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ON THE CONVERGENCE OF β-SCHEMES

NAN JIANG

Abstract. Yang’s wavewise entropy inequality [19] is verified for β-schemes which, when m = 2
and under a mild technique condition, guarantees the convergence of the schemes to the entropy
solutions of convex conservation laws in one-dimensional scalar case. These schemes, constructed
by S. Osher and S. Chakravarthy [13], are based on unwinding principle and use E-schemes as
building blocks with simple flux limiters, without which all of them are even linearly unstable.
The total variation diminishing property of these methods was established in the original work of
S. Osher and S. Chakravarthy.
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1. Introduction

We consider numerical approximations to the scalar conservation laws

(1)

{

ut + f(u)x = 0,
u(x, 0) = u0(x),

where f ∈ C1(R) is convex, and u0 ∈ BV (R). Here BV stands for the subspace
of L1

loc consisting of functions with bounded total variation. For the numerical
methods concerned, let λ = τ

h
, where h and τ are spatial and temporal steps

respectively, and un
k = u(xk, tn) be the nodal values of the piecewise constant mesh

function uh(x, t) approximating the solution of (1). The numerical schemes admit
conservative form

(2) un+1
k = H(un

k−p, · · · , u
n
k+p;λ) = un

k − λ(gn
k+ 1

2

− gn
k− 1

2

),

where the numerical flux g is given by

(3) gn
k+ 1

2

= gk+ 1
2
[un

k ],

and

(4) gk+ 1
2
[v] = g(vk−p+1, vk−p+2, · · · , vk, · · · , vk+p),

for any data {vj}. The function g is Lipschitz continuous with respect to its 2p
arguments and is consistent with the conservation law in the sense that

(5) g(u, u, · · · , u) ≡ f(u).

The schemes that we are interested in are special cases of the general β-schemes
when m = 2, which were introduced by S. Osher and S. Chakravarthy [1, 13] in
the 80s. The entire families of β-schemes are defined for 0 < β ≤ (m

(

2m
m

)

)−1,
where m is an integer between 2 and 8. These schemes are 2m− 1 order accurate
(except at isolated critical points), variation diminishing, 2m+1 point band width,
conservative approximations to scalar conservation laws. Although the numerical
results have been shown [1, 13] to be extremely good, the entropy convergence of
these schemes have been open. Our goal of this paper is to show that, when m = 2,
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β-schemes indeed persist entropy consistency for homogeneous scalar convex con-
servation laws. The proof of the convergence is an application of Yang’s wavewise
entropy inequality (WEI) framework [19], of which he has used to establish the
entropy convergence of generalized MUSCL schemes and a class of schemes using
flux limiters discussed by Sweby [15]. Recently, by using Yang’s convergence crite-
ria that derived from his WEI framework, the author [9, 6] has shown the entropy
convergence of van Leer’s flux limiter schemes, as well as Osher-Chakravarthy’s α
schemes for m = 2 [1, 13]. The corresponding convergence results of Yang and the
author, for semi-discrete schemes, can be found in [7, 8, 10, 18, 17].

The paper is organized as follows. In section 2, we review the notions of the
extremum paths, and then we establish the extremum traceableness of general
TVD schemes, which is necessary for analyzing the entropy convergence of the
schemes that will be given in the next section. In section 3, we present one of
Yang’s convergence criteria with weaker condition, an important entropy estimate,
and finally the main result.

Now we introduce the β-schemes for the case ofm = 2. Throughout the paper, to
improve the readability, we use the shorthand notations of fn

k := f(un
k ), ∆un

k± 1
2

=

±(un
k±1 − un

k ), and fn
k± 1

2

:= ∆fn
k± 1

2

= ±(fn
k±1 − fn

k ). Also, whenever there is no

ambiguity in the context, we employ the simplified notations: uk := un+1
k , uk := un

k ,

fk := fn
k , and f±

k± 1
2

:= (fn
k± 1

2

)±, where k and n are the spatial and temporal indexes

respectively.
Let gE

k+ 1
2

:= gE(un
k , u

n
k+1) be the flux of an E-scheme [14] that is characterized

by

(6) sgn (un
k+1 − un

k )[g
E
k+ 1

2

− f(u) ] ≤ 0,

for all u in between un
k and un

k+1. Then the flux differences are defined by

(7) f+
k+ 1

2

= fk+1 − gE
k+ 1

2

,

and

(8) f−

k+ 1
2

= gE
k+ 1

2

− fk.

At the time level t = tn, for all k, we define a series of local CFL numbers

(9) ν+
k+ 1

2

=
λf+

k+ 1
2

uk+ 1
2

, ν−
k+ 1

2

=
λf−

k+ 1
2

uk+ 1
2

.

Clearly, we have ν+
k+ 1

2

≥ 0 and ν−
k+ 1

2

≤ 0. For convenience, we also set the ratios

(10) r+k =
f+
k− 1

2

f+
k+ 1

2

, r−k =
f−

k+ 1
2

f−

k− 1
2

.

The “minmod” operator is given by

(11) minmod(x, y) =







x, if |x| ≤ |y| and xy > 0,
y, if |x| > |y| and xy > 0,
0, if xy ≤ 0,
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which can be converted to, divided by x, a monotone increasing function

(12) φ(r) = max(0,min(1, r)) =







1, if r ≥ 1,
r, if 0 ≤ r ≤ 1,
0, if r ≤ 0,

with r = y
x
. Clearly, φ(r) has a symmetry property

(13)
φ(r)

r
= φ(

1

r
).

This property is very helpful to rewrite a β scheme into an increment form. The
operator of “minmod” of three quantities is defined by

minmod[x, y, z ] = minmod[minmod[x, y ], z ],

which is independent of the order of x, y, and z. Very often we write “mm” for
“minmod”, when there is no confusion. For 0 < β ≤ 1

12 and m = 2, a β scheme
[13], is given by

(14) uk = uk − λ ( gk+ 1
2
− gk− 1

2
),

where

(15)

gk+ 1
2

= gE
k+ 1

2

− (
1

12
+ β)(f−

k+ 3
2

)(1) − (
1

2
− 2β)(f−

k+ 1
2

)(0)

+(
1

12
− β)(f−

k− 1
2

)(−1) − (
1

12
− β)(f+

k+ 3
2

)(1)

+(
1

2
− 2β)(f+

k+ 1
2

)(0) + (
1

12
+ β)(f+

k− 1
2

)(−1).

The superscripts shown over the f± denote flux limited values of f±, and are
computed as follows:

(f−

k+ 3
2

)(1) = mm [f−

k+ 3
2

, b f−

k+ 1
2

](16)

= mm [
1

b

f−

k+ 3
2

f−

k+ 1
2

, 1] b f−

k+ 1
2

= φ(
r−k+1

b
) b f−

k+ 1
2

(f−

k+ 1
2

)(0) = mm [f−

k+ 1
2

, b f−

k+ 3
2

](17)

= mm [1, b
f−

k+ 3
2

f−

k+ 1
2

] f−

k+ 1
2

= φ(b r−k+1) f
−

k+ 1
2
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(f−

k− 1
2

)(−1) = mm [f−

k− 1
2

, b f−

k+ 1
2

, b f−

k+ 3
2

](18)

= mm [
1

b

f−

k− 1
2

f−

k+ 1
2

, 1,
f−

k+ 3
2

f−

k+ 1
2

] b f−

k+ 1
2

= mm [
1

br−k
, φ(r−k+1)] b f

−

k+ 1
2

= mm [φ(
1

b r−k
), r−k+1] b f

−

k+ 1
2

(f+
k+ 3

2

)(1) = mm [f+
k+ 3

2

, b f+
k+ 1

2

, b f+
k− 1

2

](19)

= mm [
1

b

f+
k+ 3

2

f+
k+ 1

2

, 1,
f+
k− 1

2

f+
k+ 1

2

] b f+
k+ 1

2

= mm [φ(
1

b r+k+1

), r+k ] b f
+
k+ 1

2

= mm [
1

b r+k+1

, φ(r+k )] b f
+
k+ 1

2

(f+
k+ 1

2

)(0) = mm [f+
k+ 1

2

, b f+
k− 1

2

](20)

= mm [1, b
f+
k− 1

2

f+
k+ 1

2

] f+
k+ 1

2

= φ(b r+k ) f
+
k+ 1

2

(f+
k− 1

2

)(−1) = mm [f+
k− 1

2

, b f+
k+ 1

2

](21)

= mm [
1

b

f+
k− 1

2

f+
k+ 1

2

, 1] b f+
k+ 1

2

= φ(
r+k
b
) b f+

k+ 1
2

In the above, b is a “compression” parameter chosen in the range

1 < b ≤ 3 + 12β.

We shall assume for the remainder of the paper that the local CFL numbers
satisfy |ν±

k+ 1
2

| ≤ 1 for all k ∈ Z.

