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Abstract. In this article, we introduce some results with respect to the integrality and
exact solutions of some 2nd order algebraic DEs. We obtain the sufficient and neces-
sary conditions of integrable and the general meromorphic solutions of these equa-
tions by the complex method, which improves the corresponding results obtained by
many authors. Our results show that the complex method provides a powerful math-
ematical tool for solving a large number of nonlinear partial differential equations in
mathematical physics.

Key Words: Differential equation, general solution, meromorphic function, elliptic function.

AMS Subject Classifications: 30D35, 34A05

1 Introduction

Nonlinear partial differential equations (NLPDEs) are widely used as models to describe
many important dynamical systems in various fields of sciences, particularly in fluid
mechanics, solid state physics, plasma physics and nonlinear optics Exact solutions of
NLPDEs of mathematical physics have attracted significant interest in the literature Over
the last years, much work has been done on the construction of exact solitary wave solu-
tions and periodic wave solutions of nonlinear physical equations. Many methods have
been developed by mathematicians and physicists to find special solutions of NLPDEs,
such as the inverse scattering method [1], Darboux transformation method [2], Hirota
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bilinear method [3], Lie group method [4], bifurcation method of dynamic systems [5–7],
sine-cosine method [8], tanh-function method [9, 10], Fan-expansion method [11], and
homogenous balance method [12]. Practically, there is no unified technique that can be
employed to handle all types of nonlinear differential equations. Recently, Kudryashov
et al. [13–16] find exact meromorphic solutions for some nonlinear ordinary differential
equations by using Laurent series and gave some basic results. Follow their work the
complex method was introduced by Yuan et al. [17–19]. It is shown that the complex
method provide a powerful mathematical tool for solving great many nonlinear partial
differential equations in mathematical physics.

2 The second order algebraic differential equations with degree

two

In 2013, Yuan et al. [17] derived all traveling wave exact solutions by using the complex
method for a type of ordinary differential equations (ODEqs)

Aw′′+Bw+Cw2+D=0, (2.1)

where A, B, C and D are arbitrary constants.
In order to state these results, we need some concepts and notations.
A meromorphic function w(z) means that w(z) is holomorphic in the complex plane

C except for poles. α, b, c, ci and cij are constants, which may be different from each other
in different place. We say that a meromorphic function f belongs to the class W if f is an
elliptic function, or a rational function of eαz, α∈C, or a rational function of z.

Theorem 2.1. Suppose that AC 6=0, then all meromorphic solutions w of an Eq. (2.1) belong to
the class W. Furthermore, Eq. (2.1) has the following three forms of solutions:

(I) The elliptic general solutions

w1d(z)=−6
A

C

{

−℘(z)+
1

4

[

℘′(z)+F

℘(z)−E

]2}

+6
AE

C
− B

2C
.

Here, 4DC=−12A2g2+B2, F2=4E3−g2E−g3, g3 and E are arbitrary.

(II) The simply periodic solutions

w1s(z)=−6
A

C
α2coth2 α

2
(z−z0)−

A

2C
α2− B

2C
,

where 4DC=−A2α4+B2, z0∈C.

(III) The rational function solutions

w1r(z)=− 6 A
C

(z−z0)2
− B

2C
,

where 4CD=B2, z0 ∈C.
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The Eq. (2.1) is a type of an important auxiliary equation, because many nonlinear
evolution equations can be converted to the Eq. (2.1) using the travelling wave reduc-
tion. For instance, the classical KdV equation, Boussinesq equation, (3+1)-dimensional
Jimbo-Miwa equation and Benjamin-Bona-Mahony equation can be converted to the
Eq. (2.1) [17].

The KdV equation

The KdV equation has the form as

ut+uux+βuxxx=0, (2.2)

where β is constant.
Substituting

u(x,t)=w(z), z= k(x−ct),

into Eq. (2.2), and integrating it yields

βk2w′′+
1

2
w2−cw−b=0.

It is converted to AOD equation (2.1), where

A=βk2, B=−c, C=
1

2
, D=−b.

