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Abstract. Let P(z) be a polynomial of degree n having no zeros in |z|< 1, then for
every real or complex number β with |β|≤1, and |z|=1, R≥1, it is proved by Dewan
et al. [4] that
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In this paper we generalize the above inequality for polynomials having no zeros in
|z|<k, k≤1. Our results generalize certain well-known polynomial inequalities.
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1 Introduction and statement of results

It is well known that if P(z) is a polynomial of degree n, then for |z|=1 and R≥1

|P(Rz)|+|Q(Rz)|≤ (Rn+1)max
|z|=1

|P(z)|, (1.1)

where Q(z)= znP(1/z) (see [6]).

On the other hand, concerning the estimate of |P(z)| on the disc |z|≤R, R≥1, we have,
as a simple consequence of the principle of maximum modulus (see also [6]), if P(z) is a
polynomial of degree n, then for R≥1

max
|z|=R

|P(z)|≤Rn max
|z|=1

|P(z)|. (1.2)
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The result is best possible and the equality holds for polynomials having zeros at the
origin.

It was shown by Ankeny and Rivlin [1] that if P(z) doe not vanish in |z|<1, then the
inequality (1.2) can be replaced by

max
|z|=R

|P(z)|≤
Rn+1

2
max
|z|=1

|P(z)|, R≥1. (1.3)

The inequality (1.3) is sharp and the equality holds for P(z)=αzn+γ, where |α|= |γ|.
The inequality (1.3) was generalized by Jain [5] who proved that if P(z) is a polyno-

mial of degree n having no zeros in |z|<1, then for |β|≤1, R≥1 and |z|=1,
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Aziz and Dawood [3] used
min
|z|=1

|P(z)| (1.5)

to obtain a refinement of the inequality (1.3) and proved, if P(z) is a polynomial of degree
n which does not vanish in |z|<1, then for R≥1
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The result is best possible and the equality holds for P(z)=αzn+γ with |α|= |γ|.
As refinement of the inequality (1.4) and generalization of the inequality (1.6), Dewan

and Hans [4] have proved that if P(z) is a polynomial of degree n having no zeros in
|z|<1, then for |β|≤1, R≥1 and |z|=1,
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The result is best possible and the equality holds for P(z)=αzn+γ with |α|= |γ|.
Whereas if P(z) has all its zeros in |z|≤1, then for any |β|≤1, R≥1 and |z|=1,
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The result is best possible and the equality holds for P(z)=meiαzn, m>0.
In this paper, we obtain further generalizations of the inequalities (1.7) and (1.8). More

precisely, we prove
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Theorem 1.1. P(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, k≤ 1, then for
every real or complex number β with |β|≤1, R≥1 and |z|=1,
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The result is best possible and the equality holds for

P(z)= a
( z

k

)n
.

If we take k=1 in Theorem 1.1, then the inequality (1.9) reduces to the inequality (1.8).

If we take β=0 in Theorem 1.1, we have the following interesting result:

Corollary 1.1. If P(z) is a polynomial of degree n, having all its zeros in |z|≤k, k≤1, then
for R≥1

kn min
|z|=R

|P(z)|≥Rn min
|z|=k

|P(z)|. (1.10)

The result is best possible and the equality holds for P(z)= a(z/k)n .

We next generalize the inequality (1.7) by using Theorem 1.1, more precisely

Theorem 1.2. If P(z) is a polynomial of degree n having no zeros in |z|<k, k≤1, then for every
real or complex number β with |β|≤1, R≥1 and |z|=1 we have
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The inequality (1.11) is sharp and the equality holds for P(z)=αzn+γkn with |α|= |γ|.

If we take k=1 in Theorem 1.2, then the inequality (1.11) reduces to (1.7).

If we take β=0 in Theorem 1.2, then we get a generalization of the inequality (1.6).

Corollary 1.2. If P(z) is a polynomial of degree n having no zeros in |z|<k, k≤1, then for
R≥1
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The inequality (1.12) is sharp and the equality holds for P(z)=αzn+γkn with |α|= |γ|.
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2 Lemmas

For the proof of our theorems, we need the following lemmas. The first lemma is due to
Aziz [2].

