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NUMERICAL ANALYSIS AND TESTING OF A FULLY

DISCRETE, DECOUPLED PENALTY-PROJECTION

ALGORITHM FOR MHD IN ELSÄSSER VARIABLE
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(Communicated by Max Gunzburger)

Abstract. We consider a fully discrete, efficient algorithm for magnetohydrodynamic (MHD)

flow that is based on the Elsässer variable formulation and a timestepping scheme that decouples
the MHD system but still provides unconditional stability with respect to the timestep. We prove

stability and optimal convergence of the scheme, and also connect the scheme to one based on
handling each decoupled system with a penalty-projection method. Numerical experiments are

given which verify all predicted convergence rates of our analysis on some analytical test problems,

show the results of the scheme on a set of channel flow problems match well the results found when
the computation is done with MHD in primitive variable, and finally show the scheme performs

well on a channel flow over a step.

Key words. Magnetohydrodynamics, Elsässer variables, Penalty-projection method, finite ele-

ment method

1. Introduction

We consider the efficient and accurate numerical approximation of magnetohy-
drodynamic (MHD) flow, which is governed by the system of evolution equations
[19, 5]

ut + (u · ∇)u− s(B · ∇)B − ν∆u+∇p = f,(1)

∇ · u = 0,(2)

Bt + (u · ∇)B − (B · ∇)u− νm∆B +∇λ = ∇× g,(3)

∇ ·B = 0,(4)

in Ω × (0, T ), where Ω is the domain of the fluid, u is the velocity of the fluid,
p is a modified pressure, B is the magnetic field, s is the coupling number, ν is
the kinematic viscosity, νm is the magnetic resistivity, f is the body force, and
∇× g is the forcing on the magnetic field. The physical principles governing such
flows are that when an electrically conducting fluid moves in a magnetic field,
the magnetic field induces currents in the fluid, which in turn creates forces on
the fluid and also alters the magnetic field. In the recent years, the study of MHD
flows has become important due to applications in, e.g. astrophysics and geophysics
[17, 23, 12, 10, 4, 6], liquid metal cooling of nuclear reactors [3, 15, 26], and process
metallurgy [8].

A fundamental difficulty in simulating MHD flow is solving the fully coupled
linear systems that arise in common discretizations of (1)-(4). It is an open problem
how to decouple the equations in an unconditionally stable way (with respect to
the timestep size), and thus timestepping methods that decouple the equations
are prone to unstable behavior without using excessively small timestep sizes. To
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confront this issue, an excellent idea was presented by Trenchea in [27]: if one
rewrites the MHD system in terms of Elsässer variables (defined below), then an
unconditionally stable, decoupled, timestepping algorithm can be created. Analysis
of this algorithm in a semidiscrete setting (temporal discretization only) with a
defect correction method was performed in [28], but no numerical experiments
were performed beyond convergence rate verification. The purpose of this paper is
1) to analyze and test Trenchea’s algorithm in a fully discrete setting, i.e. together
with a finite element spatial discretization, 2) to extend the algorithm and analysis
to a more efficient class of timestepping algorithms (penalty-projection type), and
3) test the algorithms on some benchmark problems and compare to simulations
with primitive variables.

The Elsässer formulation of MHD was first proposed by W. Elsässer in 1950
[11], and since then has been used in several analytical studies, e.g. [25, 9, 22]. To
derive it, begin by splitting the magnetic field into two parts,

√
sB =:

√
sB0 +

√
sb

(mean and fluctuation, respectively), with B0 = B0(t). For boundary conditions,
we assume the Dirichlet condition B = B0 on ∂Ω, and homogeneous Dirichlet
conditions for the velocity, u = 0, and magnetic field fluctuations, b = 0. The
system (1)-(4) can now be written as

ut + (u · ∇)u− s(B0 · ∇)b− s(b · ∇)b− ν∆u+∇p = f,(5)

∇ · u = 0,(6)

bt + (u · ∇)b− (B0 · ∇)u− (b · ∇)u− νm∆b+∇λ = ∇× g − dB0

dt
,(7)

∇ · b = 0.(8)

Rescaling (7) by
√
s, adding (subtracting) (5) to (from) (7) and setting f1 :=

f +∇× g− dB0

dt , f2 := f −
√
s(∇× g+ dB0

dt ), q := p+
√
sλ and r := p−

√
sλ gives

(u+
√
sb)t + (u · ∇)(u+

√
sb)− (

√
sB0 · ∇)(u+

√
sb)

−(
√
sb · ∇)(u+

√
sb)− ν∆u− νm∆(

√
sb) +∇q = f1,

∇ · (u+
√
sb) = 0,

(u−
√
sb)t + (u · ∇)(u−

√
sb) + (

√
sB0 · ∇)(u−

√
sb)

+(
√
sb · ∇)(u−

√
sb)− ν∆u+ νm∆(

√
sb) +∇r = f2,

∇ · (u−
√
sb) = 0.

Now defining v = u +
√
sb, w = u −

√
sb, B̃0 =

√
sB0 produces the Elsässer

formulation

vt + w · ∇v − (B̃0 · ∇)v +∇q − ν + νm
2

∆v − ν − νm
2

∆w = f1,(9)

∇ · v = 0,(10)

wt + v · ∇w + (B̃0 · ∇)w +∇r − ν + νm
2

∆w − ν − νm
2

∆v = f2,(11)

∇ · w = 0.(12)

This paper is arranged as follows. In section 2, we provide notation and math-
ematical preliminaries that will allow for a smooth analysis to follow. Section
3 presents the fully discrete scheme, and proves stability and convergence for it.
Section 4 presents a penalty-projection variation of the scheme, and proves it is
equivalent to the scheme of Section 3 when the the penalty parameter is large.
Section 5 presents numerical experiments and conclusions are drawn in section 6.
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2. Notation and Preliminaries

In this paper, we assume that Ω ⊂ Rd, d ∈ 2, 3, is a polygonal or polyhedral
domain with boundary ∂Ω. We denote the usual L2(Ω) norm and its inner product
by ‖.‖ and (., .) respectively. The Lp(Ω) norms and the Sobolev W k

p (Ω) norms are
denoted by ‖.‖Lp and ‖.‖Wk

p (Ω) respectively for k ∈ N, 1 ≤ p ≤ ∞. In particular,

Hk(Ω) is used to represent the Sobolev space W k
2 (Ω). ‖.‖Hk and |.|k denote the

norm and the seminorm in Hk(Ω).
For X being a normed function space in Ω, Lp(0, t;X) is the space of all functions

defined on (0, t)× Ω for which the norm

‖u‖Lp(0,t;X) =

(∫ t

0

‖u‖pXdt
)1/p

, p ∈ [1,∞)

is finite. For p =∞, the usual modification is used in the definition of this space.
The natural function spaces for our problem are

X := H1
0 (Ω) = {v ∈ (L2(Ω))d : ∇v ∈ L2(Ω)d×d, v = 0 on ∂Ω},

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0},

Y := {v ∈ H1(Ω) : v · n = 0 on ∂Ω}
where n denote the outward unit normal vector normal to the boundary ∂Ω. For
f an element in the dual space of X, its norm is defined by

‖f‖−1 = sup
v∈X

‖(f, v)‖
‖∇v‖

.

The space of divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}

The Poincaré-Friedrichs’ inequality will be used frequently throughout our analysis:
For v ∈ X,

‖v‖ ≤ C‖∇v‖, C = C(Ω).

We define the trilinear form

b∗(u, v, w) :=
1

2
((u · ∇v, w)− (u · ∇w, v)),∀u ∈ V and ∀v, w ∈ X.

Note that b∗(u, v, w) is skew symmetric and b∗(u, v, v) = 0. Moreover, b∗(u, v, w)
satisfies the following bound, [14],

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖, for any u, v, w ∈ X.(13)

The following lemma for discrete Gronwall inequality was proven in [16].