The Boussinesq equation

The Boussinesq equation is the form as

utt−c2
0uxx−αuxxxx−β(u2)xx =0, (2.3)

where c0, α, β are constants.
Substituting

u(x,t)=w(z), z= kx+ωt,

into Eq. (2.3) and integrating it gives

αk4w′′+βw2+(c2
0k2−ω2)w+D=0.

It is converted to AOD equation (2.1), where

A=αk4, B= c2
0k2−ω2, C=β.

The (3+1)-dimensional Jimbo-Miwa equation

The (3+1)-dimensional Jimbo-Miwa equation equation is considered as

uxxxy+3uyuxx+3uxuxy+2uyt−3uxz =0. (2.4)
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Set k, m, r, ω are constants. Substituting

u(x,y,z,t)=w(z), z= kx+my+rz+ωt,

into Eq. (2.4), and integrating it deduces

k3mw′′+3k2mw2+(2mω−3kr)w+D=0.

It is converted to AOD equation (2.1), where

A= k3m, B=2mω−3kr, C=3k2m.

The Benjamin-Bona-Mahony equation

The Benjamin-Bona-Mahony equation has the form

ut−uxxt+ux+
(u2

2

)

x
=0. (2.5)

Let k, ω are constants. Substituting

u(x,t)=w(z), z= kx−ωt,

into Eq. (2.5) and integrating it gives

ωk2w′′+
k

2
w2+(k−ω)w+D=0.

It is converted to AOD equation (2.1), where

A=ωk2, B= k−ω, C=
k

2
.

Yuan et al. [20] employ the complex method to obtain all meromorphic solutions of anther
Eq. (2.6) below

Aw′′+Bw′+Cw+Dw2+E=0, (2.6)

where A, B, C, D, E are arbitrary constants.

Theorem 2.2. Suppose that AD 6=0, then the Eq. (2.6) is integrable if and only if

B=0, ± 5√
6

√

−2AD

√

C2

4D2
− E

D
, ± 5i√

6

√

−2AD

√

C2

4D2
− E

D
.

Furthermore, the general solutions of the Eq. (2.1) are of the form:
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(I) If B=0, then the elliptic general solutions of the Eq. (2.6)

w2d(z)=−6
A

D

{

−℘(z)+
1

4

[

℘′(z)+M

℘(z)−N

]2}

+6
AN

D
− C

2D
.

Here, 12A2g2=C2, M2=4N3−g2N−g3, g3 and N are arbitrary.

In particular, which degenerates the simply periodic solutions

w2s(z)=−6
A

D
α2coth2 α

2
(z−z0)−

A

2D
α2− C

2D
,

where A2α4=C2, z0∈C.

And the rational function solutions

w2r(z)=− 6 A
D

(z−z0)2
−
√

C2

4D2
− E

D
− C

2D
,

where C2=4DE, z0∈C.

(II) If

B=± 5√
6

√

−2AD

√

C2

4D2
− E

D
,

the general solutions of the Eq. (2.6)

wg2(z)=exp
{

∓ 2√
6

√

−2D

A

√

C2

4D2
− E

D
z
}

℘

(

√

−D

A
exp

{

∓ 1√
6

√

−D

A

√

C2

4D2
− E

D
z
}

−s0;0,g3

)

−
√

C2

4D2
− E

D
− C

2D
,

where
√

C2/4D2=−C/2D, both s0 and g3 are arbitrary constants.

In particular, which degenerates the one parameter family of solutions

w f 2(z)=2

√

C2

4D2
− E

D

1
{

1−exp
{

± (z−z0)√
6

√

− 2D
A

√

C2

4D2 − E
D

}}2
−
√

C2

4D2
− E

D
− C

2D
,

where
√

C2/4D2=−C/2D, z0∈C.

