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Abstract. In this paper, we introduce new sufficient conditions for certain integral op-
erators to be starlike and p-valently starlike in the open unit disk.
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1 Introduction

Let U= {z ∈ C : |z| < 1}, the unit disk. We denote by H(U) the class of holomorphic
functions defined on U. Let Ap be the class of all p-valent analytic functions of the form

f (z)= zp+ap+1zp+1+··· , p∈N={1,2,···}.

For p=1, we obtain A1=A, the class of univalent analytic functions in the unit disk. Let
S
∗ and K denote the subclasses of starlike and convex functions in U respectively. Recall

that f ∈A is convex if and only if

Re
( z f ′′(z)

f ′(z)
+1

)

>0, z∈U,

and starlike if and only if

ℜ
( z f ′(z)

f (z)

)

>0, z∈U.
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For fi(z)∈A and αi >0, for all i∈{1,2,3,··· ,n}, D. Breaz and N. Breaz [2] introduced
the following integral operator:

Fn(z)=
∫ z

0

( f1(t)

t

)
α1

···
( fn(t)

t

)

αn

dt. (1.1)

Recently Breaz et al. in [3] introduced the following integral operator:

Fα1,···,αn(z)=
∫ z

0
[ f ′1(t)]

α1 ···[ f ′n(t)]
α1 dt. (1.2)

The most recent, Frasin [1] introduced the following integral operators, for αi > 0 and
fi ∈Ap,

Fp(z)=
∫ z

0
ptp−1

( f1(t)

tp

)
α1

···
( fn(t)

tp

)

αn

dt (1.3)

and

Gp(z)=
∫ z

0
ptp−1

( f ′1(t)

ptp−1

)
α1

···
( f ′1(t)

ptp−1

)
αn

dt. (1.4)

Remark 1.1. (i) For p=1, we get F1(z)=Fn(z), and G1(z)=Fα1,···,αn(z).
(ii) For p=n=1, α1=α∈ [0,1] in (1.3) we get the integral operator

Fα(z)=
∫ z

0

( f (t)

t

)

α

dt,

which is studied in [7].
(iii) For p=n=1, α=1 in (1.3) we get the integral operator

G(z)=
∫ z

0

f (t)

t

introduced by Alexander [4].
(iv) For p=n=1, α1=α∈C, |α|≤1/4 in (1.4) we get the integral operator

∫ z

0

(

f ′(t)
)

α

dt,

which is studied in [5].

2 Main result

In order to prove our main results we shall need the following lemma due to S. S. Miller
and P. T. Mocanu [6]:
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Lemma 2.1. Let a function Φ : C2 →C satisfy

ReΦ(ix,y)≤0

for all real x and all real y with y≤−(1+x2)/2. If p(z)= 1+p1z+··· is analytic in the unit
disc U={z : z∈C|z|<1} and

ReΦ(p(x),zp′(x))>0, z∈U,

then

Rep(z)>0, z∈U.

Firstly, we prove the following p-valent starlike result of the operator Fp(z).

Theorem 2.1. Let αi >0 for i=1,2,··· ,n, and fi ∈Ap. If

n

∑
i=1

αi

(

Re
z f ′i (z)

fi(z)
−p

)

>1−p,

then Fp is p-valent starlike. Here Fp is the integral operator define as in (1.3).

Proof. From (1.3), we observe that Fp∈Ap and obtain

Fp
′(z)= pzp−1

( f1(z)

zp

)

α1

···
( fn(z)

zp

)

αn

.

Differentiating the above expression logarithmically and multiply by z we obtain

zF′′
p (z)

F′
p(z)

=(p−1)+
n

∑
i=1

αi

[z f ′i (z)

fi(z)
−p

]

. (2.1)

Let

h(z)=
zF′

p(z)

Fp(z)

be a holomorphic function in U and h(0) = 1. Differentiating h(z) logarithmically, we
obtain

h(z)−1+
zh′(z)

h(z)
=

zF′′
p (z)

F′
p(z)

. (2.2)

Substitute (2.2) in (2.1), we obtain

h(z)−1+
zh′(z)

h(z)
=(p−1)+

n

∑
i=1

αi

[ z f ′i (z)

fi(z)
−p

]

.
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We define the function Ψ by

Ψ(u,v)=u−1+
v

u
.

In order to use Lemma 2.1, we must verify that Ψ(ix,y)< 0 whenever x and y are real
numbers with y≤−(1+x2)/2, we have

ReΨ(ix,y)=Re
(

ix−1+
y

ix

)

=−1<0,

then
ReΦ(h(z),zh′(z))≥0.

By Lemma 2.1, we deduce that Reh(z)>0, z∈U, and so

Re
zF′

p(z)

Fp(z)
>0,

therefore the integral operator Fp is p-valent starlike.

Our next result is the following:

Theorem 2.2. Let αi >0 for i=1,2,··· ,n, and fi ∈Ap. If

n

∑
i=1

αi

(

Re
z f ′′i (z)

f ′i (z)

)

> (p−1)
( n

∑
i=1

αi−1
)

,

then Gp is p-valent starlike, where Gp is the integral operator define as in [4].

Proof. From (1.4), we observe that Gp∈Ap and obtain

G′
p(z)= pzp−1

( f ′1(z)

pzp−1

)

α1

···
( f ′1(z)

pzp−1

)

αn

.

Differentiating the above expression logarithmically and multiply by z we obtain

zG′′
p (z)

G′
p(z)

=(p−1)+
n

∑
i=1

αi

[z f ′′i (z)

f ′i (z)
−(p−1)

]

. (2.3)

Let

h(z)=
zG′

p(z)

Gp(z)

be a holomorphic function in U and h(0) = 1. Differentiating h(z) logarithmically, we
obtain

h(z)−1+
zh′(z)

h(z)
=

zG′′
p (z)

G′
p(z)

. (2.4)
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Substitute (2.4) in (2.3), we obtain

h(z)−1+
zh′(z)

h(z)
=(p−1)+

n

∑
i=1

αi

[ z f ′′i (z)

f ′i (z)
−(p−1)

]

.

Following the same steps as in Theorem 2.1, we obtain that Reh(z)>0, z∈U and so

Re
zG′

p(z)

Gp(z)
>0,

therefore the integral operator Gp is p-valent starlike.

Letting p=1 in Theorems 2.1 and 2.2 respectively we have

Theorem 2.3. Let αi >0 for i=1,2,··· ,n, and fi ∈A. If

n

∑
i=1

αi

(

Re
z f ′i (z)

fi(z)
−1

)

>0,

then Fn is starlike, where Fn is the integral operator defined as in (1.1).

Theorem 2.4. Let αi >0 for i=1,2,··· ,n, and fi ∈A. If

n

∑
i=1

αi

(

Re
z f ′′i (z)

f ′i (z)

)

>0,

then Fα1,···,αn is starlike, where Fα1,···,αn is the integral operator defined as in (1.2).

We note that other works regarding the integral operators can be read in [8–10].
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