Lemma 2.1. Let ∆t, B, an, bn, cn, dn for integers n ≥ 0 be non-negative numbers
such that for M ≥ 1. If

aM + ∆t

M∑
n=0

bn ≤ ∆t

M−1∑
n=0

dnan + ∆t

M∑
n=0

cn +B for M ≥ 0,

then for all ∆t > 0,

aM + ∆t

M∑
n=0

bn ≤ exp

(
∆t

M−1∑
n=0

dn

)(
∆t

M∑
n=0

cn +B

)
for M ≥ 0.
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Let Xh ⊂ X, Qh ⊂ Q denote conforming velocity, pressure finite element spaces
based on an edge to edge triangulations of Ω with maximum triangle diameter
h. The velocity-pressure FEM spaces (Xh, Qh) are assumed to satisfy the usual
discrete inf-sup condition for stability of the discrete pressure:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖
≥ β > 0,(14)

where β is independent of h.
To help simplify a very technical analysis, we choose (Xh, Qh) = (Pk, P

disc
k−1 )

Scott-Vogelius finite element pairs to approximate velocity-pressure spaces, which
are known to fulfill inf-sup condition under certain restrictions on the mesh and
polynomial degree, e.g. [2, 24, 30, 29]. However, our analysis can be extended
without difficulty (but with more terms) to any inf-sup stable element choice. We
have the following approximation properties typical of piecewise polynomials of
degree (k, k − 1), [7], hold for (Xh, Qh):

inf
vh∈Xh

‖u− vh‖ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω),(15)

inf
vh∈Xh

‖∇(u− vh)‖ ≤ Chk|u|k+1, u ∈ Hk+1(Ω),(16)

inf
qh∈Qh

‖p− qh‖ ≤ Chk|p|k, p ∈ Hk(Ω).(17)

The discrete divergence free subspace of Xh is

V h := {vh ∈ Xh : (∇ · vh, qh) = 0, for all qh ∈ Qh}.

With the use of Scott-Vogelius finite element pairs, Vh is conforming to V , i.e.,
Vh ⊂ V and the functions in Vh are divergence-free pointwise.

3. Fully discrete scheme and analysis

In this section, we present and analyze a fully discrete scheme for (9)-(12).

Algorithm 3.1. (Fully Coupled Scheme): Let f1, f2 ∈ L∞(0, T ;H−1(Ω)) and time
step ∆t > 0 and end time T > 0 be given. Set M = T/∆t and start with ṽ0 =
v(0), w̃0 = w(0) ∈ H2 ∪ V . For all n = 0, 1, ...,M − 1, compute (vn+1

h , wn+1
h ) ∈

Vh × Vh satisfying for all (χh, lh) ∈ Vh × Vh,(
vn+1
h − vnh

∆t
, χh

)
+ (wnh · ∇vn+1

h , χh)− (B̃0(tn+1) · ∇vn+1
h , χh)

+
ν + νm

2
(∇vn+1

h ,∇χh) +
ν − νm

2
(∇wnh ,∇χh) = (f1(tn+1), χh),(18)

and (
wn+1
h − wnh

∆t
, lh

)
+ (vnh · ∇wn+1

h , lh) + (B̃0(tn+1) · ∇wn+1
h , lh)

+
ν + νm

2
(∇wn+1

h ,∇lh) +
ν − νm

2
(∇vnh ,∇lh) = (f2(tn+1), lh).(19)

Even though the scheme is decoupled into 2 sub-problems, it is unconditionally
stable with respect to the timestep size. We prove this in the following lemma.



94 M. AKBAS, S. KAYA, M. MOHEBUJJAMAN, AND L. REBHOLZ

Lemma 3.1. Suppose f1, f2 ∈ L∞(0, T ;H−1(Ω)), v0
h, w

0
h ∈ H1(Ω). Then for any

∆t > 0, solutions to (18)-(19) satisfy

‖vMh ‖2 + ‖wMh ‖2 +
(ν − νm)2

2(ν + νm)
∆t
(
‖∇vMh ‖2 + ‖∇wMh ‖2

)
+

ννm
ν + νm

∆t

M−1∑
n=0

(
‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2

)
≤ (ν − νm)2

2(ν + νm)

(
‖∇v0

h‖2 + ‖∇w0
h‖2
)

+ ‖v0
h‖2 + ‖w0

h‖2 +
ν + νm
ννm

∆t

M−1∑
n=0

(
‖f1(tn+1)‖2−1 + ‖f2(tn+1)‖2−1‖

)
.

Proof. Taking χh = vn+1
h in (18), lh = wn+1

h in (19), and using the polarization
identity

(b− a, b) =
1

2
(‖b− a‖2 + ‖b‖2 − ‖a‖2),

gives

(20)
1

2∆t

(
‖vn+1
h − vnh‖2 + ‖vn+1

h ‖2 − ‖vnh‖2
)

+
ν + νm

2
‖∇vn+1

h ‖2

+
ν − νm

2
(∇wnh ,∇vn+1

h ) = (f1(tn+1), vn+1
h ),

and

(21)
1

2∆t

(
‖wn+1

h − wnh‖2 + ‖wn+1
h ‖2 − ‖wnh‖2

)
+
ν + νm

2
‖∇wn+1

h ‖2

+
ν − νm

2
(∇vnh ,∇wn+1

h ) = (f2(tn+1), wn+1
h ).

Adding (20) and (21) yields

1

2∆t

(
‖vn+1
h ‖2 + ‖wn+1

h ‖2 − (‖vnh‖2 + ‖wnh‖2) + ‖vn+1
h − vnh‖2 + ‖wn+1

h − wnh‖2
)

+
ν + νm

2
(‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2) +

ν − νm
2

(
(∇wnh , vn+1

h ) + (∇vnh ,∇wn+1
h )

)
= (f1(tn+1), vn+1

h ) + (f2(tn+1), wn+1
h ),

then using Cauchy-Schwarz’s inequality on the right hand side provides

1

2∆t

(
‖vn+1
h ‖2 + ‖wn+1

h ‖2 − (‖vnh‖2 + ‖wnh‖2) + ‖vn+1
h − vnh‖2 + ‖wn+1

h − wnh‖2
)

+
ν + νm

2
(‖∇vn+1

h ‖2+‖∇wn+1
h ‖2) ≤ |ν − νm

2
|
(
‖∇wnh‖‖∇vn+1

h ‖+ ‖∇vnh‖‖∇wn+1
h ‖

)
+ ‖f1(tn+1)‖−1‖∇vn+1

h ‖+ ‖f2(tn+1)‖−1‖∇wn+1
h ‖.

After application of Young’s inequality ab ≤ ε
2a

2 + 1
2εb

2 with ε = ν+νm
2 , we obtain

(22)
1

2∆t
(‖vn+1

h ‖2 + ‖wn+1
h ‖2 − (‖vnh‖2 + ‖wnh‖2) + ‖vn+1

h − vnh‖2

+ ‖wn+1
h − wnh‖2) +

ν + νm
2

(
‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2

)
≤ ν + νm

4
‖∇vn+1

h ‖2 +
(ν − νm)2

4(ν + νm)
‖∇wnh‖2 +

ν + νm
4
‖∇wn+1

h ‖2 +
(ν − νm)2

4(ν + νm)
‖∇vnh‖2

+ ‖f1(tn+1)‖−1‖∇vn+1
h ‖+ ‖f2(tn+1)‖−1‖∇wn+1

h ‖.
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Reducing and dropping the non-negative terms ‖vn+1
h − vnh‖2 , ‖wn+1

h − wnh‖2 on
the left hand side gives us

(23)
1

2∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖wn+1

h ‖2 − ‖wnh‖2
)

+
ν + νm

4

(
‖∇vn+1

h ‖2 − (ν − νm)2

(ν + νm)2
‖∇vnh‖2

)
+
ν + νm

4

(
‖∇wn+1

h ‖2 − (ν − νm)2

(ν + νm)2
‖∇wnh‖2

)
≤ ‖f1(tn+1)‖−1‖∇vn+1

h ‖+ ‖f2(tn+1)‖−1‖∇wn+1
h ‖.

Applying again Young’s inequality with ε = ννm
ν+νm

, we have

(24)
1

2∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖wn+1

h ‖2 − ‖wnh‖2
)

+
ννm

2(ν + νm)
‖∇vn+1

h ‖2

+
(ν − νm)2

4(ν + νm)

(
‖∇vn+1

h ‖2 − ‖∇vnh‖2
)

+
ννm

2(ν + νm)
‖∇wn+1

h ‖2

+
(ν − νm)2

4(ν + νm)

(
‖∇wn+1

h ‖2 − ‖∇wnh‖2
)

≤ (ν + νm)

2ννm

(
‖f1(tn+1)‖2−1 + ‖f2(tn+1)‖2−1

)
.

Multiplying both sides by 2∆t and summing over timesteps finishes the proof. �

The proposed algorithm also converges optimally in space in time, with assumed
smoothness of the true solution.

Theorem 3.1. Assume (v, w, p) solves (9)-(10) and satisfying

v, w ∈ L∞(0, T ;Hm(Ω)), m = max{2, k + 1},
vt, wt ∈ L∞(0, T ;Hk+1(Ω)),(25)

vtt, wtt ∈ L∞(0, T ;L2(Ω)).