(III) If

B=± 5i√
6

√

−2AD

√

C2

4D2
− E

D
,
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then the general solutions of the Eq. (2.6)

wg2,i(z)=exp
{

∓ 2i√
6

√

−2D

A

√

C2

4D2
− E

D
z
}

℘

(

√

D

A
exp

{

∓ i√
6

√

−D

A

√

C2

4D2
− E

D
z
}

−s0;0,g3)−
√

C2

4D2
− E

D
− 3C

2D
,

where
√

C2/4D2=−C/2D, both s0 and g3 are arbitrary constants.
In particular, which degenerates the one parameter family of solutions

w f 2,i(z)=−2

√

C2

4D2
− E

D

1
{

1−exp
{

± i(z−z0)√
6

√

− 2D
A

√

C2

4D2 − E
D

}}2
−
√

C2

4D2
− E

D
− 3C

2D
,

where
√

C2/4D2=−C/2D, z0∈C.

The Fisher equation with degree two

Consider the Fisher equation

ut=vuxx+su(1−u),

which is a nonlinear diffusion equation as a model for the propagation of a mutant gene
with an advantageous selection intensity s. It was suggested by Fisher as a deterministic
version of a stochastic model for the spatial spread of a favored gene in a population in
1936.

Set t′= st and x′=(s/v)x/2 and drop the primes, above equation becomes

ut=uxx+u(1−u). (2.7)

By substituting
u(x,t)=w(z), z= x−ct,

into the Eq. (2.7) and integrating it, we obtain

w′′+cw′+w(1−w)=0.

It is converted to the Eq. (2.6), where

A=1, B= c, C=1, D=−1, E=0.

Three nonlinear pseudoparabolic physical models

The one-dimensional Oskolkov equation, the Benjamin-Bona-Mahony-Peregrine-
Burgers equation and the Oskolkov-Benjamin-Bona-Mahony-Burgers equation are the
specially cases of our Eq. (2.6).
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The one-dimensional Oskolkov equation is the form

ut−λuxxt−αuxx+uux =0, (2.8)

where λ 6=0, α∈R.
Substituting

u(x,t)=w(z), z= x−ct,

into the Eq. (2.8) and integrating the equation, we have

λw′′−αw′−cw+
1

2
w2=0.

It is converted to the Eq. (2.6), where

A=λ, B=−α, C=−c, D=
1

2
, E=0.

The Benjamin-Bona-Mahony-Peregrine-Burgers equation is the form as

ut−uxxt−αuxx++γux+θuux+βuxxx =0, (2.9)

where α is a positive constant, θ and β are nonzero real numbers.
Substituting

u(x,t)=w(z), z= x−ct,

into the Eq. (2.9), and then we get

(c+β)w′′−αw′+(γ−c)w+
θ

2
w2=0.

It is converted to the Eq. (2.6), where

A= c+β, B=−α, C=γ−c, D=
θ

2
, E=0.

The Oskolkov-Benjamin-Bona-Mahony-Burgers equation is the form as

ut−uxxt−αuxx++γux+θuux =0, (2.10)

where α is a positive constant, θ is a nonzero real number.
Substituting

u(x,t)=w(z), z= x−ct,

into the Eq. (2.10), we deduce

cw′′−αw′+(γ−c)w+
θ

2
w2=0.
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It is converted to the Eq. (2.6), where

A= c, B=−α, C=γ−c, D=
θ

2
, E=0.

The KdV-Burgers equation

The KdV-Burgers equation is of form

ut+uux+uxxx−αuxx =0, (2.11)

where α is a constant.
Substituting the traveling wave transformation

u(x,t)=w(z), z= x+Ct,

into the Eq. (2.11), and integrating it yields the auxiliary ordinary differential equation

w′′−αw′+
1

2
w2+Cw+E=0,

where E is an integral constant. It is converted to Eq. (2.6), where

A=1, B=−α, C=C, D=
1

2
, E=E.

3 The second order algebraic differential equations with

degree three

In 2012, Yuan et al. [21] employ the complex method to obtain all meromorphic solutions
of the auxiliary ordinary differential equations [AOD equation (3.1)] below

Aw′′+Bw+Cw3+D=0, (3.1)

where A, B, C and D are arbitrary constants. And then find all meromorphic exact so-
lutions of the modified ZK equation, modified KdV equation, nonlinear Klein-Gordon
equation and modified BBM equation.