Using (9)-(13), we can rewrite the expressions

[−(
1

12
− β)b mm [φ(

1

br+k+1

), r+k ] + (
1

2
− 2β)φ(b r+k ) + (

1

12
+ β)b φ(

r+k
b
)]ν+

k+ 1
2

uk+ 1
2

as

[−(
1

12
− β)b mm [

1

r+k
φ(

1

br+k+1

), 1] + (
1

2
− 2β)b φ(

1

b r+k
) + (

1

12
+ β)φ(

b

r+k
)]ν+

k− 1
2

uk− 1
2
;

and

[(
1

12
+ β)b φ(

r−k
b
) + (

1

2
− 2β)φ(b r−k )− (

1

12
− β)b mm [φ(

1

br−k−1

), r−k ] ]ν
−

k− 1
2

uk− 1
2
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as

[(
1

12
+ β)φ(

b

r−k
) + (

1

2
− 2β)b φ(

1

b r−k
)− (

1

12
− β)b mm [

1

r−k
φ(

1

b r−k−1

), 1] ]ν−
k+ 1

2

uk+ 1
2
.

With these alternative representations, it is easy to see that the schemes (14)-(15)
can be written in an increment form

(22) uk = uk − Ck− 1
2
uk− 1

2
+Dk+ 1

2
uk+ 1

2
,

with

(23)

Ck− 1
2

= ν+
k− 1

2

[−(
1

12
− β)b mm [

1

r+k
φ(

1

r+k+1

), 1] + (
1

2
− 2β)b φ(

1

b r+k
)

+ (
1

12
+ β)φ(

b

r+k
) + 1 + (

1

12
− β)b mm [

1

b r+k
, φ(r+k−1)]

− (
1

2
− 2β)φ(b r+k−1)− (

1

12
+ β)b φ(

r+k−1

b
) ],

and

(24)

Dk+ 1
2

= −ν−
k+ 1

2

[ 1− (
1

12
+ β)b φ(

r−k+1

b
)− (

1

2
− 2β)φ(b r−k+1)

+ (
1

12
− β)b mm [

1

b r−k
, φ(r−k+1)] + (

1

12
+ β)φ(

b

r−k
)

+ (
1

2
− 2β)b φ(

1

b r−k
)− (

1

12
− β)b mm [

1

r−k
φ(

1

b r−k−1

), 1] ].

This form of the schemes provides a convenient way of checking extremum trace-
ability and TVD property of the schemes [9, 5].

2. A key property of general TVD schemes

In this section, we introduce the notions of Yang’s extremum paths [19]. These
concepts ware introduced by Yang (see Definition 2.13 [19]) in order to track the
extrema in the computational domain. We then give sufficient conditions that guar-
antee a TVD scheme to be extremum traceable. The following two definitions are
relevant, we restate them so that the paper is reasonably self-contained. Through-
out the paper, we refer to [19] for the definitions, lemmas and theorems that we
have quoted in the context.

Consider a numerical solution u defined on the set of grid points X := {(xj , tn) :
j ∈ Z, n ∈ Z

+}. A finite set of successive grid points {xq, · · · , xr} with r ≥ q is

said to be the stencil of a spatial maximum, or simply an E-stencil of u at the time
tn, provided un

q = · · · = un
r , u

n
q−1 < un

q and un
r+1 < un

r . Notions of E-stencils for
minima and E-stencils for general extrema are defined similarly.

Definition 2.1 (see Definition 2.13 [19]). A nonempty subset of X denoted by
Etn,tm , n ≤ m, is called a ridge of the numerical solution u from tn to tm if

(i) for all ν, n ≤ ν ≤ m, the set

PE(ν) := {xj : (xj , tν) ∈ Etn,tm} = {xqν , · · · , xrν}

is not empty and is an E-stencil of u at tν ;
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(ii) for all ν, n ≤ ν ≤ m− 1,

PE(ν) ∪ PE(ν + 1) = {xj : min(qν , qν+1) ≤ j ≤ max(rν , rν+1)}.

The set PE(ν) is called the x-projection of Etn,tm at tν . The value of u along
the ridge is denoted by VE(ν) : VE(ν) = uν

j for qν ≤ j ≤ rν .

If, for all ν, n ≤ ν ≤ m, the E-stencil in the item (i) of the definition is replaced
by an E-stencil, then the set is called a trough of u from tn to tm and is denoted
by Etn,tm

. The related notions PE(ν) and VE(ν) are defined similarly. Ridges and
troughs are also called extremum paths. When we do not distinguish between ridges
and troughs, we use Etn,tm , PE(ν), and VE(ν) for either type. We write

E1
tn,tm

< (≤)E2
tn,tm

, if maxPE1(ν) < (≤)maxPE2(ν) for n ≤ ν ≤ m.

Definition 2.2 (see Definition 2.14 [19]). A scheme is said to be extremum traceable

if there exists a constant c ≥ 1 such that for each numerical solution u of the scheme
and each integer N > 0, there exists a finite or infinite collection of extremum paths
{El

t0,tN
}l2l=l1

with the following properties:

(i) {PEl(N)}l2l=l1
is precisely the set of E-stencils of un

j at the time tN arranged
in ascending spatial coordinates.

(ii) If El
t0,tN

is a ridge (trough), then VEl
(n) is a non increasing (non decreasing)

function of n.
(iii) Let PEl(n) = {xql(n), · · · , xrl(n)} for 1 ≤ n ≤ N . If PEl(n)∩PEl(n+1) = ∅,

then

|un
ql(n+1) − un

rl(n) | ≤ c |VEl(n+ 1)− VEl(n) | when ql(n+ 1) > rl(n),

|un
rl(n+1) − un

ql(n) | ≤ c |VEl(n+ 1)− VEl(n) | when ql(n) > rl(n+ 1).

(iv) If l2 > l1, then El
t0,tN

< El+1
t0,tN

for l1 ≤ l ≤ l2 − 1.

Because of the true solution of (1) has TVD property, it is very important to
maintain such property in the developing of a numerical scheme that approximate
(1). Recall that an extremum traceable scheme is TVD [19] and a scheme equipped
with extremum traceability prevents new extrema values that generate spurious
oscillations of the solutions other than those which propagate from the previous
time-level. Also, the numerical solutions computed by a TVD scheme will converge
to a weak solution [11, 12] of (1). For general TVD schemes, we are able to show
the following result, which is a condition to use Yang’s WEI convergence criterion
(Theorem 3.5). With this condition, we will carry out the entropy convergence
analysis of the schemes of (14)-(15) in the next section.

Theorem 2.3 (see Theorem 2.3 [9]). The sufficient conditions for the schemes

(14)-(15) to be extremum traceable are the following inequalities:

(1) 0 ≤ Ck+ 1
2
, 0 ≤ Dk+ 1

2
, 0 ≤ Ck+ 1

2
+Dk+ 1

2
≤ 1, for all k;

there is a positive constant µ such that, if uk is a space extremum, then

(2) max {Ck± 1
2
, Ck± 3

2
, Dk± 1

2
, Dk+ 3

2
} ≤

µ

4
<

1

4
,

where Ck+ 1
2
and Dk+ 1

2
are given by (23)-(24).

The inequalities of (1) are well known sufficient conditions, introduced by Harten
[5], for the schemes (14)-(15) to be TVD. In terms of the local CFL numbers, we
can state this theorem as follows.
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Corollary 2.4. The sufficient conditions for the schemes (14)-(15) to be extremum

traceable are the following inequalities:

(3) ν+
k+ 1

2

− ν−
k+ 1

2

≤
1

3

for all k, and when uk is an extremum,

(4) max {ν+
k± 1

2

, ν+
k± 3

2

, −ν−
k+ 3

2

,−ν−
k± 1

2

} ≤
1

10
.

Proof. Indeed, for all k, in reference of (23)-(24), we have Ck+ 1
2
≥ 0, Dk+ 1

2
≥ 0,

and

Ck+ 1
2
+Dk+ 1

2
≤ (ν+

k+ 1
2

− ν−
k+ 1

2

)
27

12
≤ 1.

When uk is an extremum, Ck± 1
2
, and Dk± 1

2
are reduced to

Ck− 1
2
= ν+

k− 1
2

[ 1− (
1

2
− 2β)φ(r+k−1)− (

1

12
+ β)b φ(

r+k−1

b
) ] ≤ ν+

k− 1
2

,

Dk+ 1
2
= −ν−

k+ 1
2

[ 1− (
1

12
+ β)b φ(

r−k+1

b
)− (

1

2
− 2β)φ(b r−k+1) ] ≤ −ν−

k+ 1
2

,

Ck+ 1
2

= ν+
k+ 1

2

[ 1− (
1

12
− β)bmm[

1

r+k+1

φ(
1

r+k+2

), 1 ] + (
1

2
− 2β)b φ(

1

b r+k+1

)

+(
1

12
+ β)φ(

b

r+k+1

) ]

≤ ν+
k+ 1

2

[ 1 + (
1

12
+ β) + (

1

2
− 2β)b ] ≤

27

12
ν+
k+ 1

2

,

and

Dk− 1
2

= −ν−
k− 1

2

[ 1 + (
1

12
+ β)φ(

b

r−k−1

) + (
1

2
− 2β)b φ(

1

b r−k−1

)

−(
1

12
− β)bmm[

1

r−k−1

φ(
1

b r−k−2

), 1 ] ] ≤ −
36

12
ν−
k− 1

2

.