Then the solution (vh, wh) to Algorithm 3.1 converges to the true solution: for any
∆t > 0,

(26)

‖v(T )−vMh ‖+‖w(T )−wMh ‖+
ν2 + ν2

m

4(ν + νm)
∆t
(
‖∇(v(T )−vMh )‖+‖∇(w(T )−wMh )‖

)
+

ννm
2(ν + νm)

{
∆t

M−1∑
n=1

(
‖∇(v(tn)− vnh)‖2 + ‖∇(w(tn)− wnh)‖2

)} 1
2

≤ C(hk+∆t).

Proof. We begin by obtaining the error equations. Continuous variational formu-
lation of (9)-(12) at the time level tn+1 is given(

v(tn+1)− v(tn)

∆t
, χh

)
+ (w(tn+1) · ∇v(tn+1), χh)

− (B̃0(tn+1) · ∇v(tn+1), χh) +
ν + νm

2
(∇v(tn+1),∇χh)

+
ν − νm

2
(∇(w(tn+1)− w(tn)),∇χh) +

ν − νm
2

(∇w(tn),∇χh)

=−
(
vt(t

n+1)− v(tn+1)− v(tn)

∆t
, χh

)
+ (f1(tn+1), χh)(27)
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and (
w(tn+1)− w(tn)

∆t
, lh

)
+ (v(tn+1) · ∇w(tn+1), lh)

+ (B̃0(tn+1) · ∇w(tn+1), lh) +
ν + νm

2
(∇w(tn+1),∇lh)

+
ν − νm

2
(∇(v(tn+1)− v(tn)),∇lh) +

ν − νm
2

(∇v(tn),∇lh)

=−
(
wt(t

n+1)− w(tn+1)− w(tn)

∆t
, lh

)
+ (f2(tn+1), lh)(28)

for all χh, lh ∈ Vh. Denote the errors by en+1
v := v(tn+1) − vn+1

h and en+1
w :=

w(tn+1)−wn+1
h for all n = 0, 1, ...,M − 1. Subtracting (27) and (28) from (18) and

(19), respectively, produces(
en+1
v − env

∆t
, χh

)
+
ν + νm

2
(∇en+1

v ,∇χh) +
ν − νm

2
(∇enw,∇χh)

− (B̃0(tn+1) · ∇en+1
v , χh) + (enw · ∇v(tn+1), χh) + (wnh · ∇en+1

v , χh)

=−G1(t, v, w, χh)(29)

and (
en+1
w − enw

∆t
, lh

)
+
ν + νm

2
(∇en+1

w ,∇lh) +
ν − νm

2
(∇env ,∇lh)

+ (B̃0(tn+1) · ∇en+1
w , lh) + (env · ∇w(tn+1), lh) + (vnh · ∇en+1

w , lh)

=−G2(t, v, w, lh),(30)

here

G1(t, v, w, χh) :=

(
vt(t

n+1)− v(tn+1) + v(tn)

∆t
, χh

)
+ ((w(tn+1)− w(tn)) · ∇v(tn+1), χh)

+
ν − νm

2
(∇(w(tn+1)− w(tn)),∇χh)

and

G2(t, v, w, χh) :=

(
wt(t

n+1)− w(tn+1)− w(tn)

∆t
, χh

)
+ ((v(tn+1)− v(tn)) · ∇w(tn+1), χh)

+
ν − νm

2
(∇(v(tn+1)− v(tn)),∇χh).

Decompose the errors into the interpolation errors and approximations terms:

en+1
v := v(tn+1)− vn+1

h = (v(tn+1)− ṽn+1)− (vn+1
h − ṽn+1) := ηn+1

v − φn+1
h ,

en+1
w := w(tn+1)− wn+1

h = (w(tn+1)− w̃n+1)− (wn+1
h − w̃n+1) := ηn+1

w − ψn+1
h ,

take χh = φn+1
h and χh = ψn+1

h , use the polarization identity 2(a− b, a) = ‖a‖2 −
‖b‖2 + ‖a− b‖2, and noting that

(B̃0(tn+1) · ∇φn+1
h , φn+1

h ) = (B̃0(tn+1) · ∇ψn+1
h , ψn+1

h ) = 0,

(wnh · ∇φn+1
h , φn+1

h ) = (vnh · ∇ψn+1
h , ψn+1

h ) = 0,
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we then have

1

2∆t

(
‖φn+1

h ‖2 − ‖φnh‖2 + ‖φn+1
h − φnh‖2

)
+
ν + νm

2
‖∇φn+1

h ‖2

≤
∣∣∣∣ 1

∆t
(ηn+1
v − ηnv , φn+1

h )

∣∣∣∣+
ν + νm

2
|(∇ηn+1

v ,∇φn+1
h )|

+
|ν − νm|

2
|(∇ηnw,∇φn+1

h )|+ |ν − νm|
2

|(∇ψnh ,∇φn+1
h )|

+ |(B̃0(tn+1) · ∇ηn+1
v , φn+1

h )|+ |(wnh · ∇ηn+1
v , φn+1

h )|
+ |(ηnw · ∇v(tn+1), φn+1

h )|+ |(ψnh · ∇v(tn+1), φn+1
h )|+ |G1(t, v, w, φn+1

h )|(31)

and

1

2∆t

(
‖ψn+1

h ‖2 − ‖ψnh‖2 + ‖ψn+1
h − ψnh‖2

)
+
ν + νm

2
‖∇ψn+1

h ‖2

≤ 1

∆t

∣∣∣∣(ηn+1
w − ηnw, ψn+1

h )

∣∣∣∣+
ν + νm

2
|(∇ηn+1

w ,∇ψn+1
h )|

+
|ν − νm|

2
|(∇ηnv ,∇ψn+1

h )|+ |ν − νm|
2

|(∇φnh,∇ψn+1
h )|

+ |(B̃0(tn+1) · ∇ηn+1
w , ψn+1

h )|+ |(vnh · ∇ηn+1
w , ψn+1

h )|
+ |(ηnv · ∇w(tn+1), ψn+1

h )|+ |(φnh · ∇w(tn+1), ψn+1
h )|+ |G2(t, v, w, ψn+1

h )|.(32)

We now find bounds on the right hand side terms of (31) only, since the estimates
are similar for (32). Applying Cauchy-Schwarz and Young inequalities on the first
four terms results in

1

∆t

∣∣∣∣(ηn+1
v − ηnv , φn+1

h )

∣∣∣∣ ≤ ννm
16(ν + νm)

‖∇φn+1
h ‖2 +

C(ν + νm)

ννm(∆t)

∫ tn+1

tn
‖∂tηv‖2dτ,

ν + νm
2
|(∇ηn+1

v ,∇φn+1
h )| ≤ ννm

16(ν + νm)
‖∇φn+1

h ‖2 +
(ν + νm)3

ννm
‖∇ηn+1

v ‖2,

|ν − νm|
2

|(∇ηnw,∇φn+1
h )| ≤ ννm

16(ν + νm)
‖∇φn+1

h ‖2 +
(ν − νm)2(ν + νm)

ννm
‖∇ηnw‖2,

|ν − νm|
2

|(∇ψnh ,∇φn+1
h )| ≤ ν + νm

4
‖∇φn+1

h ‖2 +
(ν − νm)2

4(ν + νm)
‖∇ψnh‖2.

Applying Hölder and Young’s inequalities with (13) on the first three nonlinear
terms yields

|(B̃0(tn+1) · ∇ηn+1
v , φn+1

h )|

≤C‖B̃0(tn+1)‖∞‖∇ηn+1
v ‖‖∇φn+1

h ‖

≤ ννm
16(ν + νm)

‖∇φn+1
h ‖2 +

C(ν + νm)

ννm
‖B̃0(tn+1)‖2∞‖∇ηn+1

v ‖2,

|(wnh · ∇ηn+1
v , φn+1

h )| ≤ C‖∇wnh‖‖∇ηn+1
v ‖∇φn+1

h ‖

≤ ννm
16(ν + νm)

‖∇φn+1
h ‖2 +

C(ν + νm)

ννm
‖∇wnh‖2‖∇ηn+1

v ‖2,

|(ηnw · ∇v(tn+1), φn+1
h )| ≤ C‖∇ηnw‖‖∇v(tn+1)‖‖∇φn+1

h ‖

≤ ννm
16(ν + νm)

‖∇φn+1
h ‖2 +

C(ν + νm)

ννm
‖∇v(tn+1)‖2‖∇ηnw‖2.
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For the last nonlinear term, we use Hölder’s inequality, Sobolev embedding theo-
rems, Poincare’s and Young’s inequalities to reveal

|(ψnh · ∇v(tn+1), φn+1
h )| ≤ C‖ψnh‖∇v(tn+1)‖L6‖φn+1

h ‖L3

≤ C‖ψnh‖‖v(tn+1)‖H2‖φnh‖1/2‖∇φn+1
h ‖1/2

≤ C‖ψnh‖‖v(tn+1)‖H2‖∇φn+1
h ‖

≤ ννm
16(ν + νm)

‖∇φn+1
h ‖2 +

C(ν + νm)

ννm
‖v(tn+1)‖2H2‖ψnh‖2.