Theorem 3.1. Suppose that AC 6=0, then all meromorphic solutions w of an AOD equation (2.1)
belong to the class W. Furthermore, AOD equation (3.1) has the following three forms of solutions:

(I) The elliptic function solutions

w3d(z)=±1

2

√

−2A

C

(−℘+c)(4℘c2+4℘2c+2℘′d−℘g2−cg2)

((12c2−g2)℘+4c3−3cg2)℘′+(4℘3+12c℘2−3g2℘−cg2)d
.

Here, g3=0, d2=4c3−g2c, g2 and c are arbitrary.
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(II) The simply periodic solutions

w3s,1(z)=α

√

− A

2C

(

coth
α

2
(z−z0)−coth

α

2
(z−z0−z1)−coth

α

2
z1

)

,

w3s,2(z)=α

√

− A

2C
tanh

α

2
(z−z0),

where

z0∈C, B=Aα2
(1

2
+

3

2sinh2 α
2 z1

)

, D=

√

− A

2C

tanh α
2 z1

sinh2 α
2 z1

, z1 6=0,

in the former formula, or B=Aα2/2, D=0.

(III) The rational function solutions

w3r,1(z)=±
√

−2A

C

1

z−z0
,

w3r,2(z)=±
√

− 2A

Cz2
1

( z1

z−z0
− z1

z−z0−z1
−1

)

,

where z0∈C, B=0, D=0 in the former case, or given z1 6=0, B=/z2
1, D=∓2C(−2A/Cz2

1)
3/2.

The modified ZK equation, modified KdV equation, nonlinear Klein-Gordon equa-
tion and modified BBM equation are considered again and the exact solutions are derived
with the aid of the AOD equation (3.1).

The Modified ZK equation

The Modified ZK equation is expressed as

ut+βu2ux+uxxx+uxyy=0, (3.2)

where β is a constant.
Substituting

u(x,t)=w(z), z= k(x+ly−ωt),

into Eq. (3.2) and integrating it yields

k2(1+l2)w′′+
β

3
w3−ωw+b=0.

It is converted to AOD equation (3.1), where

A= k2(1+l2), B=−ω, C=
β

3
, D=b.

The Modified KdV equation
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The Modified KdV equation has the form

ut+τu2ux+βuxxx=0, (3.3)

where τ, β are constant.
Substituting

u(x,t)=w(z), z= kx−ωt,

into Eq. (3.3) and integrating it yields

βk3w′′+
kτ

3
w3−ωw+d=0.

It is converted to AOD equation (3.1), where

A=βk3, B=−ω, C=
kτ

3
, D=d.

The nonlinear Klein-Gordon equation

The nonlinear Klein-Gordon equation is of the form

utt−c2uxx+τu−βu3=0, (3.4)

where c, τ, β are constants.
Substituting

u(x,t)=w(z), z= kx−ωt,

into Eq. (2.3) gives

τw(z)−βw3(z)+(ω2−c2k2)w′′(z)=0.

It is converted to AOD equation (3.1), where

A=ω2−c2k2, B=τ, C=−β, D=0.

The modified BBM equation

The modified BBM equation is considered as

ut+ux+u2ux+βuxxt=0, (3.5)

where β is constant. Substituting

u(x,t)=w(z), z= k(x−λt),

into Eq. (3.5), and integrating it deduces

βλk2w′′− 1

3
w3−(1−λ)w−b=0.
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It is converted to AOD equation (3.1), where

A=βλk2, B=−(1−λ), C=−1

3
, D=−b.

Recently, Yuan et al. [22] consider Eq. (3.6) below

Aw′′+Bw+Cw2+w3+D=0, (3.6)

where A, B, C and D are arbitrary constants. They obtained the following result and gave
its two applications.

Theorem 3.2. Suppose that A 6=0, then all meromorphic solutions w of an Eq. (3.6) belong to the
class W. Furthermore, the Eq. (3.6) has the following three forms of solutions:

(I) All elliptic function solutions

w4d(z)=−C

3
±
√

−A

2
×

(−℘+E)(4℘E2+4℘2E+2℘′F−℘g2−Eg2)

((12E2−g2)℘+4E3−3Eg2)℘′+4F℘3+12FE℘2−3Fg2℘−FEg2
,

where A(C2−9B) = 12C
√
−A/2, 27D = C3, g3 = 0, F2 = 4E3−g2E, g2 and E are arbitrary

constants.