Following the four inequalities of the above , we have arrived the desired estima-
tions

Ck± 1
2
+Dk± 1

2
≤ 1, 2Ck− 1

2
+Dk− 1

2
≤ 1, Ck+ 1

2
+ 2Dk+ 1

2
≤ 1,

as well as,

Ck+ 1
2
+Dk+ 1

2
+Dk+ 3

2
+ Ck− 1

2
≤ 1, Ck− 1

2
+Dk− 1

2
+Dk+ 1

2
+ Ck− 3

2
≤ 1,

and so on. �

Consider a subfamily of E-fluxes given by

(5) gE(x, y) =

{

f(x) if s ≤ x ≤ y,
f(y) if x ≤ y ≤ s,

where s is a sonic point of f(·): f ′(s) = 0. It is clear that both Godunov [4] and
Engquist-Osher [3] fluxes:

(6) gGod(uj , uj+1) =

{

minuj≤w≤uj+1
f(w) when uj ≤ uj+1,

maxuj≥w≥uj+1
f(w) when uj ≥ uj+1,
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and

(7) gEO(uj , uj+1) =

∫ uj

0

max(f ′(w), 0)dw +

∫ uj+1

0

min(f ′(w), 0)dw + f(0),

are members of the fluxes given by (5). For β-schemes with m = 2, we conclude
their extremum traceability in the following lemma.

Lemma 2.5. The schemes (14)-(15), with the building blocks given by the members

of (5), are extremum traceable, provided that

(8) ν+
k+ 1

2

− ν−
k+ 1

2

≤
1

3

for all k, and when uk is an extremum, λmaxuk−2≤w≤uk+2
| f ′(w) | ≤ 1

10 .

3. the convergence of β-schemes

The following separation property characterizes that, at spatial extrema, the
values of maximum (minimum) values of the numerical solutions are not increasing
(decreasing). The similar conditions have been used to check TVD property of a
scheme by E. Tadmor [16]. Lemma 3.2 verifies that β-schemes satisfy this separation
property.

Assumption 3.1. The numerical fluxes gn
k+ 1

2

, −∞ < k < ∞, satisfy

gn
k+ 1

2

≥ f(un
k) ≥ gn

k− 1
2

if un
k ≥ un

k±1

and

gn
k+ 1

2

≤ f(un
k) ≤ gn

k− 1
2

if un
k ≤ un

k±1

Lemma 3.2. The scheme (14)-(15) satisfies the Assumption 3.1.

Proof. If uk ≥ uk±1, then

gk+ 1
2

= gE
k+ 1

2

− (
1

12
+ β)(f−

k+ 3
2

)(1) − (
1

2
− 2β)(f−

k+ 1
2

)(0)

≥ gE
k+ 1

2

− (
1

12
+ β)b f−

k+ 1
2

− (
1

2
− 2β)f−

k+ 1
2

= gE
k+ 1

2

+ [−(
1

12
+ β)b− (

1

2
− 2β)]f−

k+ 1
2

≥ gE
k+ 1

2

− f−

k+ 1
2

= fk,

and

gk− 1
2

= gE
k− 1

2

+ (
1

2
− 2β)(f+

k− 1
2

)(0) + (
1

12
+ β)(f+

k− 3
2

)(−1)

≤ gE
k− 1

2

+ (
1

2
− 2β)f+

k− 1
2

+ (
1

12
+ β)b f+

k− 1
2

= gE
k− 1

2

+ [(
1

2
− 2β) + (

1

12
+ β)b ]f+

k− 1
2

≤ gE
k− 1

2

+ f+
k− 1

2

= fk.

Similarly, we can show that if un
k ≤ un

k±1, then gn
k+ 1

2

≤ f(un
k ) ≤ gn

k− 1
2

. �

Let f [w;L,R] be the linear function interpolating f(w) at w = L and w = R.
In this section, we assume that f ′′(w) ≥ 0. In reference of (2), we denote ṽj =

H(vj−p, · · · , vj+p;λ) and v̄j =
vj+ṽj

2 for any collection of data {vj}.
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Definition 3.3 (see Definition 2.20 [19]). We call an ordered pair of numbers
{L,R} a rarefying pair if L < R and f [w;L,R] > f(w) when L < w < R. We call
a collection of data Γ = {vj}J+p

j=I−p
an ε-rarefying collection of the scheme to the

rarefying pair {L,R} if, for ε > 0,
(i) L = vI ≤ vI+1 ≤ · · · ≤ vJ = R;
(ii) ṽI ≤ ṽI+1 ≤ · · · ≤ ṽJ , |L− ṽI | < ε, |R− ṽJ | < ε;
(iii) either vI−1 ≥ vI or vI = vI+1; and either vJ+1 ≤ vJ or vJ−1 = vJ .

Clearly, the conditions of (i) and (ii) imply that

v̄I ≤ v̄I+1 ≤ · · · ≤ v̄J , |L− v̄I | <
ε

2
, and |R− v̄J | <

ε

2
.

We define the piecewise constant function gΓ associated with the ε-rarefying
collection Γ as follows:

(9) gΓ(w) = gj+ 1
2
[v] for w ∈ (v̄j , v̄j+1), I ≤ j ≤ J − 1.

Definition 3.4. For the given rarefying pair {L,R}, a 0-rarefying collection Γ =
{vj}J+2

j=I−2
of the scheme that satisfies

(10) L = vI−2 = vI−1 = vI = vI+1 ≤ · · · ≤ vJ−1 = vJ = vJ+1 = vJ+2 = R

is called a normal collection.

Theorem 3.5 (see Theorem 2.21[19]). An extremum traceable scheme that satisfies

Assumption 3.1 converges for convex conservation laws if, for every rarefying pair

{L,R} and ε-rarefying collection to the pair,

(11)

∫ R

L

f [w;L,R] dw −

∫ v̄J

v̄I

gΓ(w) dw > δ

for some constant δ > 0 depending only on the exact flux f , the numerical flux

function g, and the two numbers L and R, provided that ε is sufficiently small.

For the class of β-schemes concerned, the condition on ε-rarefying collections in
theorem 3.5 can be weakened by normal collections.

Lemma 3.6. An extremum traceable scheme of the form (14)-(15) converges for

convex conservation laws, provided that for each rarefying pair {L,R} there is a

constant δ > 0 such that the inequality (11) holds for all normal collections of the

scheme to the pair {L,R}.

Proof. Let Λ = {κP−2, · · · , κQ+2} be an arbitrary ε-rarefying collection of the
scheme to the pair {L,R}. Let

(12) S′ =

∫ κ̄Q

κ̄P

gΛ(w) dw =

Q−1
∑

j=P

(κ̄j+1 − κ̄j) gj+ 1
2
[κ].

by (i) and (iii) of Definition 3.3, either κP or κP+1 is a minimum. In either case,
Assumption 3.1 and the condition (ii) of Definition 3.3 imply that

(13) ε > |L− κ̃P | = |κ̃P − κP | = λ|gP+ 1
2
[κ]− gP− 1

2
[κ]| ≥ λ|gP± 1

2
[κ]− f(L)|.

Similarly, we have

(14) ε > |R− κ̃Q| ≥ λ|gQ± 1
2
[κ]− f(R)|.

Next, we construct a normal collection Γ = {vj}J+2

j=I−2
as follows. First, let I = P−1

and J = Q+ 1 and we also set vI−2 = vI−1 = vI = L, vJ = vJ+1 = vJ+2 = R, and
vj = κj for I + 1 ≤ j ≤ J − 1. Then, we have

(15) gI± 1
2
[v] = f(L) and gJ± 1

2
[v] = f(R),
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which imply that,

(16) v̄I = ṽI = vI = L, v̄J = ṽJ = vJ = R.

Thus, the normality of Γ = {vj}J+2

j=I−2
is justified by the non-decreasing relation of

ṽI ≤ ṽI+1 ≤ · · · ≤ ṽJ .

Indeed, we notice that the following relationship

ṽI+3 ≤ ṽI+4 ≤ · · · ≤ ṽJ−4 ≤ ṽJ−3,

is directly inherited from the condition (ii) of the given ε-rarefying collection of Λ

κ̃P+2 ≤ κ̃P+3 ≤ · · · ≤ κ̃Q−3 ≤ κ̃Q−2.