The last term is evaluated as in [20]:

|G1(t, v, w, φn+1
h )| ≤ ννm

16(ν + νm)
‖∇φn+1

h ‖2 +
(∆t)2(ν + νm)

ννm

×
(
C‖vtt(t∗∗)‖2 +

(ν − νm)2

4
‖∇wt(s∗)‖2 + C‖∇wt(s∗)‖2‖∇v(tn+1)‖2

)
with t∗∗, s∗ ∈ [tn, tn+1]. Putting these estimates into (31) and dropping non-
negative term on the left hand side produces

1

2∆t

(
‖φn+1

h ‖2 − ‖φnh‖2
)

+
ν2 + ν2

m

4(ν + νm)
‖∇φn+1

h ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇ψnh‖2 +

C(ν + νm)

ννm
‖v(tn+1)‖2H2‖ψnh‖2

+
C(ν + νm)

ννm(∆t)

∫ tn+1

tn
‖∂tηv‖2dτ +

(ν + νm)3

ννm
‖∇ηn+1

v ‖2

+
(ν − νm)2(ν + νm)

ννm
‖∇ηnw‖2

+
C(ν + νm)

ννm

[(
‖B̃0(tn+1)‖2∞ + ‖∇wnh‖2

)
‖∇ηn+1

v ‖2

+ ‖∇v(tn+1)‖2‖∇ηnw‖2
]

+
(∆t)2(ν + νm)

ννm

(
C‖vtt(t∗∗)‖2

+
(ν − νm)2

4
‖∇wt(s∗)‖2 + C‖∇wt(s∗)‖2‖∇v(tn+1)‖2

)
.(33)

Applying similar techniques to (32), we get

1

2∆t

(
‖ψn+1

h ‖2 − ‖ψnh‖2
)

+
ν2 + ν2

m

4(ν + νm)
‖∇ψn+1

h ‖2

≤C(ν + νm)

ννm(∆t)

∫ tn+1

tn
‖∂tηw‖2dτ +

C(ν + νm)

ννm
‖w(tn+1)‖2H2‖φnh‖2

+
(ν − νm)2

4(ν + νm)
‖∇φnh‖2 +

(ν + νm)3

ννm
‖∇ηn+1

w ‖2 +
(ν − νm)2(ν + νm)

ννm
‖∇ηnv ‖2

+
C(ν + νm)

ννm

[(
‖B̃0(tn+1)‖2∞ + ‖∇vnh‖2

)
‖∇ηn+1

w ‖2

+ ‖∇w(tn+1)‖2‖∇ηnv ‖2
]

+
(∆t)2(ν + νm)

ννm

(
C‖wtt(s∗∗)‖2

+
(ν − νm)2

4
‖∇vt(t∗)‖2 + C‖∇vt(t∗)‖2‖∇w(tn+1)‖2

)
,(34)
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with s∗∗, t∗ ∈ [tn, tn+1].
Now add equations (33) and (34), multiply by 2∆t and sum over the time steps.
Using interpolation properties (15)-(16) with noting that ‖ψ0

h‖ = ‖φ0
h‖ = 0 and

∆tM = T yields

(
‖φMh ‖2 + ‖ψMh ‖2

)
+

ν2 + ν2
m

4(ν + νm)
(‖∇φMh ‖2(35)

+ ‖∇ψMh ‖2) +
ννm

2(ν + νm)
∆t

M−2∑
n=0

(‖∇φn+1
h ‖2 + ‖∇ψn+1

h ‖2)

≤∆t

M−1∑
n=0

C
(ν + νm)

ννm

(
‖w‖2L∞(0,T ;H2(Ω))‖φ

n
h‖2 + ‖v‖2L∞(0,T ;H2(Ω))‖ψ

n
h‖2
)

+
C(ν + νm)

ννm

∫ T

0

(
‖∂tηv‖2 + ‖∂tηw‖2

)
dτ

+ C∗h2k∆t

M−1∑
n=0

(
|v(tn+1)|2k+1 + |w(tn+1)|2k+1

)

+ C∗h2k∆t

M−1∑
n=0

(
|v(tn)|2k+1 + |w(tn)|2k+1

)
+ C∗(∆t)2

+ C∗h2k∆t

M−1∑
n=0

(
‖∇vnh‖2|w(tn+1)|2k+1 + ‖∇wnh‖2|v(tn+1)|2k+1

)
,

where C∗ := C∗(C, T, ν, νm, v, w, B̃0(t)) and it is independent of the time step ∆t
and h. Using smoothness assumptions, approximation properties (15)-(16), and the
stability bounds on the discrete solutions in (35) gives(
‖φMh ‖2 + ‖ψMh ‖2

)
+

ν2 + ν2
m

4(ν + νm)
(‖∇φMh ‖2 + ‖∇ψMh ‖2) +

ννm
2(ν + νm)

∆t

M−2∑
n=0

(‖∇φn+1
h ‖2 + ‖∇ψn+1

h ‖2)

≤ ∆t

M−1∑
n=0

C∗
(
‖φnh‖2 + ‖ψnh‖2

)
+ C∗(∆t)2 + C∗(h2k + h2k+2).

The result follows from application of the discrete Gronwall lemma and the triangle
inequality. We note that since there is no ‖φMh ‖2 or ‖ψMh ‖2 on the right hand side
(the sum ends at M-1) there is no timestep restriction for the application of the
Gronwall lemma.

�

4. Penalty-projection method for MHD in Elsässer Variables

The algorithm studied in the previous section decouples into 2 sub-problems at
each timestep, each of which takes the form of an Oseen problem. It is known that
splitting methods such as the penalty-projection method can more efficiently give
solutions to such problems, with often very little sacrifice in accuracy [1, 18, 21]. We
therefore propose in this section a scheme that uses penalty-projection methods for
the 2 sub-problems. Because of the splitting, it is necessary to define an additional
velocity space: Yh = (Pk)d ∩Hdiv

0 (Ω)d. The only difference between Yh and Xh is
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simply that the boundary condition of Yh is only enforced in the normal direction,
while for Xh it is enforced in all directions.

The proposed scheme takes the following form.

Algorithm 4.1. (Grad-div stabilized projection scheme):Let f1, f2 ∈ L∞(0, T ;H−1(Ω)),
stabilization parameter γ > 0 and time step ∆t > 0 and end time T > 0 be
given. Set M = T/∆t and start with ṽ0 = v(0), w̃0 = w(0) ∈ H2 ∪ V . For all
n = 0, 1, ...,M − 1, compute v̂n+1

h , ŵn+1
h , p̂n+1

h , q̂n+1
h via:

Step 1: Find v̂n+1 ∈ Xh satisfying for all χh ∈ Xh,(
v̂n+1
h − ṽnh

∆t
, χh

)
+ b∗(ŵnh , v̂

n+1
h , χh)− (B̃0(tn+1) · ∇v̂n+1

h , χh)

+
ν + νm

2
(∇v̂n+1

h ,∇χh) +
ν − νm

2
(∇ŵnh ,∇χh)

+γ(∇ · v̂n+1
h ,∇ · χh) = (f1(tn+1), χh).(36)

Step 2: Find (ṽn+1
h , q̂n+1

h ) ∈ (Yh ×Qh) satisfying for all (vh, qh) ∈ (Yh ×Qh),(
ṽn+1
h − v̂n+1

h

∆t
, vh

)
− (q̂n+1

h ,∇ · vh) = 0,(37)

(∇ · ṽn+1, qh) = 0.(38)

Step 3: Compute ŵn+1
h ∈ Xh for all lh ∈ Xh,(

ŵn+1
h − w̃nh

∆t
, lh

)
+ b∗(v̂nh , ŵ

n+1
h , lh) + (B̃0(tn+1) · ∇ŵn+1

h , lh) +
ν + νm

2
(∇ŵn+1

h ,∇lh)