Lemma 2.1. If P(z) is a polynomial of degree n, having all its zeros in the closed disk |z| ≤ k,
k≤1, then for R≥1

|P(Rz)|≥
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)n
|P(z)|, |z|=1. (2.1)

Lemma 2.2. Let F(z) be a polynomial of degree n having all its zeros in |z|≤ k, k≤1, and P(z)
be a polynomial of degree not exceeding that of F(z). If |P(z)|≤ |F(z)| for |z|= k, k≤1, then for
any β with |β|≤1 and |z|=1, R≥1 we have
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Proof. From Rouche’s Theorem, it is obvious that for α with |α|< 1, F(z)+αP(z) has as
many zeros in |z|< k as F(z) and so has all of its zeros in |z|< k. On the other hand by
the inequality |P(z)|≤ |F(z)| for |z|= k, any zero of F(z) that lies on |z|= k, is the zero of
P(z). Therefore F(z)+αP(z) has all its zeros in |z|≤ k. On applying Lemma 2.1, we get
for α with |α|<1 and |z|=1, R≥1,
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where |z|=1.
Hence for an appropriate choice of the argument α, one gets
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where |z|=1.
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If the inequality (2.3) is not true, then there is a point z= z0 with |z0|=1 such that for
R≥1,
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then |α|< 1 and with this choice of α, we have from (2.3), T(z0)= 0 for |z0|= 1. But this
contradicts the fact that T(z) 6=0 for |z|=1. For β with |β|=1, (2.4) follows by continuity.
This completes the proof of Lemma 2.2.

If we take
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k
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in Lemma 2.2 we have

Lemma 2.3. Let P(z) be a polynomial of degree n, then for any |β|≤1, R≥1, k≤1 and |z|=1
we have
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Lemma 2.4. Let P(z) be a polynomial of degree n, then for any β with |β|≤1, R≥1 and |z|=1
we have
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where Q(z)=(z/k)n P(k2/z) and k≤1.

Proof. Let M=max|z|=k |P(z)|. For α with |α|>1, it follows by Rouche’s Theorem that the
polynomial G(z)=P(z)−αM has no zeros in |z|< k. Correspondingly the polynomial
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k

)n
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has all its zeros in |z|≤k and |G(z)|= |H(z)| for |z|=k. On applying Lemma 2.2, we have
for |β|≤1 and |z|=1, R≥1
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Therefore by the equality
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As |P(z)|= |Q(z)| for |z|= k, i.e., M=max|z|=k |P(z)|=max|z|=k |Q(z)| therefore, by ap-
plying Lemma 2.3 for the polynomial Q(z), we have
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where |z|=1, |β|≤1 and |α|>1.
Now by suitable choice of the argument α, we get for |z|=1 and |β|≤1,
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Combining (2.7) and (2.8), we have
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i.e.,
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Making |α|→1, the lemma follows.

If we take β=0 in Lemma 2.4, we have the following generalization of the inequality
(1.1).

Corollary 2.1. Let P(z) be a polynomial of degree n, then for any R≥ 1 and |z|= 1 we
have
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where Q(z)=(z/k)n P(k2/z) and k≤1.

If we take β=0 in Lemma 2.3, we have the following generalization of the inequality
(1.2).

Corollary 2.2. Let P(z) be a polynomial of degree n, then for any R≥1, k≤1 we have
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3 Proof of theorems

Proof of Theorem 1.1: If P(z) has a zero on |z|= k, then the inequality (1.9) is trivial.
Therefore we assume that P(z) has all its zeros in |z|< k. Then m =min|z|=k |P(z)|> 0
and for α with |α|<1, we have |αm(z/k)n |<m≤|P(z)|, where |z|= k. Thereby Rouche’s
theorem implies that the polynomial G(z) = P(z)−αm(z/k)n has all its zeros in |z|< k.
Applying Lemma 2.1, we get for R≥1, |α|<1 and |z|=1,
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i.e.,
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for |z|=1.
For β with |β|= 1, (3.1) follows by continuity. This completes the proof of Theorem