Also, using the definition of the numerical flux, we can verify that (f−

P− 1
2

)(−1) = 0,

(f+
P+ 3

2

)(1) = 0, (f+
P+ 1

2

)(0) = 0, and (f+
P− 1

2

)(−1) = 0, which imply that

gP+ 1
2

= gE
P+ 1

2

− (
1

12
+ β)(f−

P+ 3
2

)(1) − (
1

2
− 2β)(f−

P+ 1
2

)(0)

= gE
I+ 3

2

− (
1

12
+ β)(f−

I+ 5
2

)(1) − (
1

2
− 2β)(f−

I+ 3
2

)(0)

= gI+ 3
2
.

Likewise, (f−

Q+ 1
2

)(1) = 0, (f−

Q− 1
2

)(0) = 0, (f−

Q− 3
2

)(−1) = 0, and (f+
Q+ 1

2

)(1) = 0, imply

that

gQ− 1
2

= gE
Q− 1

2

+ (
1

2
− 2β)(f+

Q− 1
2

)(0) + (
1

12
+ β)(f+

Q− 3
2

)(−1)

= gE
J− 3

2

+ (
1

2
− 2β)(f+

J− 3
2

)(0) + (
1

12
+ β)(f+

J− 5
2

)(−1)

= gJ− 3
2
.

Thus, we have ṽI+2 = κ̃P+1, and ṽJ−2 = κ̃Q−1 as well. Therefore, we only need to
verify that

ṽI ≤ ṽI+1 ≤ ṽI+2 and ṽJ−2 ≤ ṽJ−1 ≤ ṽJ .

We will show that ṽI ≤ ṽI+1 and ṽI+1 ≤ ṽI+2. The proof of ṽJ−2 ≤ ṽJ−1 ≤ ṽJ is
similar and we omit the details. Notice that the following is the consequence of the
definition of the scheme and the Assumption

ṽI+1 = vI+1 − λ(gI+ 3
2
− gI+ 1

2
)

= vI+1 − λ(gI+ 3
2
− gE

I+ 1
2

)

≥ vI+1 ≥ vI = ṽI ,

and ṽI+1 ≤ ṽI+2 follows from the fact that gP− 1
2
≥ fP = fI+1, and gP+ 1

2
= gI+ 3

2
.

Indeed,

ṽI+2 − ṽI+1 = κ̃P+1 − ṽI+1 = κ̃P+1 − κ̃P + κ̃P − ṽI+1

≥ κ̃P − ṽI+1

= κP − λ(gP+ 1
2
− gP− 1

2
)− vI+1 + λ(gI+ 3

2
− gI+ 1

2
)

= λ(gP− 1
2
− gI+ 1

2
) = λ(gP− 1

2
− fI+1) ≥ 0.

Secondly, let G be the Lipschitz constant of the numerical flux g, and K =
max{|f(L)|, |f(R)|}+G(R − L). Denote

(17) S =

∫ R

L

gΓ(w) dw =

J−1
∑

j=I

(v̄j+1 − v̄j)gj+ 1
2
[v],
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then a-priori estimate |S − S′| ≤ 3Kε holds. Let δ′ be a constant such that for all
normal collections of the scheme to the pair {L,R} the inequality (11) holds for
δ = δ′. Thus, for δ = δ′, the inequality (11) also holds for the normal collection

Γ = {vj}J+2

j=I−2
. Therefore, for δ = δ′

2 , the inequality (11) holds for all ε-collection

of the scheme to the pair {L,R} provided that ε ≤ δ
3K .

It remains to show the a-priori estimate. First, we notice that κ̄j = v̄j for
P + 1 ≤ j ≤ Q− 2, Therefore the terms of the difference

S − S′ =
J−1
∑

j=I

(v̄j+1 − v̄j)gj+ 1
2
[v]−

Q−1
∑

j=P

(κ̄j+1 − κ̄j) gj+ 1
2
[κ]

from j = P + 1 to j = Q − 2 are all diminished. For the remaining terms, we use
the relationship of Λ and Γ and (13)-(16) to yield the following estimates.

(18) |v̄I+1 − κ̄I+1| <
ε

2
, |v̄J−1 − κ̄J−1| <

ε

2
,

(19) |v̄I+1 − v̄I | = |v̄I+1 − L| ≤ |v̄I+1 − κ̄I+1|+ |κ̄I+1 − L| < ε,

and

(20) |v̄J − v̄J−1| = |v̄J−1 −R| ≤ |v̄J−1 − κ̄J−1|+ |κ̄Q −R| < ε.

Finally, using the fact that v̄I+2 = κ̄P+1, v̄J−2 = κ̄Q−1, gI+ 3
2
[v] = gP+ 1

2
[κ],

gJ− 3
2
[v] = gQ− 1

2
[κ], and (18)-(20), we have derived the desired estimate as follows.

|S − S′| = |(v̄I+1 − v̄I)gI+ 1
2
[v] + (v̄J − v̄J−1)gJ− 1

2
[v](21)

+ (v̄I+2 − v̄I+1)gI+ 3
2
[v]− (κ̄P+1 − κ̄P )gP+ 1

2
[κ]

+ (v̄J−1 − v̄J−2)gJ− 3
2
[v]− (κ̄Q − κ̄Q−1)gQ− 1

2
[κ]|

≤ |v̄I+1 − v̄I ||gI+ 1
2
[v]|+ |v̄J − v̄J−1||gJ− 1

2
[v]|

+ |v̄I+1 − κ̄P ||gI+ 3
2
[v]|+ |v̄J−1 − κ̄Q||gQ− 1

2
[κ]|

< (ε+ ε+
1

2
ε+

1

2
ε)K = 3Kε,

and the proof is completed. �

For a normal collection Γ = {vj}J+2

j=I−2
, we denote the vertex (vj , f(vj)) by Vj and

the area of convex polygon Vj1Vj2 · · ·Vjr by Sj1,...,jr . Let σΓ = maxI−2≤j≤J+2 |ν
±

j± 1
2

|,

and let

αj =

{

0.5 if ∆vj−2 = ∆vj+1 = 0,
1 otherwise.

When the building block of the schemes (14)-(15) is the subclass of E-schemes
with the fluxes defined by (5), we have the following very important inequality (22),
which will enable us to prove the mail result of Theorem 3.9. The proof of lemma
3.7 will be given shortly.

Lemma 3.7. Let Γ = {vj}J+2

j=I−2
be a normal collection to a rarefying pair {L,R}.

Then the numerical solutions of the schemes (14)-(15) for convex conservation laws

(1) satisfy, for a sufficiently small σΓ, the following inequality

(22)

∫ R

L

(f [w;L,R]− gΓ)dw ≥ SI,I+1,...,J −
J−1
∑

j=I+1

αjSj−1,j,j+1.
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Lemma 3.8 ( see Lemma 3.7 [19] ). We have

SI,I+1,...,J −
J−1
∑

j=I+1

Sj−1,j,j+1 ≥ SI,i,i+1,J − (SI,i,i+1 + Si,i+1,J )

for I < i < J − 1.

Let σ = λmaxw |f ′(w)|. For the class of fully-discrete β-schemes when m = 2,
equipped with above lemmas, we have obtained the following entropy convergence
result. The proof is similar to the one given by Jiang [9] for van Leer’s flux limiter
schemes and we omit the proof.

Theorem 3.9. The numerical solutions of the schemes (14)-(15), for the convex

problems (1), converge to the entropy solution provided that gE(·, ·) is a numerical

flux given by (5), and σ is sufficiently small.

Remark. The proof the lemma 3.7 is under the condition that the values of
(f−

j− 1
2

)(−1) and (f+
j+ 3

2

)(1) are simultaneously taken as either first, second, or the

last argument of their min mod operators. We believe that the lemma is also true
for the general case at least for large values of b, since the values of (f−

j− 1
2

)(−1)

and (f+
j+ 3

2

)(1) are mostly return to their unlimited ones respectively [13] for larger

values of b.

Proof of Lemma 3.7. In the following, we keep the same notations f±

j+ 1
2

and r±j for

{vj} instead of {uj}. We also use

(23) f ′
j+ 1

2

:=
f(vj+1)− f(vj)

vj+1 − vj

to denote the divided difference.
To justify the inequality (22), it suffices to show the following inequality:

(24)

∫ R

L

g
Γ
(w)dw −

J−1
∑

j=I

∫ vj+1

vj

f [w; vj , vj+1]dw ≤
J−1
∑

j=I+1

αjSj−1,j,j+1.

