. 3.
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0 50 100 150 200
0

2

4

6 x 10−5

Figure 6: Energy decay rate for MBC3: solid curve for numerically calculated −Ė3(t) and dots for 2(3uN+
7uN−1−7uN−2−3uN−3)

2+2(3u−N+7u−N+1−7u−N+2−3u−N+3)
2. The horizontal axis represents time, and

the vertical axis represents the rate.

4 Stability of MBC1 for a nonlinear chain

We consider a nonlinear chain, for which the pairwise potential reduces to be quadratic
for |k|≥N, namely, Jk−1/2(uk−uk−1)=(uk−uk−1)

2/2. The Newton equations are

ük= J′k+1/2− J′k−1/2, k∈Z. (4.1)

The right hand side becomes uk−1−2uk+uk+1 for |k|≥N.
Let the energy functional be

Ẽ1(t)=
N−1

∑
k=−N+1

u̇2
k+2

N−1

∑
k=−N+2

Jk−1/2+
1

2
(u−N−u−N+1)

2+
1

2
(uN−uN−1)

2. (4.2)

Direct calculations show that

˙̃E1(t)=2
N−1

∑
k=−N+1

u̇k(J′k+1/2− J′k−1/2)+2
N−1

∑
k=−N+2

J′k−1/2(u̇k−u̇k−1)

+(u−N−u−N+1)(u̇−N−u̇−N+1)+(uN−uN−1)(u̇N−u̇N−1)

=−2u̇−N+1J′−N+1/2−2u̇N−1 J′N−1/2

+(u−N−u−N+1)(u̇−N−u̇−N+1)+(uN−uN−1)(u̇N−u̇N−1)

=−2(u−N−u−N+1)
2−2(uN−uN−1)

2

≤0.

5 Discussions

Stability for atomic chains is an important issue, yet difficult to establish in general. There
are extensive studies for continuous systems, as well as the von Neumann analysis for
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finite difference method of the Cauchy problem for general linear systems. However,
they do not directly apply to discrete initial boundary value problems. A general effec-
tive methodology is still not available, and specific problems need specific treatment to
construct energy functionals, e.g., [19]. We notice that for the discrete dynamical systems,
one may investigate the stability by either the Lyapunov method, or the corresponding
eigenvalue problem in case of a linear system. However, a rigorous proof of non-positive
eigenvalue involves the theory of polynomial equations, which is not available as the
degree is high. The construction of Lyapunov function is not an easy task, particularly
with the delicacy arising from the fact that accurate boundary treatments like MBC are
usually dissipation-free or with very weak dissipation. Accordingly, there is usually a
zero eigenvalue. This makes the system marginally stable, and theoretical stability proof
important and difficult.

In this paper, we have constructed explicitly the energy functionals for three MBC’s
in a linear atomic chain. They bear similar features to a Lyapunov function, except in-
ducing semi-norms rather than norms. Consequently, the atomic simulations equilibrate
up to a dilation. The construction consists of four steps. First, we study some elemental
functionals and their derivatives. Secondly, we express terms in the form of u̇KuK−l in
terms of these functional derivatives and a complete derivative. Thirdly, we compute
the product of the two sides in a boundary condition. Finally, according to the form of
resulting functional derivatives and complete derivatives, we construct a functional to
establish the stability. This method may apply to more general boundary conditions for
the harmonic lattice and linear lattices with non-nearest neighbor interaction. However,
in case of nonlinear systems, we have only worked out the stability for MBC1. Further
explorations are desirable.
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