(II) All simply periodic solutions

w4s,1(z)=±
√

−A

2
αcoth

α

2
(z−z0)−

C

3
,

w4s,2(z)=±
√

−A

2
α
(

coth
α

2
(z−z0)−coth

α

2

)

−C

3
∓
√

−A

2
αcoth

α

2
z1,

where z0∈C, A(2C2+9Aα2−18B)=24C
√
−A/2, 27D−C3=27α2

√
−A/2 in the former case,

or z1 6=0, 8C
√
−A/2+6AB=3A2α2(3/sinh2 α

2 z1+1),

162D

√

−A

2
=
(

2C

√

−A

2
∓3Aαcoth

α

2
z1

)

×
( 108Aα2

sinh2 α
2 z1

+3C2∓9Cα

√

−A

2
coth

α

2
z1

)

.

(III) All rational function solutions

w4r,1(z)=±
2
√

− A
2

z−z0
−C

3
,

w4r,2(z)=±
2
√

− A
2

z−z0
∓

2
√

− A
2

z−z0−z1
∓

2
√

− A
2

z1
−C

3
,

where z0∈C, A(C2−9B)=12C
√
−A/2, 27D=C3 in the former case, or

A
(54A

z2
1

+C2−9B
)

=12C

√

−A

2
,

4A2

z3
1

=
(C3

27
+

2C

z2
1

−D
)

√

−A

2
, z1 6=0.
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All exact solutions of the Eq. (3.7) and Eq. (3.8) can be converted to the Eq. (3.6) mak-
ing use of the traveling wave reduction.

The variant Boussinesq equations

The variant Boussinesq equations are expressed as

{

ut+(uw)x+wxxx=0,
wt+ux+wwx=0.

(3.7)

As a model for water waves, w is the velocity and u the total depth, and the subscripts
denote partial derivatives.

Substituting the traveling wave transformation

u(x,t)=u(z), w(x,t)=w(z), z= kx+λt,

into the Eqs. (3.7), and integrating it yields







λu+kuw+k3w′′+C1=0,

λw+ku+
k

2
w2+C2=0,

where C1 and C2 are constants.
Solving the system, we get the relation

u=−1

2
w2− λ

k
w−C2,

and the auxiliary ordinary differential equation

k3w′′− λ2+C2

k
w− 3λ

2
w2− k

2
w3+C3=0,

where C3=C1−C2λ/k.
It is converted to Eq. (3.6), where

A=−2k2, B=
2λ+2C2

k2
, C=

3λ

k
, D=−2C3

k
.

The combined KdV-mKdV equation

The combined KdV-mKdV equation is of form

ut+auux+bu2ux+δuxxx=0, (3.8)

where a, b and δ are constants. The Eq. (3.8) is a real physical model concerning many
branches in physics. The Eq. (3.8) may describe the wave propagation of bounded parti-
cle with a harmonic force in one-dimensional nonlinear lattice. Particularly, it describes
the propagation of ion acoustic waves of small amplitude without Landau damping in
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plasma physics, and it is also used to explain the propagation of thermal pulse through
single crystal of sodium fluoride in solid physics.

Substituting the traveling wave transformation

u(x,t)=w(z), z= kx+λt,

into the Eq. (3.8) and integrating it yields the auxiliary ordinary differential equation

δk3w′′+λw+
ak

2
w2+

bk

3
w3+d=0,

where d is an integral constant.
It is converted to Eq. (3.6), where

A=
3δk3

b
, B=

3λ

bk
, C=

3a

2b
, D=

3d

bk
.

Very recently, Huang et al. [23] study the differential equation below.

Aw′′+Bw′+Cw+Dw3=0, (3.9)

where A, B, C, D are arbitrary constants. They got the following theorem.

Theorem 3.3. Suppose that AD 6=0, then the Eq. (3.9) is integrable if and only if

B=0, ± 3√
2

√
AC.