Let fs := f(vs), ∆vs+ 1
2
:= vk+1 − vs, and f ′

s+ 1
2

:= (fk+1 − fs)/∆vs+ 1
2
, where

vs is a sonic point (f ′(vs) = 0). Without loss of generality, let vk ≤ vs ≤ vk+1

for some integer k with I ≤ k ≤ J − 1. We also let 1
12f

′
s+ 1

2

≤ βf ′
k+ 3

2

, otherwise,

for the given {vi} and β, we add v′k+1, such that vk ≤ vs ≤ v′k+1 ≤ vk+1 and the

inequality 1
2f

′
s+ 1

2

≤ βf ′
k+ 3

2

holds for vs, v
′
k+1 and vk+1. Then Γ′ = Γ∪{v′k+1} is also

a normal collection and if (24) holds for Γ′, it will holds for Γ as well (we subtract
the triangle area Svk,v

′

k+1
,vk+1

from both sides of (24) that holds for Γ′). Now for

any gE(·, ·) given by (5), we have

f+
j+ 1

2

= 0, for I ≤ j ≤ k − 1;

f+
j+ 1

2

= f ′
j+ 1

2

∆vj+ 1
2
, for J − 1 ≥ j ≥ k + 1;

f−

j+ 1
2

= 0, for J − 1 ≥ j ≥ k + 1;

and
f−

j+ 1
2

= f ′
j+ 1

2

∆vj+ 1
2
, for I ≤ j ≤ k − 1.

Denote fj := f(vj), ∆vj± 1
2
= ±(vj±1 − vj), ∆vs− 1

2
:= vs − vk, f

′
s− 1

2

:= (fs −

fk)/∆vs− 1
2
. Then, by (9), we have
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(25)

LHS of (24) =

J−1
∑

j=I

gj+ 1
2
∆v̄j+ 1

2
−

J−1
∑

j=I

∫ vj+1

vj

f [w; vj , vj+1]dw

=
J−1
∑

j=I

gj+ 1
2

∆vj+ 1
2
+∆ṽj+ 1

2

2
−

J−1
∑

j=I

fj + fj+1

2
∆vj+ 1

2

=
1

2
(P(j≤k−2) + Pk−1 + Pk + Pk+1 + P(j≥k+2)),

and the definitions of P(j≤k−2), Pk−1, Pk, Pk+1 and P(j≥k+2) will be given in order.
Recall the numerical flux is defined by

gj+ 1
2

= gE
j+ 1

2

− (
1

12
+ β)(f−

j+ 3
2

)(1) − (
1

2
− 2β)(f−

j+ 1
2

)(0)

+(
1

12
− β)(f−

j− 1
2

)(−1) − (
1

12
− β)(f+

j+ 3
2

)(1)

+(
1

2
− 2β)(f+

j+ 1
2

)(0) + (
1

12
+ β)(f+

j− 1
2

)(−1),

and using the increment form (22)-(24), we have

∆ṽj+ 1
2
= ∆vj+ 1

2
− (Cj+ 1

2
+Dj+ 1

2
)∆vj+ 1

2
+Dj+ 3

2
∆vj+ 3

2
+ Cj− 1

2
∆vj− 1

2
≥ 0.

For j ≤ k − 2, we consider the value of (f−

j− 1
2

)(−1) = mm[ f−

j− 1
2

, b f−

j+ 1
2

, b f−

j+ 3
2

]

in three cases separately. In other words, case 1. (f−

j− 1
2

)(−1) = f−

j− 1
2

, case 2.

(f−

j− 1
2

)(−1) = b f−

j+ 1
2

, and case 3. (f−

j− 1
2

)(−1) = b f−

j+ 3
2

. Using the relations

k−2
∑

j=I

(
1

6
− 2β)f ′

j− 1
2

∆vj− 1
2
∆vj+ 1

2

=

k−2
∑

j=I

(
1

6
− 2β)f ′

j+ 1
2

∆vj+ 1
2
∆vj+ 3

2
− (

1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2
,

and
k−2
∑

j=I

2βf ′
j+ 1

2

∆v2
j+ 1

2

=

k−2
∑

j=I

2βf ′
j+ 3

2

∆v2
j+ 3

2

− 2βf ′
k− 1

2

∆v2
k− 1

2

,

for case 1., we have

k−2
∑

j=I

[−(
1

6
− 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
− 4βf ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
+ 4βf ′

j+ 1
2

∆v2
j+ 1

2

+(
1

6
− 2β)(f−

j− 1
2

)(−1)∆vj+ 1
2
]

≤
k−2
∑

j=I

[ (
1

6
− 2β)(f ′

j+ 1
2

− f ′
j+ 3

2

)∆vj+ 1
2
∆vj+ 3

2
+ 2βf ′

j+ 3
2

(∆vj+ 1
2
−∆vj+ 3

2
)2 ]

−2βf ′
k− 1

2

∆v2
k− 1

2

− (
1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2

≤ −2βf ′
k− 1

2

∆v2
k− 1

2

− (
1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2
;
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for case 2., we have

k−2
∑

j=I

[−(
1

6
+ 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
+ 4βf ′

j+ 1
2

∆v2
j+ 1

2

+ (
1

6
− 2β)(f−

j− 1
2

)(−1)∆vj+ 1
2
]

≤
k−2
∑

j=I

[−(
1

6
+ 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
+ 4βf ′

j+ 1
2

∆v2
j+ 1

2

+ (
1

6
− 2β)f ′

j+ 1
2

∆v2
j+ 1

2

]

=

k−2
∑

j=I

(
1

6
+ 2β)[−f ′

j+ 3
2

∆vj+ 1
2
∆vj+ 3

2
+ f ′

j+ 1
2

∆v2
j+ 1

2

]

≤
k−2
∑

j=I

(
1

12
+ β)f ′

j+ 3
2

(∆vj+ 1
2
−∆vj+ 3

2
)2 − (

1

12
+ β)f ′

k− 1
2

∆v2
k− 1

2

≤− (
1

12
+ β)f ′

k− 1
2

∆v2
k− 1

2

;

for case 3., we have

k−2
∑

j=I

[−(
1

6
+ 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
+ 4βf ′

j+ 1
2

∆v2
j+ 1

2

+(
1

6
− 2β)(f−

j− 1
2

)(−1)∆vj+ 1
2
]

≤
k−2
∑

j=I

[−(
1

6
+ 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
+ 4βf ′

j+ 1
2

∆v2
j+ 1

2

+(
1

6
− 2β)f ′

j+ 3
2

∆vj+ 1
2
∆vj+ 3

2
]

=

k−2
∑

j=I

4β[−f ′
j+ 3

2

∆vj+ 1
2
∆vj+ 3

2
+ f ′

j+ 1
2

∆v2
j+ 1

2

]

≤
k−2
∑

j=I

2βf ′
j+ 3

2

(∆vj+ 1
2
−∆vj+ 3

2
)2 − 2βf ′

k− 1
2

∆v2
k− 1

2

≤ −2βf ′
k− 1

2

∆v2
k− 1

2

.

Let

T := [ fk−1 − (
1

12
+ β)f ′

k− 1
2

∆vk− 1
2
− (

1

2
− 2β)f ′

k− 3
2

∆vk− 3
2
]Dk− 1

2
∆vk− 1

2
,

then

k−2
∑

j=I

[ fj+1∆vj+ 3
2
− (

1

12
+ β)f ′

j+ 3
2

∆v2
j+ 3

2

− (
1

2
− 2β)f ′

j+ 1
2

∆vj+ 1
2
∆vj+ 3

2
]Dj+ 3

2

=

k−2
∑

j=I

[ fj∆vj+ 1
2
− (

1

12
+ β)f ′

j+ 1
2

∆v2
j+ 1

2

− (
1

2
− 2β)f ′

j− 1
2

∆vj− 1
2
∆vj+ 1

2
]Dj+ 1

2
+ T.
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We also denote

case 1. T(j≤k−2) := −2βf ′
k− 1

2

∆v2
k− 1

2

− (
1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2
+ T,

case 2. T(j≤k−2) := −(
1

12
+ β)f ′

k− 1
2

∆v2
k− 1

2

+ T,

case 3. T(j≤k−2) := −2βf ′
k− 1

2

∆v2
k− 1

2

+ T ;

and

dj := −(
7

12
+ 3β)f ′

j+ 1
2

∆v2
j+ 1

2

+ (
1

12
+ β)f ′

j+ 3
2

∆vj+ 1
2
∆vj+ 3

2

− (
1

2
− 2β)f ′

j− 1
2

∆vj− 1
2
∆vj+ 1

2
.

With these definitions and the convexity of the flux in mind, we have derived
the following estimates.