+
ν − νm

2
(∇v̂nh ,∇lh) + γ(∇ · ŵn+1

h ,∇ · lh) = (f2(tn+1), lh).(39)

Step 4: Find (w̃n+1
h , λ̂n+1

h ) ∈ (Yh ×Qh) satisfying for all (sh, rh) ∈ (Yh ×Qh),(
w̃n+1
h − ŵn+1

h

∆t
, sh

)
− (λ̂n+1

h ,∇ · sh) = 0,(40)

(∇ · w̃n+1
h , rh) = 0.(41)

Since Xh ⊂ Yh, we can choose vh = χh in (37), sh = lh in (40) and combine
these with equations (36) and (39), respectively, to get(

v̂n+1
h −v̂nh

∆t , χh

)
+ b∗(ŵnh , v̂

n+1
h , χh)− (B̃0(tn+1) · ∇v̂n+1

h , χh)

+ν+νm
2 (∇v̂n+1

h ,∇χh) + ν−νm
2 (∇ŵnh ,∇χh) + γ(∇ · v̂n+1

h ,∇ · χh)

−(q̂nh ,∇ · χh) = (f1(tn+1), χh).(42)

and (
ŵn+1
h − ŵnh

∆t
, lh

)
+ b∗(v̂nh , ŵ

n+1
h , lh) + (B̃0(tn+1) · ∇ŵn+1

h , lh)

+
ν + νm

2
(∇ŵn+1

h ,∇lh) +
ν − νm

2
(∇v̂nh ,∇lh) + γ(∇ · ŵn+1

h ,∇ · lh)

− (λ̂nh,∇ · lh) = (f2(tn+1), lh).(43)

We first prove unconditional stability of the penalty-projection scheme.
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Lemma 4.1. (Unconditional Stability) Let (v̂n+1
h , ŵn+1

h , q̂n+1
h , λ̂n+1

h ) be the solution
of Algorithm 4.1 and f1, f2 ∈ L∞(0, T ;H−1(Ω)). Then for all ∆t > 0, we have the
following unconditional stability bound:

(44) ‖v̂Mh ‖2 + ‖ŵMh ‖2 +
(ν − νm)2

2(ν + νm)
∆t(‖∇v̂Mh ‖2 + ‖∇ŵMh ‖2)

+
ννm
ν + νm

∆t

M−1∑
n=0

(
‖∇v̂n+1

h ‖2 + ‖∇ŵn+1
h ‖2

)
+ ∆t

M−1∑
n=0

γ(‖∇ · v̂n+1
h ‖2 + ‖∇ · ŵn+1

h ‖2)

≤ ‖v̂0
h‖2 + ‖ŵ0

h‖2 +
(ν − νm)2

2(ν + νm)
∆t(‖∇v̂0

h‖2 + ‖∇ŵ0
h‖2)

+
ν + νm
ννm

∆t

M−1∑
n=0

(‖f1(tn+1)‖2−1 + ‖f2(tn+1)‖2−1)

Proof. Taking χh = v̂n+1
h in (36) and lh = ŵn+1

h in (39) with the polarization
identity produces

1

2∆t
(‖v̂n+1

h ‖2 − ‖ṽnh‖2 + ‖v̂n+1
h − ṽnh‖2) +

ν + νm
2
‖∇v̂n+1

h ‖2 + γ‖∇ · v̂n+1
h ‖2

= −ν − νm
2

(∇ŵnh ,∇v̂n+1
h ) + (f1(tn+1), v̂n+1

h )(45)

and

1

2∆t
(‖ŵn+1

h ‖2 − ‖w̃nh‖2 + ‖ŵn+1
h − w̃nh‖2) +

ν + νm
2
‖∇ŵn+1

h ‖2 + γ‖∇ · ŵn+1
h ‖2

= −ν − νm
2

(∇v̂nh ,∇ŵn+1
h ) + (f2(tn+1), ŵn+1

h ).(46)

Applying Cauchy-Schwarz and Young’s inequalities on the right hand sides terms
of (45) and (46) gives

|ν − νm|
2

|(∇ŵnh ,∇v̂n+1
h )| ≤ ν + νm

4
‖∇v̂n+1

h ‖2 +
(ν − νm)2

4(ν + νm)
‖∇ŵnh‖2,

|(f1(tn+1), v̂n+1
h )| ≤ ννm

2(ν + νm)
‖∇v̂n+1

h ‖2 +
(ν + νm)

2(ννm)
‖f1(tn+1)‖2−1,

|ν − νm|
2

|(∇v̂nh ,∇ŵn+1
h )| ≤ ν + νm

4
‖∇ŵn+1

h ‖2 +
(ν − νm)2

4(ν + νm)
‖∇v̂nh‖2,

|(f2(tn+1), ŵn+1
h )| ≤ ννm

2(ν + νm)
‖∇ŵn+1

h ‖2 +
(ν + νm)

2(ννm)
‖f2(tn+1)‖2−1.

Now choose vh = ṽn+1
h in (37), qh = q̂n+1

h in (38) and sh = w̃n+1
h in (40), rh = λ̂n+1

h

in (41). Then apply Cauchy-Schwarz and Young’s inequalities to obtain

‖ṽn+1
h ‖2 ≤ ‖v̂n+1

h ‖2,
‖w̃n+1

h ‖2 ≤ ‖ŵn+1
h ‖2.
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for all n = 0, 1, 2, ...,M − 1. Plugging these estimates into (45) and (46), dropping
the non-negative terms results in

1

2∆t
(‖v̂n+1

h ‖2 − ‖v̂nh‖2) +
(ν − νm)2

4(ν + νm)
‖∇v̂n+1

h ‖2

+
ννm

2(ν + νm)
‖∇v̂n+1

h ‖2 + γ‖∇ · v̂n+1
h ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇ŵnh‖2 +

ν + νm
2ννm

‖f1(tn+1)‖2−1(47)

and

(48)

1

2∆t
(‖ŵn+1

h ‖2−‖ŵnh‖2)+
(ν − νm)2

4(ν + νm)
‖∇ŵn+1

h ‖2+
ννm

2(ν + νm)
‖∇ŵn+1

h ‖2+γ‖∇·ŵn+1
h ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇v̂nh‖2 +

ν + νm
2ννm

‖f2(tn+1)‖2−1.

Adding these two equations, multiplying by 2∆t and summing over time steps
finishes the proof. �

We now prove convergence of Algorithm 4.1 to Algorithm 3.1 as γ → ∞. To
do so, we will need to define the space Rh := V ⊥h ⊂ Xh to be the orthogonal
complement of Vh with respect to the norm H1(Ω). The following lemma gives the
equivalence of the divergence and gradient norms in the space Rh, which is proven
in [13] in a very general setting, and a simpler proof for the case of Scott-Vogelius
elements is given in [21].

Lemma 4.2. Let (Xh, Qh) ⊂ (X,Q) be finite element pairs satisfying the inf-sup
condition (14) and the divergence-free property, i.e., ∇ · Xh ⊂ Qh. Then there
exists a constant CR independent of h such that

‖∇vh‖ ≤ CR‖∇ · vh‖, ∀vh ∈ Rh.

Assumption 4.1. Let’s assume that there exists a constant C∗ which is indepen-
dent of h,∆t and γ, such that for sufficiently small h and ∆t, the solutions of
Algorithm 3.1 and Algorithm 4.1 satisfy

max
1≤n≤M

(‖∇vnh‖L3 + ‖∇wnh‖L3 + ‖vnh‖∞ + ‖wnh‖∞) ≤ C∗,

max
1≤n≤M

(‖∇v̂nh‖+ ‖∇ŵnh‖) ≤ C∗.

Theorem 4.1. Let (vn+1
h , wn+1

h , qn+1
h ) and (v̂n+1

h , ŵn+1
h , q̂n+1

h ) be solutions of the
Algorithm 3.1 and Algorithm 4.1, respectively, for n = 0, 1, 2, ...,M − 1. We then
have the following:(

∆t

M−1∑
=0

(
‖∇(vn+1

h − v̂n+1
h )‖2 + ‖∇(wn+1

h − ŵn+1
h )‖2

)) 1
2

≤γ−1C max{C∗(
ν + νm
ννm

)1/2, (∆t)−1/2}
(

∆t

M−1∑
n=0

(
‖qn+1
h − q̂nh‖2 + ‖λn+1

h − λ̂nh‖2
)) 1

2

.

