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Abstract. In this paper, we introduce new sufficient conditions for certain integral op-
erators to be starlike and p-valently starlike in the open unit disk.
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1 Introduction

Let U= {z € C:|z| <1}, the unit disk. We denote by H(U) the class of holomorphic
functions defined on U. Let A, be the class of all p-valent analytic functions of the form

f(z):zP—|—ap+lzP+1_|_..., peN={1,2,--}.

For p=1, we obtain A; = A, the class of univalent analytic functions in the unit disk. Let
8" and X denote the subclasses of starlike and convex functions in U respectively. Recall
that f € A is convex if and only if

Re(z}[,/;g +1> >0, zel,

and starlike if and only if

%(Zﬁ;)) >0, zel.
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For fi(z) € Aand a; >0, for all i€ {1,2,3,---,n}, D. Breaz and N. Breaz [2] introduced
the following integral operator:

_ [ AONT S
R(a)= [ (7)) () e (L1)
Recently Breaz et al. in [3] introduced the following integral operator:
z
Faem (D)= [ AW (]t 1.2

The most recent, Frasin [1] introduced the following integral operators, for a; >0 and
fi€Ap,

F,,(z):/ozptp1(f1t_g))m...<fﬂt§f))“”dt (1.3)
and
GP<Z):/OZptP1(%>M...<%)andt. (1.4)

Remark 1.1. (i) For p=1, we get F(z) =F,(z), and G1(z) =Fy,..- , (2)-
(ii) For p=n=1, &y =a €[0,1] in (1.3) we get the integral operator

_ [P f)"
R(a)= [ () a
which is studied in [7].
(iii) For p=n=1, a =1 in (1.3) we get the integral operator

G(z):/oz@

introduced by Alexander [4].
(iv) For p=n=1,a1=a€C, |#| <1/4 in (1.4) we get the integral operator

| oy,

which is studied in [5].

2 Main result

In order to prove our main results we shall need the following lemma due to S. S. Miller
and P. T. Mocanu [6]:
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Lemma 2.1. Let a function ®:C? — C satisfy
Red(ix,y) <0

for all real x and all real y with y < —(1+x2)/2. If p(z) =1+p1z+--- is analytic in the unit
disc U={z:z€C|z| <1} and

Re®(p(x),zp'(x))>0, zel,
then
Rep(z) >0, zel.

Firstly, we prove the following p-valent starlike result of the operator F,(z).
Theorem 2.1. Let a; >0 for i=1,2,---,n, and f; € Ap. If

Za (Re f/( )) —p> >1-p,

then F, is p-valent starlike. Here F,, is the integral operator define as in (1.3).
Proof. From (1.3), we observe that F, €A, and obtain
Hopy — =1 (F1EINS( fa(Z) N
FP(Z)_pZ ( zP ) ( zP )

Differentiating the above expression logarithmically and multiply by z we obtain

zF))(z) * o rzfl(z)
FZ(Z) :(p—1)+i;fxi[ﬁ(z) —p}. @.1)
Let
zF)(z)
h(z)= Fpp(z)

be a holomorphic function in U and /(0) = 1. Differentiating /(z) logarithmically, we
obtain

zh (Z) _ ZF;;(Z)
h(z) — Fy(z)

h(z)—1+ (2.2)

Substitute (2.2) in (2.1), we obtain

z n zf](z)
hz)=1+ 0 :(p—1)+;ai[ﬂ(z) —p].
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We define the function ¥ by
Y(u,v) :u—l-l-g.

In order to use Lemma 2.1, we must verify that ¥(ix,y) <0 whenever x and y are real
numbers with y < —(1+x?)/2, we have

. - - l _
Re¥ (ix,y) =Re (zx 1+ ix) 1<0,
then
Re®(h(z),zh' (z)) >0
By Lemma 2.1, we deduce that Reh(z) >0, z€ U, and so
zF’( )
>0,
Fy(z)

therefore the integral operator F, is p-valent starlike. O

Re

Our next result is the following:

Theorem 2.2. Let «; >0 fori=1,2,--- ,n,and f; € Ap. If
n fl/( ) n
Z <Re f/( ) )>(p_1)(i_21“i_1>/

then G, is p-valent starlike, where G, is the integral operator define as in [4].

Proof. From (1.4), we observe that G, € A, and obtain

G)(2) = pzP- 1<f1( ))“lm(fl’(Z))“n

pzP~1 pzP~1

Differentiating the above expression logarithmically and multiply by z we obtain

ZG”( ) n f//(z)
G%p(z) _ Z% [ i) p_1)] (2.3)
Let ZG;,(Z)
h(z)= NE)

be a holomorphic function in U and /(0) = 1. Differentiating h(z) logarithmically, we
obtain

zh'(z) zG,(z)
h(z) — Gylz)

h(z)—1+ (24)
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Substitute (2.4) in (2.3), we obtain

2 (2) T
o)~ 1+ = =D+ L | ey — (- 1)

Following the same steps as in Theorem 2.1, we obtain that Ref(z) >0, z€U and so

zG,,(z)

Re >0,
Gp (2)

therefore the integral operator G, is p-valent starlike. O
Letting p=1 in Theorems 2.1 and 2.2 respectively we have
Theorem 2.3. Let a; >0 fori=1,2,---,n,and f;€ A. If

szl(Re f/< )) 1) >0,

then F, is starlike, where F, is the integral operator defined as in (1.1).

Theorem 2.4. Let a; >0 fori=1,2,--- ,n,and f;€ A. If

Zoc (Re ;,(())) >0,

then Fy, ... o, 15 starlike, where Fy, ... o, is the integral operator defined as in (1.2).

We note that other works regarding the integral operators can be read in [8-10].
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