P(j≤k−2) :=
k−2
∑

j=I

{gj+ 1
2
[ ∆vj+ 1

2
+∆ṽj+ 1

2
]− (fj + fj+1)∆vj+ 1

2
}

(26)

=

k−2
∑

j=I

{[ gE
j+ 1

2

− (
1

12
+ β)(f−

j+ 3
2

)(1) − (
1

2
− 2β)(f−

j+ 1
2

)(0)

+ (
1

12
− β)(f−

j− 1
2

)(−1) ][ 2∆vj+ 1
2
−Dj+ 1

2
∆vj+ 1

2

+Dj+ 3
2
∆vj+ 3

2
]− (fj + fj+1)∆vj+ 1

2
}

≤
k−2
∑

j=I

{[ gE
j+ 1

2

− (
1

12
+ β)f−

j+ 3
2

− (
1

2
− 2β)f−

j+ 1
2

+ (
1

12
− β)(f−

j− 1
2

)(−1) ][ 2∆vj+ 1
2
−Dj+ 1

2
∆vj+ 1

2

+Dj+ 3
2
∆vj+ 3

2
]− (fj + fj+1)∆vj+ 1

2
}

≤
k−2
∑

j=I

{[ 2fj+1 − (fj + fj+1) ]∆vj+ 1
2
− (

1

6
+ 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2

− (1 − 4β)f ′
j+ 1

2

∆v2
j+ 1

2

+ (
1

6
− 2β)(f−

j− 1
2

)(−1)∆vj+ 1
2
}

−
k−2
∑

j=I

[ fj+1∆vj+ 1
2
− (

1

12
+ β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
− (

1

2
− 2β)f ′

j+ 1
2

∆v2
j+ 1

2

]Dj+ 1
2

+

k−2
∑

j=I

[ fj+1∆vj+ 3
2
− (

1

12
+ β)f ′

j+ 3
2

∆v2
j+ 3

2

− (
1

2
− 2β)f ′

j+ 1
2

∆vj+ 1
2
∆vj+ 3

2
]Dj+ 3

2

=

k−2
∑

j=I

[−(
1

6
− 2β)f ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
− 4βf ′

j+ 3
2

∆vj+ 3
2
∆vj+ 1

2
+ 4βf ′

j+ 1
2

∆v2
j+ 1

2

+ (
1

6
− 2β)(f−

j− 1
2

)(−1)∆vj+ 1
2
] + T +

k−2
∑

j=I

[−(
7

12
+ 3β)f ′

j+ 1
2

∆v2
j+ 1

2

+ (
1

12
+ β)f ′

j+ 3
2

∆vj+ 1
2
∆vj+ 3

2
− (

1

2
− 2β)f ′

j− 1
2

∆vj− 1
2
∆vj+ 1

2
]Dj+ 1

2
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≤







case 1. T(j≤k−2)

case 2. T(j≤k−2)

case 3. T(j≤k−2)

+

k−2
∑

j=I

djDj+ 1
2
.

Similarly, for j ≥ k+2, we consider the value of (f+
j+ 3

2

)(1) = mm[ f+
j+ 3

2

, b f+
j+ 1

2

, b f+
j− 1

2

]

in three cases. For case 1., we have (f+
j+ 3

2

)(1) = f+
j+ 3

2

and

J−1
∑

j=k+2

{[ fj − (
1

12
− β)(f+

j+ 3
2

)(1) + (
1

2
− 2β)f+

j+ 1
2

+ (
1

12
+ β)f+

j− 1
2

]2∆vj+ 1
2

−(fj + fj+1)∆vj+ 1
2
}

≤
J−1
∑

j=k+2

[−4βf ′
j+ 1

2

∆v2
j+ 1

2

+ 4βf ′
j+ 1

2

∆vj+ 1
2
∆vj+ 3

2
]

+(
1

6
+ 2β)f ′

k+ 3
2

∆vk+ 3
2
∆vk+ 5

2

≤ −2βf ′
k+ 5

2

∆v2
k+ 5

2

+ (
1

6
+ 2β)f ′

k+ 3
2

∆vk+ 3
2
∆vk+ 5

2
;

for case 2., we have (f+
j+ 3

2

)(1) = bf+
j+ 1

2

and

J−1
∑

j=k+2

{[ fj − (
1

12
− β)(f+

j+ 3
2

)(1) + (
1

2
− 2β)f+

j+ 1
2

+ (
1

12
+ β)f+

j− 1
2

]2∆vj+ 1
2

−(fj + fj+1)∆vj+ 1
2
}

≤
J−1
∑

j=k+2

[−(
1

6
+ 2β)f ′

j+ 1
2

∆v2
j+ 1

2

+ (
1

6
+ 2β)f ′

j− 1
2

∆vj− 1
2
∆vj+ 1

2
]

≤ (
1

12
+ β)f ′

k+ 3
2

∆v2
k+ 3

2

;

for case 3., we have (f+
j+ 3

2

)(1) = bf+
j− 1

2

and

J−1
∑

j=k+2

{[ fj − (
1

12
− β)(f+

j+ 3
2

)(1) + (
1

2
− 2β)f+

j+ 1
2

+ (
1

12
+ β)f+

j− 1
2

]2∆vj+ 1
2

−(fj + fj+1)∆vj+ 1
2
}

≤
J−1
∑

j=k+2

[−4βf ′
j+ 1

2

∆v2
j+ 1

2

+ 4βf ′
j− 1

2

∆vj− 1
2
∆vj+ 1

2
]

≤ 2βf ′
k+ 3

2

∆v2
k+ 3

2

.

let

J := [ fk+2 + (
1

2
− 2β)f+

k+ 5
2

+ (
1

12
+ β)f+

k+ 3
2

]Ck+ 3
2
∆vk+ 3

2
,

then we have

J−1
∑

k+2

[ fj + (
1

2
− 2β)f+

j+ 1
2

+ (
1

12
+ β)f+

j− 1
2

]Cj− 1
2
∆vj− 1

2

=

J−1
∑

k+2

[ fj+1 + (
1

2
− 2β)f+

j+ 3
2

+ (
1

12
+ β)f+

j+ 1
2

]Cj+ 1
2
∆vj+ 1

2
+ J.
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With the following notations,

cj := (
7

12
+ 3β)f ′

j+ 1
2

∆v2
j+ 1

2

+ (
7

12
− 3β)f ′

j+ 3
2

∆vj+ 1
2
∆vj+ 3

2

− (
1

12
+ β)f ′

j− 1
2

∆vj− 1
2
∆vj+ 1

2
;

and

case 1. J(j≥k+2) := −2βf ′
k+ 5

2

∆v2
k+ 5

2

+ (
1

6
+ 2β)f ′

k+ 3
2

∆vk+ 3
2
∆vk+ 5

2
+ J,

case 2. J(j≥k+2) := (
1

12
+ β)f ′

k+ 3
2

∆v2
k+ 3

2

+ J,

case 3. J(j≥k+2) := 2βf ′
k+ 3

2

∆v2
k+ 3

2

+ J ;

we obtain

P(j≥k+2) :=

J−1
∑

j=k+2

{gj+ 1
2
[ ∆vj+ 1

2
+∆ṽj+ 1

2
]− (fj + fj+1)∆vj+ 1

2
}

=
J−1
∑

j=k+2

{[ gE
j+ 1

2

− (
1

12
− β)(f+

j+ 3
2

)(1) + (
1

2
− 2β)(f+

j+ 1
2

)(0)

+(
1

12
+ β)(f+

j− 1
2

)(−1) ][ 2∆vj+ 1
2
− Cj+ 1

2
∆vj+ 1

2
+ Cj− 1

2
∆vj− 1

2
]

−(fj + fj+1)∆vj+ 1
2
}

≤
J−1
∑

j=k+2

{[ fj − (
1

12
− β)(f+

j+ 3
2

)(1) + (
1

2
− 2β)f+

j+ 1
2

+ (
1

12
+ β)f+

j− 1
2

]

×[ 2∆vj+ 1
2
− Cj+ 1

2
∆vj+ 1

2
+ Cj− 1

2
∆vj− 1

2
]

−(fj + fj+1)∆vj+ 1
2
}

≤







case 1. J(j≥k+2)

case 2. J(j≥k+2)

case 3. J(j≤k+2)

+
J−1
∑

j=k+2

cjCj+ 1
2
.

Now, we compute the (k − 1)th, kth and (k + 1)th terms of the LHS of (24)
defined by Pk−1, Pk and Pk+1 respectively as follows.

Pk−1 := gk− 1
2
[ ∆vk− 1

2
+∆ṽk− 1

2
]− (fk−1 + fk)∆vk− 1

2

= [ gE
k− 1

2

− (
1

12
+ β)(f−

k+ 1
2

)(1) − (
1

2
− 2β)(f−

k− 1
2

)(0)

+(
1

12
− β)(f−

k− 3
2

)(−1) ][2∆vk− 1
2
−Dk− 1

2
∆vk− 1

2

+Dk+ 1
2
∆vk+ 1

2
]− (fk−1 + fk)∆vk− 1

2

≤ [ fk − (
1

12
+ β)f−

k+ 1
2

− (
1

2
− 2β)f−

k− 1
2

+ (
1

12
− β)(f−

k− 3
2

)(−1) ]

[ 2∆vk− 1
2
−Dk− 1

2
∆vk− 1

2
+Dk+ 1

2
∆vk+ 1

2
]− (fk−1 + fk)∆vk− 1

2

≤







case 1. Pk−1

case 2. Pk−1

case 3. Pk−1

− [ fk − (
1

12
+ β)f−

k+ 1
2

− (
1

2
− 2β)f−

k− 1
2

]Dk− 1
2
∆vk− 1

2

+[ fk − (
1

12
+ β)f−

k+ 1
2

− (
1

2
− 2β)f−

k− 1
2

]Dk+ 1
2
∆vk+ 1

2
,
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where

case 1. Pk−1 := 4βf ′
k− 1

2

∆v2
k− 1

2

− (
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2

+(
1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2
,

case 2. Pk−1 := (
1

6
+ 2β)f ′

k− 1
2

∆v2
k− 1

2

− (
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2
,

case 3. Pk−1 := 4βf ′
k− 1

2

∆v2
k− 1

2

− 4βf ′
s− 1

2

∆vs− 1
2
∆vk− 1

2
.