Remark 4.1. The theorem shows that on a fixed mesh and timestep, penalty-
projection solutions have first order convergence to the Algorithm 3.1 solution as
γ → ∞. This shows that for large penalty parameters, we can use the penalty-
projection method and get the same accuracy as Algorithm 3.1.
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Proof. Denote en+1 := vn+1
h − v̂n+1

h and εn+1 := wn+1
h − ŵn+1

h and decompose the
errors orthogonally as follows:

en+1 := en+1
0 + en+1

R , εn+1 := εn+1
0 + εn+1

R

with en+1
0 , εn+1

0 ∈ Vh and en+1
R , εn+1

R ∈ Rh, n = 0, 1, ...,M − 1.

Step 1: Estimate of en+1
R , εn+1

R :
Subtracting the equation (18) from (42) and (19) from (43) produces

1

∆t

(
en+1 − en, χh

)
+
ν + νm

2
(∇en+1,∇χh)

+ γ(∇ · en+1
R ,∇ · χh) +

ν − νm
2

(∇εn,∇χh)

− (B̃0(tn+1) · ∇en+1, χh) + b∗(εn, vn+1
h , χh)

+ b∗(ŵnh , e
n+1, χh)− (qn+1

h − q̂nh ,∇ · χh) = 0,(49)

and

1

∆t

(
εn+1 − εn, lh

)
+
ν + νm

2
(∇εn+1,∇lh) + γ(∇ · εn+1

R ,∇ · lh)

+
ν − νm

2
(∇en,∇lh) + (B̃0(tn+1) · ∇εn+1, lh) + b∗(en, wn+1

h , lh)

+ b∗(v̂nh , ε
n+1, lh)− (λn+1

h − λ̂nh,∇ · lh) = 0.(50)

Take χh = en+1 in (49), lh = εn+1 in (50), which yield

b∗(ŵnh , e
n+1, en+1) = (B̃0(tn+1) · ∇en+1, en+1) = 0

b∗(v̂nh , ε
n+1, εn+1) = (B̃0(tn+1) · ∇εn+1, εn+1) = 0

and use polarization identity 2(a− b, a) = ‖a‖2 − ‖b‖2 + ‖a− b‖2 to get

1

2∆t

(
‖en+1‖2 − ‖en‖2 + ‖en+1 − en‖2

)
+
ν + νm

2
‖∇en+1‖2 + γ‖∇ · en+1

R ‖2

= −ν − νm
2

(∇εn,∇en+1) + (qn+1
h − q̂nh ,∇ · en+1

R )− b∗(εn, vn+1
h , en+1)(51)

and

1

2∆t

(
‖εn+1‖2 − ‖εn‖2 + ‖εn+1 − εn‖2

)
+
ν + νm

2
‖∇εn+1‖2 + γ‖∇ · εn+1

R ‖2

= −ν − νm
2

(∇en,∇εn+1) + (λn+1
h − λ̂nh,∇ · εn+1

R )− b∗(en, wn+1
h , εn+1).(52)

Applying Cauchy-Schwarz and Young’s inequalities to the first two terms of (51)
provides

|ν − νm|
2

|(∇εn,∇en+1)| ≤ (ν − νm)2

4(ν + νm)
‖∇εn‖2 +

ν + νm
4
‖∇en+1‖2,

(qn+1
h − q̂nh ,∇ · en+1

R ) ≤ γ−1

2
‖qn+1
h − q̂nh‖2 +

γ

2
‖∇ · en+1

R ‖2.
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and using Hölder’s and Young’s inequalities with Sobolev embedding theorem along
with Assumption 4.1 on the non-linear term yields:

|b∗(εn, vn+1
h , en+1)| ≤ C

(
‖εn‖‖∇vn+1

h ‖L3‖∇en+1‖+ ‖εn‖‖vn+1
h ‖L∞‖∇en+1‖

)
≤ CC∗‖εn‖‖∇en+1‖

≤ ννm
2(ν + νm)

‖∇en+1‖2 +
CC2
∗(ν + νm)

ννm
‖εn‖2.

Substituting these estimates in (51), adding and subtracting the term ννm
2(ν+νm)‖∇e

n+1‖2

with dropping the non-negative term ‖en+1 − en‖2 gives us

1

2∆t
(‖en+1‖2 − ‖en‖2) +

(ν − νm)2

4(ν + νm)
‖∇en+1‖2 +

ννm
2(ν + νm)

‖∇en+1‖2 +
γ

2
‖∇ · en+1

R ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇εn‖2 +

CC2
∗(ν + νm)

ννm
‖εn‖2 +

γ−1

2
‖qn+1
h − q̂nh‖2.(53)

Now apply similar estimates to the right hand side terms of (52) to produce

1

2∆t
(‖εn+1‖2 − ‖εn‖2) +

(ν − νm)2

4(ν + νm)
‖∇εn+1‖2 +

ννm
2(ν + νm)

‖∇εn+1‖2 +
γ

2
‖∇ · εn+1

R ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇en‖2 +

CC2
∗(ν + νm)

ννm
‖en‖2 +

γ−1

2
‖λn+1

h − λ̂nh‖2.(54)

Then add the equations (53) and (54), multiply by 2∆t and sum over time steps to
obtain

‖eM‖2 + ‖εM‖2 +
(ν − νm)2

2(ν + νm)
∆t

(
‖∇eM‖2 + ‖∇εM‖2

)
+

ννm
ν + νm

∆t

M−1∑
n=0

(
‖∇en+1‖2 + ‖∇εn+1‖2

)
+ ∆t

M−1∑
n=0

γ
(
‖∇ · en+1

R ‖2 + ‖∇ · εn+1
R ‖2

)
≤∆t

M−1∑
n=0

CC2
∗(ν + νm)

ννm

(
‖en‖2 + ‖εn‖2

)
+ ∆t

M−1∑
n=0

γ−1
(
‖qn+1
h − q̂nh‖2 + ‖λn+1

h − λ̂nh‖2
)
.

and apply discrete Gronwall Lemma to get

LHS ≤ γ−1exp

(
CC2
∗

(ν + νm)

ννm

)(
∆t

M−1∑
n=0

(‖qn+1
h − q̂nh‖2 + ‖λn+1

h − λ̂nh‖2)

)
.

(55)

Using Lemma 4.2 with (55) yields the following desired bound:

∆t

M−1∑
n=0

(‖∇en+1
R ‖2 + ‖∇εn+1

R ‖2)

≤ C2
R

(
∆t

M−1∑
n=0

(
‖∇ · en+1

R ‖2 + ‖∇ · εn+1
R ‖2

))

≤ γ−2C2
Rexp

(
CC2
∗

(ν + νm)

ννm

)(
∆t

M−1∑
n=0

(‖qn+1
h − q̂nh‖2 + ‖λn+1

h − λ̂nh‖2)

)
.(56)
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Step 2: Estimates of en+1
0 , εn+1

0 :

To find a bound on

(
∆t

M−1∑
n=0

(
‖∇en+1

0 ‖2 + ‖∇εn+1
0 ‖2

))
, take χh = en+1

0 in (49)

and lh = εn+1
0 in (50) to get

(57)
1

∆t
(en+1 − en, en+1

0 ) +
ν + νm

2
‖∇en+1

0 ‖2 = −ν − νm
2

(∇εn0 ,∇en+1
0 )

+ (B̃0(tn+1) · ∇en+1
R , en+1

0 )− b∗(εn, vn+1
h , en+1

0 )− b∗(ŵnh , en+1
R , en+1

0 ),

and

(58)
1

∆t
(εn+1 − εn, εn+1

0 ) +
ν + νm

2
‖∇εn+1

0 ‖2 = −ν − νm
2

(∇en0 ,∇εn+1
0 )

+ (B̃0(tn+1) · ∇εn+1
R , εn+1

0 )− b∗(en, wn+1
h , εn+1

0 )− b∗(v̂nh , εn+1
R , εn+1

0 ).