Furthermore, the general solutions of the Eq. (3.9) are of the form:

(I) (see [21]) When B=0, the elliptic general solutions of the Eq. (3.9)

w5d,1(z)=±
√

−2A

D

℘′(z−z0 : g2,0)

℘(z−z0 : g2,0)
,

where, z0 and g2 are arbitrary. In particular, it degenerates the simply periodic solutions and
rational solutions

w5s,1(z)=α

√

− A

2D
tanh

α

2
(z−z0), w5r(z)=±

√

−2A

D

1

z−z0
,

where C=Aα2/2 and z0∈C.

(II) When

B=± 3√
2

√
AC,

the general solutions of the Eq. (3.9)

w5g,1(z)=±1

2
exp

{

∓ 1√
2

√

C

A
z
}℘′

(
√

−D
C exp

{

∓ 1√
2

√

C
A z

}

−s0;g2,0
)

℘

(
√

−D
C exp

{

∓ 1√
2

√

C
A z

}

−s0;g2,0
)

,
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where ℘(s : g2,0) is the Weierstrass elliptic function, both s0 and g2 are arbitrary constants. In
particular, w5g,1(z) degenerates the one parameter family of solutions

w5 f ,1(z)=±
√

− C

D

1

1−exp
{

∓ 1√
2

√

C
A (z−z0)

}
,

where z0∈C.

All exact solutions of the Eq. (3.10), nonlinear Scrödinger Eq. (3.11) and Eq. (3.12) can
be converted to the Eq. (3.9) making use of the traveling wave reduction.

The Newell-Whitehead equation

The Newell-Whitehead equation is the form as

uxx−ut−ru3+su=0, (3.10)

where r, s are constants.
Substituting

u(x,t)=w(z), z= x+ωt,

into Eq. (3.10), and it gives

w′′−ωw′+sw−rw3=0.

It is converted to Eq. (3.9), where

A=1, B=−ω, C=1, D=−1.

The NLS equation

The NLS equation is the form as

iut+αuxx+β|u|2u=0, (3.11)

where α, β are nonzero constants.

Substituting

u(x,t)=w(z)ekx−ωt, z= x+ct,

into Eq. (3.11), and it gives

αw′′+i(2αk−c)w′+(ω−αk2)w+βw3=0.

It is converted to Eq. (3.9), where

A=α, B= i(2αk−c), C=ω−αk2, D=β.

The Fisher equation with degree three
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The Fisher equation with degree three is the form as

ut=uxx+u(1−u2). (3.12)

Substituting
u(x,t)=w(z), z= x−ct,

into Eq. (3.12), and it gives
w′′+cw′+w(1−w2)=0.

It is converted to Eq. (3.9), where

A=1, B= c, C=1, D=−1.

4 Some results and the complex method

In order to state our complex method, we need some notations and results.
Set m∈N :={1,2,3,··· ,}, rj∈N0=N∪{0}, r=(r0,r1,··· ,rm), j=0,1,··· ,m. We define a

differential monomial denoted by

Mr[w](z) :=[w(z)]r0 [w′(z)]r1 [w′′(z)]r2 ··· [w(m)(z)]rm .

p(r) := r0+r1+···+rm is called the degree of Mr[w]. A differential polynomial is defined
by

P(w,w′,··· ,w(m)) :=∑
r∈I

ar Mr[w],

where ar are constants, and I is a finite index set. The total degree is defined by
degP(w,w′,··· ,w(m)) :=maxr∈I{p(r)}.

We will consider the following complex ordinary differential equations

P(w,w′,··· ,w(m))=bwn+c, (4.1)

where b 6=0, c are constants, n∈N.
Let p, q∈N. Suppose that the Eq. (4.1) has a meromorphic solution w with at least

one pole, we say that the Eq. (4.1) satisfies weak 〈p,q〉 condition if substituting Laurent
series

w(z)=
∞

∑
k=−q

ckzk, q>0, c−q 6=0, (4.2)

into the Eq. (4.1) we can determinant p distinct Laurent singular parts below

−1

∑
k=−q

ckzk.
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In order to give the representations of elliptic solutions, we need some notations and
results concerning elliptic function [24].