1.1.
Proof of Theorem 1.2: Let m=min|z|=k |P(z)|. For α with |α|<1, we have |αm|<m≤

|P(z)|, where |z|= k.
Therefore by Rouche’s theorem the polynomial G(z)=P(z)−αm has no zeros in |z|≤k.
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k

)n
P
(k2

z

)

−αm
( z

k

)n
=Q(z)−αm

( z

k

)n

satsfies

∣

∣

∣
{P(Rz)−αm}+β

(R+k

1+k

)n
{P(z)−αm}

∣

∣

∣

≤
∣

∣

∣

{

Q(Rz)−αRnm
(z

k

)n}

+β
(R+k

1+k

)n{

Q(z)−αm
( z

k

)n}∣
∣

∣
.

This implies

∣

∣

∣
P(Rz)+β

(R+k

1+k

)n
P(z)

∣

∣

∣
−|α|m

∣

∣

∣
1+β

(R+k

1+k

)n∣
∣

∣

≤
∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)−αm

( z

k

)n∣
∣

∣
Rn+

∣

∣

∣
β
(R+k

1+k

)n∣
∣

∣
. (3.2)
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As |P(z)|= |Q(z)| for |z|= k, i.e., m=min|z|=k |P(z)|=min|z|=k |Q(z)|. On applying Theo-
rem 1.1 for the polynomial Q(z)

∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)

∣

∣

∣
≥ k−n

∣

∣

∣
Rn+β

(R+k

1+k

)n∣
∣

∣
m,

where |z|=1 and |β|≤1.

Now by suitable choice of the argument α, we get for |z|=1 and |β|≤1,

∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)−αm

( z

k

)n∣
∣

∣
Rn+

∣

∣

∣
β
(R+k

1+k

)n∣
∣

∣

=
∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)

∣

∣

∣
−|α|mk−n

∣

∣

∣
Rn+β

(R+k

1+k

)n∣
∣

∣
. (3.3)

Thereby we can rewrite (3.2) as

∣

∣

∣
P(Rz)+β

(R+k

1+k

)n
P(z)

∣

∣

∣
−|α|m

∣

∣

∣
1+β

(R+k

1+k

)n∣
∣

∣

≤
∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)−|α|mk−n

∣

∣

∣
Rn+β

(R+k

1+k

)n∣
∣

∣
,

i.e.,

∣

∣

∣
P(Rz)+β

(R+k

1+k

)n
P(z)

∣

∣

∣
−
∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)

∣

∣

∣

≤−|α|
{

k−n
∣

∣

∣
Rn+β

(R+k

1+k

)n∣
∣

∣
−
∣

∣

∣
1+β

(R+k

1+k

)n∣
∣

∣

}

m

for |z|=1.

Making |α|→1, we get for |z|=1 and R≥1,

∣

∣

∣
P(Rz)+β

(R+k

1+k

)n
P(z)

∣

∣

∣
−
∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)

∣

∣

∣

≤−
{

k−n
∣

∣

∣
Rn+β

(R+k

1+k

)n∣
∣

∣
−
∣

∣

∣
1+β

(R+k

1+k

)n∣
∣

∣

}

m. (3.4)

On the other hand, by Lemma 2.4, we have for |z|=1 and R≥1,

∣

∣

∣
P(Rz)+β

(R+k

1+k

)n
P(z)

∣

∣

∣
+
∣

∣

∣
Q(Rz)+β

(R+k

1+k

)n
Q(z)

∣

∣

∣
(3.5)

≤
{

k−n
∣

∣

∣
Rn+β

(R+k

1+k

)n∣
∣

∣
+
∣

∣

∣
1+β

(R+k

1+k

)n∣
∣

∣

}

max
|z|=k

|P(z)|. (3.6)

Addition of the inequalities (3.4) and (3.5) easily leads to the inequality (1.11) and the
theorem follows.
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