Applying Cauchy-Schwarz and Hölder’s inequalities with (13) on the right hand
side terms of (57) and (58) yields

1

∆t
(en+1 − en, en+1

0 ) +
ν + νm

2
‖∇en+1

0 ‖2

≤|ν − νm|
2

‖∇εn0‖‖∇en+1
0 ‖+ C‖B̃0(tn+1)‖∞‖∇en+1

R ‖‖en+1
0 ‖

+ C

(
‖εn‖‖∇vn+1

h ‖L3‖∇en+1
0 ‖+ ‖εn‖‖vn+1

h ‖∞‖∇en+1
0 ‖

)
+ C‖∇ŵnh‖‖∇en+1

R ‖‖∇en+1
0 ‖(59)

and

1

∆t
(εn+1 − εn, εn+1

0 ) +
ν + νm

2
‖∇εn+1

0 ‖2

≤|ν − νm|
2

‖∇en0‖‖∇εn+1
0 ‖+ C‖B̃0(tn+1)‖∞‖∇εn+1

R ‖‖εn+1
0 ‖

+ C

(
‖en‖‖∇wn+1

h ‖L3‖∇εn+1
0 ‖+ ‖en‖‖wn+1

h ‖∞‖∇εn+1
0 ‖

)
+ C‖∇v̂nh‖‖∇εn+1

R ‖‖∇εn+1
0 ‖.(60)

First use Poincare’s inequality with the Assumption 4.1 on the second and third
right hand side terms of (59) and (60), respectively. Next, apply Young’s inequality
with appropriate ε to produce:

1

∆t
(en+1 − en, en+1

0 ) +
ν + νm

2
‖∇en+1

0 ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇εn0‖2 +

ν + νm
4
‖∇en+1

0 ‖2 +
ννm

2(ν + νm)
‖∇en+1

0 ‖2

+ CC2
∗
ν + νm
ννm

(‖εn‖2 + ‖∇en+1
R ‖2)(61)
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and

1

∆t
(εn+1 − εn, εn+1

0 ) +
ν + νm

2
‖∇εn+1

0 ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇en0‖2 +

ν + νm
4
‖∇εn+1

0 ‖2 +
ννm

2(ν + νm)
‖∇εn+1

0 ‖2

+ CC2
∗
ν + νm
ννm

(‖en‖2 + ‖∇εn+1
R ‖2).(62)

To evaluate the time derivative above, add and subtract the term en+1
R , and use

the polarization identity. Then applying Cauchy-Schwarz, Young’s and Poincare’s
inequalities gives us the following bound :

1

∆t
(en+1 − en, en+1

0 ) =
1

∆t
(en+1 − en, en+1)− 1

∆t
(en+1 − en, en+1

R )

≥ 1

2∆t
(‖en+1‖2 − ‖en‖2) +

1

2∆t
‖en+1 − en‖2 − 1

∆t
(en+1 − en, en+1

R )

≥ 1

2∆t
(‖en+1‖2 − ‖en‖2)− 1

2∆t
‖en+1
R ‖2

≥ 1

2∆t
(‖en+1‖2 − ‖en‖2)− C

2∆t
‖∇en+1

R ‖2.

Plugging these estimates into (61) with adding and subtracting the term ννm
2(ν+νm)‖∇e

n+1
0 ‖2

results in

1

2∆t
(‖en+1‖2 − ‖en‖2) +

(ν − νm)2

4(ν + νm)
‖∇en+1

0 ‖2 +
ννm

2(ν + νm)
‖∇en+1

0 ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇εn0‖2 + CC2

∗
ν + νm
ννm

‖εn‖2

+ C

(
C2
∗
ν + νm
ννm

+ (∆t)−1

)
‖∇en+1

R ‖2.(63)

Using similar estimates on the right hand side terms of (62), we get

1

2∆t
(‖εn+1‖2 − ‖εn‖2) +

(ν − νm)2

4(ν + νm)
‖∇εn+1

0 ‖2 +
ννm

2(ν + νm)
‖∇εn+1

0 ‖2

≤ (ν − νm)2

4(ν + νm)
‖∇en0‖2 + CC2

∗
ν + νm
ννm

‖en‖2

+ C

(
C2
∗
ν + νm
ννm

+ (∆t)−1

)
‖∇εn+1

R ‖2.(64)

Adding the equations (63) and (64), multiplying by 2∆t on both sides and summing
over time steps and rearranging the terms results in

‖eM‖2 + ‖εM‖2 +
(ν − νm)2

2(ν + νm)
∆t(‖∇eM0 ‖2 + ‖∇εM0 ‖2)

+
ννm

(ν + νm)
∆t

M−1∑
n=0

(‖∇en+1
0 ‖2+‖∇εn+1

0 ‖2) ≤ ∆t

M−1∑
n=0

CC2
∗

(ν + νm)

ννm

(
‖en‖2 + ‖εn‖2

)
+ ∆t

M−1∑
n=0

C

(
C2
∗

(ν + νm)

ννm
+ (∆t)−1

)(
‖∇en+1

R ‖2 + ‖∇εn+1
R ‖2

)
.



PENALTY-PROJECTION METHOD FOR MHD IN ELSÄSSER VARIABLE 107

Now drop the non-negative terms on the left hand side, apply Lemma 4.2 along
with Gronwall Lemma to get

‖eM‖2 + ‖εM‖2 +
ννm

(ν + νm)
∆t

M−1∑
n=0

(‖∇en+1
0 ‖2 + ‖∇εn+1

0 ‖2)

≤exp
(
CC2
∗
ν + νm
ννm

)
CC2

R

(
C2
∗
ν + νm
ννm

+ (∆t)−1

)
×
(

∆t

M−1∑
n=0

(‖∇ · en+1
R ‖2 + ‖∇ · εn+1

R ‖2)

)
.(65)

and then use (56) in (65), which produces

∆t

M−1∑
n=0

(
‖∇en+1

0 ‖2 + ‖∇εn+1
0 ‖2

)
≤ γ−2C

(
C2
∗
ν + νm
ννm

+ (∆t)−1

)(
∆t

M−1∑
n=0

(‖qn+1
h − q̂nh‖2 + ‖λn+1

h − λ̂nh‖2)

)
(66)

Finally, applying the triangle inequality to (‖∇(vn+1
h −v̂n+1

h )‖+‖∇(wn+1
h −ŵn+1

h )‖)
with

(a+ b)2 ≤ 2(a2 + b2), ∀a, b ≥ 0

and combining the results (56) and (66) finishes the proof. �

ν = 1, νm = 1, s = 0.5 ν = 1, νm = 1, s = 0.1
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Figure 1. Steady state velocity and magnetic field profiles from
Elsässer (E) and primitive (O) variable schemes, for various ν and
s.
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5. Numerical experiments

In this section, we describe the numerical experiments used to test the proposed
scheme and theory above. We first verify predicted convergence rates as h and
∆t goes to 0 for an analytical test problem, and then test the convergence of the
penalty-projection method to the coupled scheme as γ → ∞. We then compare
computed solutions from the proposed scheme to those of a typical simulation using
primitive variables for a channel flow problem. Finally, we test the proposed scheme
on a test problem of channel flow over step. For all of our simulations, we choose
(P2, P

disc
1 ) Scott-Vogelius elements, which are known to be stable on barycenter

refined regular triangular meshes [2]. These elements remove the effect of the (often
large in MHD) pressure discretization error on the velocity/magnetic field errors.

Table 1. This table gives errors and convergence rates for ana-
lytical test problem with very small end time and varying mesh-
widths.

h dim(Xh) ‖v − vh‖2,1 Rate ‖w − wh‖2,1 Rate
1/4 324 1.0769e-4 2.0638e-4
1/8 1156 2.7072e-5 1.9921 5.1557e-5 2.0011
1/16 4356 6.7771e-6 1.9980 1.2887e-5 2.0003
1/32 16900 1.6949e-6 1.9995 3.2216e-6 2.0001
1/64 66564 4.2380e-7 1.9997 8.0541e-7 2.0000

5.1. Numerical experiment 1: Convergence as h,∆t → 0. We now test the
predicted convergence rates of our analysis, for the mesh width h and timestep ∆t
tending to 0. We picked the analytical solution

v =

(
cos y + (1 + et) sin y
sinx+ (1 + et) cosx

)
, w =

(
cos y − (1 + et) sin y
sinx− (1 + et) cosx)

)
, p = −λ = sin(x+y),

domain Ω = (0, 1)2, ν = νm = 1, and compute f1 and f2 from this. We then com-
puted with Algorithm 3.1, and compared our computed solution with this known
analytical solution. Recall our analysis predicts that

‖v − vh‖2,1 + ‖w − wh‖2,1 ≤ C(∆t+ h2)

for this element choice, with ‖φ‖2,1 := ‖φ‖L2(0,T ;H1(Ω)d).
To test the spatial convergence rate, we select a small end time T = 0.001,

timestep ∆t = T/8, and compute on successively refined meshes. Errors and rates
are shown in table 1, and we observe second order spatial convergence, which is
in agreement with our analysis. To test the temporal convergence rate, we use a
mesh width of h = 1/64, end time T = 1, and compute with varying timestep
sizes. Errors and rates are shown in Table 2, and the expected first order temporal
convergence is observed.