Let ω1, ω2 be two given complex numbers such that Imω1/ω2 > 0, L = L[2ω1,2ω2]
be discrete subset L[2ω1,2ω2] = {ω|ω = 2nω1+2mω2, n,m∈Z}, which is isomorphic to
Z×Z. The discriminant ∆=∆(c1,c2) := c3

1−27c2
2 and

sn = sn(L) := ∑
ω∈L\{0}

1

ωn
.

Weierstrass elliptic function ℘(z) := ℘(z,g2,g3) is a meromorphic function with double
periods 2ω1, 2ω2 and satisfying the equation

(℘′(z))2=4℘(z)3−g2℘(z)−g3, (4.3)

where g2=60s4, g3 =140s6 and ∆(g2,g3) 6=0.

Theorem 4.1 (see [24, 25]). Weierstrass elliptic functions ℘(z) :=℘(z,g2,g3) have two succes-
sive degeneracies and addition formula:

(i) Degeneracy to simply periodic functions (i.e., rational functions of one exponential ekz) accord-
ing to

℘(z,3d2,−d3)=2d− 3d

2
coth2

√

3d

2
z, (4.4)

if one root ej is double (∆(g2,g3)=0).

(ii) Degeneracy to rational functions of z according to

℘(z,0,0)=
1

z2
,

if one root ej is triple (g2 = g3=0).

(iii) Addition formula

℘(z−z0)=−℘(z)−℘(z0)+
1

4

[

℘′(z)+℘′(z0)

℘(z)−℘(z0)

]2
. (4.5)

By above notations and results, we can give a method below, say complex method, to
find exact solutions of some PDEs.

Step 1 Substituting the transform T : u(x,t)→ w(z), (x,t)→ z into a given PDE gives a
non-linear ordinary differential equations (4.1).

Step 2 Substitute (4.2) into the Eq. (4.1) to determine that weak 〈p,q〉 condition holds,
and pass the Painlevé test for the Eq. (4.1).

Step 3 Find the meromorphic solutions w(z) of the Eq. (4.1) with pole at z = 0, which
have m−1 integral constants.
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Step 4 By the addition formula of Theorem 4.1 we obtain all meromorphic solutions
w(z−z0).

Step 5 Substituting the inverse transform T−1 into these meromorphic solutions w(z−
z0), then we get all exact solutions u(x,t) of the original given PDE.

Acknowledgments

This work was supported by the Visiting Scholar Program of Chern Institute of Mathe-
matics at Nankai University when the authors worked as visiting scholars. The authors
would like to express their hearty thanks to Chern Institute of Mathematics provided
very comfortable research environments to them. The authors finally wish to thank Pro-
fessor Robert Conte for supplying his useful reprints and suggestions. This work was
completed with the support with the NSF of China (No. 11271090, 11326083) and NSF of
Guangdong Province (S2012010010121), Shanghai university young teacher training pro-
gram (ZZSDJ12020), projects 10XKJ01, 12C401 and 12C104 from the Leading Academic
Discipline Project of Shanghai Dianji University.

References

[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse
Scattering, Vol. 149 of London Mathematical Society Lecture Note Series, Cambridge Uni-
versity Press, Cambridge, UK, 1991.

[2] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer Series in
Nonlinear Dynamics, Springer, Berlin, Germany, 1991.

[3] R. Hirota and J. Satsuma, Soliton solutions of a coupled KdV equation, Phys. Lett. A, 85(8-9)
(1981), 407–408.

[4] P. J. Olver, Applications of Lie Groups to Differential Equations, Vol. 107 of Graduate Texts
in Mathematics, Springer, New York, NY, USA, 2nd edition,.

[5] J. B. Li and Z. Liu, Travelling wave solutions for a class of nonlinear dispersive equations,
Chinese Annals of Mathematics, 3B(3) (2002), 397–418.

[6] S. Tang and W. Huang, Bifurcations of travelling wave solutions for the generalized double
sinh-Gordon equation, Appl. Math. Comput., 189(2) (2007), 1774–1781.
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