Pk := gE
k+ 1

2

[ 2∆vk+ 1
2
−Dk+ 1

2
∆vk+ 1

2
− Ck+ 1

2
∆vk+ 1

2
]

−(fk + fk+1)∆vk+ 1
2

= fs[ 2∆vk+ 1
2
−Dk+ 1

2
∆vk+ 1

2
− Ck+ 1

2
∆vk+ 1

2
]

−(fk + fk+1)∆vk+ 1
2

= f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−fs∆vk+ 1
2
Dk+ 1

2
− fs∆vk+ 1

2
Ck+ 1

2
,

and

Pk+1 := [ gE
k+ 3

2

− (
1

12
− β)(f+

k+ 5
2

)(1) + (
1

2
− 2β)(f+

k+ 3
2

)(0)

+(
1

12
+ β)(f+

k+ 1
2

)(−1) ][ 2∆vk+ 3
2
− Ck+ 3

2
∆vk+ 3

2
+ Ck+ 1

2
∆vk+ 1

2
]

−(fk+1 + fk+2)∆vk+ 3
2

≤ [ fk+1 − (
1

12
− β)(f+

k+ 5
2

)(1) + (
1

2
− 2β)f+

k+ 3
2

+ (
1

12
+ β)f+

k+ 1
2

]

[ 2∆vk+ 3
2
− Ck+ 3

2
∆vk+ 3

2
+ Ck+ 1

2
∆vk+ 1

2
]− (fk+1 + fk+2)∆vk+ 3

2

≤







case 1. Pk+1

case 2. Pk+1

case 3. Pk+1

−[ fk+1∆vk+ 3
2
+ (

1

2
− 2β)f+

k+ 3
2

∆vk+ 3
2

+(
1

12
+ β)f+

k+ 1
2

∆vk+ 3
2
]Ck+ 3

2

+[ fk+1∆vk+ 1
2
+ (

1

2
− 2β)f+

k+ 3
2

∆vk+ 1
2

+(
1

12
+ β)f+

k+ 1
2

∆vk+ 1
2
]Ck+ 1

2
,

where,

case 1. Pk+1 := −4βf ′
k+ 3

2

∆v2
k+ 3

2

− (
1

6
− 2β)f ′

k+ 5
2

∆vk+ 3
2
∆vk+ 5

2

+(
1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
,

case 2. Pk+1 := −(
1

6
+ 2β)f ′

k+ 3
2

∆v2
k+ 3

2

+ (
1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
,

case 3. Pk+1 := −4βf ′
k+ 3

2

∆v2
k+ 3

2

+ 4βf ′
s+ 1

2

∆vs+ 1
2
∆vk+ 3

2
.
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Next, we combine the estimations of T(j≤k−2), T(j≥k+2), Pk−1, Pk, and Pk+1 into
one estimation. We consider three cases separately. Let

dk−1 := −(
7

12
+ 3β)f ′

k− 1
2

∆v2
k− 1

2

− (
1

2
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2

+(
1

12
+ β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2
,

dk := −(
13

12
+ β)f ′

s− 1
2

∆vs− 1
2
∆vk+ 1

2
− (

1

2
− 2β)f ′

k− 1
2

∆vk− 1
2
∆vk+ 1

2
,

ck := (
13

12
+ β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2
+ (

1

2
− 2β)f ′

k+ 3
2

∆vk+ 1
2
∆vk+ 3

2
,

ck+1 := (
7

12
+ 3β)f ′

k+ 3
2

∆v2
k+ 3

2

+ (
1

2
− 2β)f ′

k+ 5
2

∆vk+ 3
2
∆vk+ 5

2

−(
1

12
+ β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
.

First, for the case 1.

(27)

case 1.T (k) := case 1.T(j≤k−2) + Pk

+case 1.Pk−1 + case 1.Pk+1 + case 1.T(j≥k+2)

= −2βf ′
k− 1

2

∆v2
k− 1

2

− (
1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2

+f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

+4βf ′
k− 1

2

∆v2
k− 1

2

− (
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2
+ (

1

6
− 2β)f ′

k− 3
2

∆vk− 3
2
∆vk− 1

2

−4βf ′
k+ 3

2

∆v2
k+ 3

2

− (
1

6
− 2β)f ′

k+ 5
2

∆vk+ 3
2
∆vk+ 5

2
+ (

1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2

−2βf ′
k+ 5

2

∆v2
k+ 5

2

+ (
1

6
+ 2β)f ′

k+ 3
2

∆vk+ 3
2
∆vk+ 5

2

+dk−1Dk− 1
2
+ dkDk+ 1

2
+ ckCk+ 1

2
+ ck+1Ck+ 3

2

≤ case 1.T1(k) + T2(k)

≤ T2(k),

where

case 1.T1(k) := 2βf ′
k− 1

2

∆v2
k− 1

2

+ f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−(
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2
− 4βf ′

k+ 3
2

∆v2
k+ 3

2

− (
1

6
− 2β)f ′

k+ 5
2

∆vk+ 3
2
∆vk+ 5

2

+(
1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
− 2βf ′

k+ 5
2

∆v2
k+ 5

2

+ (
1

6
+ 2β)f ′

k+ 3
2

∆vk+ 3
2
∆vk+ 5

2
,

and

T2(k) := dk−1Dk− 1
2
+ dkDk+ 1

2
+ ckCk+ 1

2
+ ck+1Ck+ 3

2
.

Also, in the estimation of case 1. T1(k), we use the following inequalities.

(
1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
≤ (

1

12
+ β)f ′

s+ 1
2

∆v2
s+ 1

2

+ (
1

12
+ β)f ′

s+ 1
2

∆v2
k+ 3

2

,

and

−(
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2
≤ −(

1

12
+ β)f ′

s− 1
2

∆v2
s− 1

2

− (
1

12
+ β)f ′

s− 1
2

∆v2
k− 1

2

,
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where we have used inequality of 2ab ≤ a2+ b2 for any real numbers a and b. Using
the fact that ∆vk+ 1

2
= ∆vs+ 1

2
+∆vs− 1

2
, we have

f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
= f ′

s− 1
2

∆v2
s− 1

2

+ f ′
s− 1

2

∆vs− 1
2
∆vs+ 1

2
,

−f ′
s+ 1

2

∆vs+ 1
2
∆vk+ 1

2
= −f ′

s+ 1
2

∆v2
s+ 1

2

− f ′
s+ 1

2

∆vs− 1
2
∆vs+ 1

2
,

and

case 1.T1(k)

= −(
1

6
− 2β)(f ′

k+ 5
2

− f ′
k+ 3

2

)∆vk+ 3
2
∆vk+ 5

2
+ 2βf ′

k− 1
2

∆v2
k− 1

2

+f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−(
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2

+(
1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
− 4βf ′

k+ 3
2

∆v2
k+ 3

2

+4βf ′
k+ 3

2

∆vk+ 3
2
∆vk+ 5

2
− 2βf ′

k+ 5
2

∆v2
k+ 5

2

≤ 2βf ′
k− 1

2

∆v2
k− 1

2

+ f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−(
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2

+(
1

12
+ β)f ′

s+ 1
2

∆v2
s+ 1

2

+ (
1

12
+ β)f ′

s+ 1
2

∆v2
k+ 3

2

− 2βf ′
k+ 3

2

∆v2
k+ 3

2

≤ 2βf ′
k− 1

2

∆v2
k− 1

2

+ f ′
s− 1

2

∆v2
s− 1

2

+ f ′
s− 1

2

∆vs− 1
2
∆vs+ 1

2

−(
11

12
− β)f ′

s+ 1
2

∆v2
s+ 1

2

− f ′
s+ 1

2

∆vs− 1
2
∆vs+ 1

2
− (

1

12
+ β)f ′

s− 1
2

∆v2
s− 1

2

−(
1

12
+ β)f ′

s− 1
2

∆v2
k− 1

2

− βf ′
k+ 3

2

∆v2
k+ 1

2

+
1

12
f ′
s+ 1

2

∆v2
k+ 3

2

≤ (2βf ′
k− 1

2

− (
1

12
+ β)f ′

s− 1
2

)∆v2
k− 1

2

+ (
11

12
− β)f ′

s− 1
2

∆v2
s− 1

2

≤ 0.