5.2. Numerical experiment 2: Convergence of penalty-projection scheme
to coupled scheme as γ → ∞. In Section 4, we proposed a variation on Algo-
rithm 3.1 that uses a penalty-projection method for each decoupled problem. This
is typically more efficient, as the linear systems that arise are much easier to solve.
However, accuracy in projection type methods is often an issue, but we prove in
Section 4 that with large enough penalty parameter, the penalty-projection scheme
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Table 2. This table gives errors and convergence rates for ana-
lytical test problem with a fine mesh, large end time and varying
timestep size.

∆t ‖v − vh‖2,1 Rate ‖w − wh‖2,1 Rate
T/1 4.1088e-2 4.0721e-2
T/2 2.0206e-2 1.0239 1.9987e-2 1.0267
T/4 9.9334e-3 1.0244 9.8156e-3 1.0259
T/8 4.9141e-3 1.0154 4.8534e-3 1.0161
T/16 2.4430e-3 1.0083 2.4123e-3 1.0086
T/32 1.2181e-3 1.0040 1.2029e-3 1.0040

Table 3. Shown above are the differences between the penalty-
projection and coupled schemes, for varying γ.

γ ‖v − v̂‖∞,1 rate ‖∇ · v‖∞,0 ‖w − ŵ‖∞,1 rate ‖∇ · w‖∞,0
0 4.00e-1 – 2.807e-1 3.663e-1 – 2.676e-1
1 3.041e-1 0.1196 1.996e-1 2.727e-1 0.1280 1.874e-1
10 1.083e-1 0.4481 6.451e-2 9.352e-2 0.4649 5.854e-2
102 1.507e-2 0.8567 8.653e-3 1.277e-2 0.8645 7.744e-3
103 1.571e-3 0.9819 2.676e-4 1.327e-3 0.9833 8.015e-4
104 1.578e-4 0.9982 9.007e-5 1.578e-4 0.9983 8.043e-5

gives the same solution as Algorithm 3.1, since Theorem 4.1 proves it converges to
this method as γ →∞.

To test this convergence, we pick right hand sides f1 and f2 and initial conditions
corresponding to chosen solution

v =

(
sin(2πy)
cos(2πx)

)
exp(t), w =

(
cos(πy)
sin(πx)

)
exp(t), q = r = sin(π(x+ y))(1 + t),

with ν = 1, νm = 1. On a h=1/16 barycenter refined triangulation of a domain
Ω = (0, 1) × (0, 1), with T = 1, and ∆t = 0.1. We then compute with both
the coupled scheme formulation of Algorithm 3.1 and with the penalty-projection
scheme formulation of Algorithm 4.1, with varying γ. We then calculated the
differences in solutions, and associated rates. These are shown in Table 3, and
show the predicted first order convergence. Note that since the timestep size is
fixed, we used the more convenient L∞ norm in time (i.e. we needed only to
compare the solutions at the last timestep).

5.3. Numerical experiment 3: Comparison of proposed Elsässer variable
scheme to primitive variable scheme. Next, we compare the proposed scheme
against a typical scheme for primitive variable MHD, which is given in the case of
homogeneous Dirichlet boundary conditions by: Find (unh, p

n
h, B

n
h , λ

n
h) ∈ Xh×Qh×
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Xh ×Qh such that

1

∆t
(un+1
h − unh, vh) + b∗(unh, u

n+1
h , vh)− (pn+1

h ,∇ · vh)

+ν(∇un+1
h ,∇vh)− sb∗(Bnh , Bn+1

h , vh) = (f, vh),(67)

(∇ · un+1
h , rh) = 0,(68)

1

∆t
(Bn+1

h −Bnh , χh) + b∗(unh, B
n+1
h , χh)− b∗(Bnh , un+1

h , χh)

−(λn+1
h ,∇ · χh) + νm(∇Bn+1

h ,∇χh) = (∇× g(tn+1), χh),(69)

(∇ ·Bn+1
h , ρh) = 0,(70)

for every (vh, rh, χh, ρh) ∈ Xh × Qh × Xh × Qh. In the case of non homogeneous
Dirichlet boundary conditions, the usual change to the solution spaces is made. We
believe this is a fair comparison to make, since this scheme is an unconditionally
stable linearized backward Euler scheme, just as the proposed Elsässer variable
scheme in Algorithm 3.1 is. Of course, the proposed Elsässer variable is much more
efficient, since it decouples the problem. It is an open problem how to decouple a
primitive variable MHD system in an unconditionally stable way.

For this comparison of schemes, we consider channel flow on a 10×40 rectangle,
with initial condition B = 0 and u =< (1−y2)/2, 0 >. These initial conditions also
define the inflow/outflow conditions for all t > 0. On the upper and lower walls,
no slip conditions are enforced for velocity, and a magnetic field B =< 0, 1 > is
enforced. The magnetic diffusivity constant is selected as νm = 1. The coupling
number s and the kinematic viscosity ν are varied in the tests. For all tests, a steady
state was reached by T = 40 (using timesteps of ∆t = 0.05, and shown in Figure
1 are velocity and magnetic field steady state profiles at x = 20 for both schemes.
A barycenter refined mesh that provided a total of 24,756 degrees of freedom was
used.

From the plots, we observe excellent agreement in the solutions of the primitive
and Elsässer variable schemes for each choice of s and ν, as the plots of the profiles
lie on top of each other. We note that several other variations of ν, νm, s were
made, and in all cases the profile plots of solutions of primitive and Elsässer variable
schemes had excellent agreement.

5.4. Numerical experiment 4: MHD Channel Flow over a step. For our
final numerical experiment, we test Algorithm 3.1 on two dimensional channel flow
over a forward and backward facing step in the presence of a magnetic field, with
ν = 0.001 and νm = 1. It is expected that as the strength of the magnetic field
grows, transient behavior will be damped, and the velocity flow profile will change
from parabolic to nearly plug-like (away from the step), similar to the previous
example.

We choose a domain that is a 30×10 rectangle with a 1×1 step five units into the
channel at the bottom. We enforce boundary conditions for v and w that correspond
to no slip velocity and B = 〈0, 1〉T on the walls and step, and u = 〈y(10−y)/25, 0〉T
at the inflow, B = 0 at the inflow and outflow, and with outflow conditions for u.
The initial conditions are B̃0 = 0 and u0 = 〈y(10 − y)/25, 0〉T . Computations are
run to T = 40, using a timestep of ∆t = 0.025 and a mesh that provided 568, 535
total degrees of freedom. Plots for the solutions with s = 0, 0.01 and s = 0.05
are shown at T=40 in Figure 2. We observe as s increases, the shedding of eddies
behind the step is inhibited, and the change in velocity profile is clearly altered
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Figure 2. Shown above are T=40 velocity solutions (shown as
streamlines over speed contours) for MHD Channel flow over a
step with varying s, and associated magnetic field magnitudes.

away from a parabolic shape. The magnetic field plots show a clear interaction
between the flow and induced magnetic field which changes the magnetic field.

6. Conclusions and future directions

We have proposed, analyzed and tested an efficient, fully discrete numerical
scheme for MHD. By formulating with Elsässer variables, unconditionally stability
is proven in a decoupled algorithm (decoupling of the 4-equation, 4-unknown sys-
tem into 2-equation, 2-unknown systems). Unconditional stability with respect to
meshwidth and timestep size are also proven. Moreover, a more efficient penalty-
projection method for each 2-equation system, and this method is proven to be
equivalent to the 2-equation, 2-unknown scheme for large penalty parameters.

Results of several successful numerical experiments were presented. Convergence
rates to a chosen analytical solution were found to be optimal, which is in agreement
with our analysis. Convergence of the penalty-projection scheme to the 2-equation,
2-unknown scheme was found to be first order as γ → ∞, which agrees with our
theory. Two channel flow problems were also studied. The first was a comparison
of the Elsässer scheme solution to that of primitive variable MHD, for a variety
of viscosities and coupling numbers, and in each case excellent agreement between



112 M. AKBAS, S. KAYA, M. MOHEBUJJAMAN, AND L. REBHOLZ

the solutions was found. Finally, we testing MHD channel flow over a step, and
observed the changing of physical behavior as the coupling number increased.

For future work, we believe that more testing of the scheme needs performed.
If it can be established that this scheme gives solutions very similar to primitive
variable schemes with the same mesh and timestep on a wide variety of problems,
then the proposed schemes (or perhaps variants of them) could be an enabling tool
to simulate larger scale 3D problems than is currently possible. Also, for MHD
problems with higher Reynolds number, reduced order modeling with large eddy
simulation, in the context of the scheme proposed herein, should be explored.
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