Analysis in Theory and Applications DOI: 10.4208/ata.2013.v29.n1.5
Anal. Theory Appl., Vol. 29, No. 1 (2013), pp. 37-46

Some Results Concerning Growth of Polynomials

Ahmad Zireh*, E. Khojastehnejhad and S. R. Musawi
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
Received 19 July 2011

Abstract. Let P(z) be a polynomial of degree n having no zeros in |z| <1, then for
every real or complex number § with || <1, and |z| =1, R>1, it is proved by Dewan
et al. [4] that

pray+5(=) P <3 { (R +6() [+ lrs () ) masieea)
(R () - e (5) ) manieca}:

In this paper we generalize the above inequality for polynomials having no zeros in
|z| <k, k<1. Our results generalize certain well-known polynomial inequalities.
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1 Introduction and statement of results

It is well known that if P(z) is a polynomial of degree 1, then for |z| =1 and R>1

|P(Rz)[+]Q(Rz)| < (R”+1)mi>1<!1’(2)!, (1.1)

where Q(z) =z"P(1/Z) (see [6]).

On the other hand, concerning the estimate of |P(z)| on the disc |z| <R, R>1, we have,
as a simple consequence of the principle of maximum modulus (see also [6]), if P(z) is a
polynomial of degree 7, then for R>1

max |P(z)| < R"max|P(z)|. (1.2)
|z|=R |z]=1
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The result is best possible and the equality holds for polynomials having zeros at the
origin.

It was shown by Ankeny and Rivlin [1] that if P(z) doe not vanish in |z| <1, then the
inequality (1.2) can be replaced by
R"+1

P( P(z)|, R>1. 1.3
‘rzr‘lagl 2)| < —5 r‘?‘wf\ (), R> (1.3)

The inequality (1.3) is sharp and the equality holds for P(z) =az" +, where |a|=|7|.
The inequality (1.3) was generalized by Jain [5] who proved that if P(z) is a polyno-
mial of degree n having no zeros in |z| <1, then for || <1, R>1and |z|=

P(re) +p(5) "Pr2)
iR (55) e (557)
Aziz and Dawood [3] used

min |P(z)| (1.5)

|z[=1

}ﬁm;w( 2)]. (1.4)

to obtain a refinement of the inequality (1.3) and proved, if P(z) is a polynomial of degree
n which does not vanish in |z| <1, then for R>1

R"+1 R"-1
max|P(2)| < (=5 ) max|P(z) | = (=5~ ) min|P(2)] (L6)

The result is best possible and the equality holds for P(z) =az" +y with |a| =7/

As refinement of the inequality (1.4) and generalization of the inequality (1.6), Dewan
and Hans [4] have proved that if P(z) is a polynomial of degree n having no zeros in
|z] <1, then for || <1, R>1and |z| =

( R+1 )

pira)+p(%557) P < {([R+8(55)'
(Rn+ﬁ(R+1> s ﬁ(R-l—l)

The result is best possible and the equality holds for P(z) =az" 4+ with |a| =7/
Whereas if P(z) has all its zeros in |z| <1, then for any || <1, R>1and |z| =1,

R”—l—ﬁ(R+1>

max | P(
Jze

>m1n|P( )|}. (1.7)

|z|=1

min[P(ka +(=5) @) 2

‘rzr‘ur}!P( z)|. (1.8)

The result is best possible and the equality holds for P(z) =me'*z", m > 0.
In this paper, we obtain further generalizations of the inequalities (1.7) and (1.8). More
precisely, we prove
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Theorem 1.1. P(z) is a polynomial of degree n, having all its zeros in |z| <k, k<1, then for
every real or complex number p with |B| <1, R>1and |z|=1,

Rn+ﬁ(1+l]§>n

min|P(z)|. (1.9)

min‘ (RZ)+/3(1+,]§> P<Z)‘ kK || =k

|z|=1

The result is best possible and the equality holds for

P(z) :a<%)n.

If we take k=1 in Theorem 1.1, then the inequality (1.9) reduces to the inequality (1.8).
If we take B =0 in Theorem 1.1, we have the following interesting result:

Corollary 1.1. If P(z) is a polynomial of degree 1, having all its zeros in |z| <k, k<1, then
for R>1
k" min |P(z)| > R"min|P(z)|. (1.10)
|z|=R |z|=k

The result is best possible and the equality holds for P(z) =a(z/k)".
We next generalize the inequality (1.7) by using Theorem 1.1, more precisely

Theorem 1.2. If P(z) is a polynomial of degree n having no zeros in |z| <k, k<1, then for every
real or complex number B with || <1, R>1and |z| =1 we have

pra) () PO
S { (e R (3g) T+fep () ) payiee
(k" R”+ﬁ<lfilf) —‘1-1-[3(1%-:) )lrzr|11r1|P( 2)|}. (1.11)

The inequality (1.11) is sharp and the equality holds for P(z) = az" 4+ k™ with |a|=|7]|.

If we take k=1 in Theorem 1.2, then the inequality (1.11) reduces to (1.7).
If we take p=0 in Theorem 1.2, then we get a generalization of the inequality (1.6).

Corollary 1.2. If P(z) is a polynomial of degree n having no zeros in |z| <k, k<1, then for
R>1

R k" R"— k"
max|P(2)| < (=) max|P(2)| () min|P(z) (1.12)

The inequality (1.12) is sharp and the equality holds for P(z) =az" + k" with |a|=]7|.



40 A. Zireh, E. Khojastehnejhad and S. R. Musawi / Anal. Theory Appl., 29 (2013), pp. 37-46

2 Lemmas

For the proof of our theorems, we need the following lemmas. The first lemma is due to
Aziz [2].