Second, for the case 2., using the following relationships

f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
= f ′

s− 1
2

∆v2
s− 1

2

+ f ′
s− 1

2

∆vs− 1
2
∆vs+ 1

2

≤ (
1

12
+ β)f ′

s− 1
2

∆v2
s− 1

2

and

−f ′
s+ 1

2

∆vs+ 1
2
∆vk+ 1

2
= −f ′

s+ 1
2

∆v2
s+ 1

2

− f ′
s+ 1

2

∆vs− 1
2
∆vs+ 1

2

≤ −(
1

12
+ β)f ′

s+ 1
2

∆v2
s+ 1

2

,
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we have,

case 2.T1(k)

:= case 2.T(j≤k−2) + case 2.Pk−1 + Pk + case 2.Pk+1 + case 2.T(j≥k+2)

= −(
1

12
+ β)f ′

k− 1
2

∆v2
k− 1

2

+ (
1

6
+ 2β)f ′

k− 1
2

∆v2
k− 1

2

−(
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2

+f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−(
1

6
+ 2β)f ′

k+ 3
2

∆v2
k+ 3

2

+ (
1

6
+ 2β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2

+(
1

12
+ β)f ′

k+ 3
2

∆v2
k+ 3

2

= (
1

12
+ β)f ′

k− 1
2

∆v2
k− 1

2

− (
1

6
+ 2β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2

+f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−(
1

12
+ β)f ′

k+ 3
2

∆v2
k+ 3

2

+ 2(
1

12
+ β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2

≤ (
1

12
+ β)f ′

k− 1
2

∆v2
k− 1

2

− 2(
1

12
+ β)f ′

s− 1
2

∆vs− 1
2
∆vk− 1

2

+(
1

12
+ β)f ′

s− 1
2

∆v2
s− 1

2

− (
1

12
+ β)f ′

s+ 1
2

∆v2
s+ 1

2

+2(
1

12
+ β)f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 3

2
− (

1

12
+ β)f ′

k+ 3
2

∆v2
k+ 3

2

≤ 0.

Thus,

case 2.T (k) := case 2.T1(k) + T2(k) ≤ T2(k).(28)

Third, for the case 3., we have,

case 3.T1(k)

:= case 3.T(j≤k−2) + case 3.Pk−1 + Pk + case 3.Pk+1 + case 3.T(j≥k+2)

= −2βf ′
k− 1

2

∆v2
k− 1

2

+ 4βf ′
k− 1

2

∆v2
k− 1

2

− 4βf ′
s− 1

2

∆vs− 1
2
∆vk− 1

2

+f ′
s− 1

2

∆vs− 1
2
∆vk+ 1

2
− f ′

s+ 1
2

∆vs+ 1
2
∆vk+ 1

2

−4βf ′
k+ 3

2

∆v2
k+ 3

2

+ 4βf ′
s+ 1

2

∆vs+ 1
2
∆vk+ 3

2
+ 2βf ′

k+ 3
2

∆v2
k+ 3

2

= 2βf ′
k− 1

2

∆v2
k− 1

2

− 4βf ′
s− 1

2

∆vs− 1
2
∆vk− 1

2

+2βf ′
s− 1

2

∆v2
s− 1

2

+ (1 − 2β)f ′
s− 1

2

∆v2
s− 1

2

+ f ′
s− 1

2

∆vs− 1
2
∆vs+ 1

2

−2βf ′
s+ 1

2

∆v2
s+ 1

2

− (1− 2β)f ′
s+ 1

2

∆v2
s+ 1

2

− f ′
s+ 1

2

∆vs− 1
2
∆vs+ 1

2

−2βf ′
k+ 3

2

∆v2
k+ 3

2

+ 4βf ′
s+ 1

2

∆vs+ 1
2
∆vk+ 3

2

≤ 2βf ′
s− 1

2

(∆vk− 1
2
−∆vs− 1

2
)2 − 2βf ′

s+ 1
2

(∆vk+ 3
2
−∆vs+ 1

2
)2

≤ 0,

and

case 3.T (k) := case 3.T1(k) + T2(k) ≤ T2(k).(29)
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Finally, using (25), (26), (27), (27), (27), (27), (27), (28), and (29), we have

LHS of (24) =

J−1
∑

j=I

gj+ 1
2
∆v̄j+ 1

2
−

J−1
∑

j=I

∫ vj+1

vj

f [w; vj , vj+1]dw

=
1

2
(P(j≤k−2) + Pk−1 + Pk + Pk+1 + P(j≥k+2))

≤
1

2
{
k−2
∑

j=I

djDj+ 1
2
+

J−1
∑

j=k+2

cjCj+ 1
2
+ T2(k)}

=
1

2
{

k
∑

j=I

djDj+ 1
2
+

J−1
∑

j=k

cjCj+ 1
2
}.

Clearly, for sufficiently small σΓ, it is feasible that

LHS of (24) ≤
1

2

J−1
∑

j=I+1

Sj−1,j,j+1 ≤
J−1
∑

j=I+1

αjSj−1,j,j+1.

Thus, we have completed the proof of Lemma 3.7. �

Acknowledgment. The author thanks the referees for their constructive com-
ments and suggestions that help to improve the presentation of the paper.

References

[1] S. Chakravarthy and S. Osher, A New Class of High Accuracy TVD Schemes for Hyperbolic
Conservation Laws, AIAA paper, 1-11, 23rd Aerospace Science Meeting (1985), Reno, Nevada

[2] S. Chakravarthy and S. Osher, Computing with High Resolution Upwind Schemes for Hy-
perbolic Equations, Proceedings of AMS-SIAM 1983.

[3] B. Engquist and S. Osher, Stable and entropy satisfying approximations for transonic flow
calculations, Math. Comp., 34 (1980), pp. 45-75.

[4] S. K. Godunov, Finite-difference method for numerical computation of discontinuous solu-
tions of the equations of fluid dynamics, Mat. Sbornik, 47 (1959), pp. 271-306.

[5] A. Harten, High resolution schemes for hyperbolic conservative laws, J. Comput. Phys., 49
(1983), 357-393.

[6] N. Jiang, The Convergence of α Schemes for Conservation Laws II: Fully-Discrete Case,
Methods and Applications of Analysis 19 (2014), No. 2 pp. 201-220.

[7] N. Jiang, The Convergence of α Schemes for Conservation Laws I: Semi-Discrete Case, Meth-
ods and Applications of Analysis Vol. 21 (2012), No. 4 pp. 341-358.

[8] N. Jiang, On the convergence of Semi-discrete High Resolution Schemes with Superbee flux
limiter for Conservation laws, Series in Contemporary Applied Mathematics CAM 18, Hyper-
bolic Problems (Theory, Numerics and Applications) ISBN 978-7-04-034536-0, Vol. 2 (2012),
431-438

[9] N. Jiang, On the Convergence of Fully-discrete High-Resolution Schemes with van Leer’s flux
limiter for Conservation laws, Methods and Applications of Analysis Vol. 16 (2009), No. 3,
403-422

[10] N. Jiang and H. Yang, On Convergence of Semi-Discrete High Resolution Schemes with van
Leer’s Flux Limiter for Conservation Laws, Methods and Applications of Analysis Vol. 12
(2005), No. 1 pp. 089-102.

[11] P. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960),

217-237.
[12] P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock

Waves, SIAM Regional Conference Series in Applied Mathematics, 11, (1972)
[13] S. Osher and S. Chakravarthy, Very High Order Accurate TVD Schemes, Journal of Oscil-

lation theory, computation, and methods of compensated compactness, (1986), 229-274
[14] S. Osher and S. Chakravarthy, High resolution schemes and entropy condition, SIAM J.

Numer. Anal. 21 (1984), 955-984.



CONVERGENCE OF β-SCHEMES 125

[15] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,
SIAM J. Numer. Anal. 21 (1984), 995-1011.

[16] E. Tadmor, Convenient total variation diminishing conditions for nonlinear difference
schemes, SIAM J. Numer. Anal. 25 (1988), 1002-1014.

[17] H.Yang and N. Jiang, On Wavewise Entropy Inequalities for High-Resolution Schemes with
Source Terms I: The Semi-Discrete Case, Methods and Applications of Analysis Vol. 10
(2003), No. 4 pp. 487-512.

[18] H.Yang, On Wavewise Entropy Inequalities for High-Resolution Schemes I: The Semi-
Discrete Case, Math. Comp. 65 (1996), 45-67.

[19] H.Yang, On Wavewise Entropy Inequalities for High Resolution Schemes II: Fully Discrete
MUSCL Schemes with Exact Evolution in Small Time, SIAM. J. Numer. Anal. 36 (1999)
No. 1, 1-31.

Department of Mathematical Sciences of University of South Dakota, Vermillion SD 57069
E-mail : njiang@usd.edu