Lemma 2.1. If P(z) is a polynomial of degree n, having all its zeros in the closed disk |z| <k,
k<1, then for R>1

PRI 2 (55) 1P, [2l=1 @)

Lemma 2.2. Let F(z) be a polynomial of degree n having all its zeros in |z| <k, k<1, and P(z)
be a polynomial of degree not exceeding that of F(z). If |P(z)| <|F(z)| for |z| =k, k<1, then for
any B with |B| <1 and |z| =1, R>1 we have

R+k

1) PO <|FRa+p(157) Fa)| @2)

P(R2)+(177) P

Proof. From Rouche’s Theorem, it is obvious that for a with |a| <1, F(z)+aP(z) has as
many zeros in |z| <k as F(z) and so has all of its zeros in |z| <k. On the other hand by
the inequality |P(z)| <|F(z)| for |z| =k, any zero of F(z) that lies on |z| =k, is the zero of
P(z). Therefore F(z)4waP(z) has all its zeros in |z| <k. On applying Lemma 2.1, we get
for a with || <1and |z|=1,R>1,

R+k

IF(Rz)+aP(Rz)|> ( T

) IF(@)+aP(2)].
Therefore, for any g with || <1, we have

(F(Rz)+aP(Rz)+ﬁ(If+:)) (F(z)+aP(z)) £0,

ie.,
T(2)=F(Re)+B(5 o) FG) +a (PR +6(5 ) P@) £0,  (3)

where |z| =1.
Hence for an appropriate choice of the argument &, one gets

R+k

R48) o v (25 .

F(Rz )+'B<1+k

Therefore we have

(28 o oo (K2 e

, (2.4)

where |z|=1.
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If the inequality (2.3) is not true, then there is a point z =z with |zg| =1 such that for
R>1,

) 528 e <k 8 (5 ).

We take ;
F(Rzoy+ﬁ( Rk ) F(zo)

a:_ﬁ%Rag+ﬁ(_i) P(z)

then |a| <1 and with this choice of a, we have from (2.3), T(zy) =0 for |zg| =1. But this
contradicts the fact that T(z) #0 for |z| =1. For p with || =1, (2.4) follows by continuity.
This completes the proof of Lemma 2.2. O

If we take

F(z)= () 'max|P(z)|

|z[=k

in Lemma 2.2 we have

Lemma 2.3. Let P(z) be a polynomial of degree n, then for any |B| <1, R>1, k<1and |z|=1
we have
R+k

Tk max|P(z)]. (2.5)

R+k
+> Iz|=k

Rn+ﬁ(1+k

Lemma 2.4. Let P(z) be a polynomial of degree n, then for any p with |B| <1, R>1and |z| =
we have

) p@ﬂgk

P(R2)+B( 7

PRy +( ) Pla)|+|etra (1) o)
o g REE Rtk
(e Rees(T) [+ () Hmayipe) 26)

where Q(z)=(z/k)"P(k?/Z) and k<1.

Proof. Let M=max;_¢|P(z)|. For & with |a|>1, it follows by Rouche’s Theorem that the
polynomial G(z) = P(z) —aM has no zeros in |z| <k. Correspondingly the polynomial

HE)=(}) Cw77)

has all its zeros in |z| <k and |G(z)|=|H(z)| for |z| =k. On applying Lemma 2.2, we have
for |f|<land |z|=1,R>1

R+k

Tre) ©0) <R +5(1) HE)

G(R )+ﬁ<1+k
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Therefore by the equality

B H(z)—Q(z)—E(%)nM
We have
‘{P (Rz) ocM}-l—,B(Il{j__;:) {P(z) ocM}‘
<|{aue) e (7) m) 5 (375) {oe) -7(5) M} |
This implies
PRy +5(37) Ple) - (14 (55) )M
g‘Q(Rz)—l—/B(IfT—i-:) Qz)-a(%)" (Rn+ﬁ(%)")M‘. 2.7)

As |P(z)|=|Q(z)| for |z| =k, i.e., M =max;—¢|P(z)| = max|;—|Q(z)| therefore, by ap-
plying Lemma 2.3 for the polynomial Q(z), we have

0(Re)+p(5 7)) < ak

where |z|=1, || <1 and |a|>1.
Now by suitable choice of the argument «, we get for |z| =1 and |B| <1,

R+p(135) [

Jara) +6(15y) e (7)" (Ra(57) )M
=i [Rep() |- fowa) a5 ) )| @8
Combining (2.7) and (2.8), we have
PR+ ) @) wl[1+p( ) |
<lpire)+8(135) P -a(1+5(135) )
<lowa)+p(yi7) @@ - (7) (Re+p(57) )M
=ik R p (1) -l etra + (1) )|
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ie.,
e +p(17) Pla)|-lol1+6( 17|
<lalk|R7+p(FE0) M- |QRe) +8( T ) Q@)
This implies
e +p(1) P +[oma +(35) 0t
<w{ir R s (1) e (1)
Making || — 1, the lemma follows. O

If we take B=0 in Lemma 2.4, we have the following generalization of the inequality
(1.1).

Corollary 2.1. Let P(z) be a polynomial of degree n, then for any R>1 and |z| =1 we
have

IP(R2)|+]Q(Rz)| < K

max\P( ) (2.9)

where Q(z)=(z/k)"P(k?/Z) and k<1.

If we take B=0 in Lemma 2.3, we have the following generalization of the inequality
(1.2).
Corollary 2.2. Let P(z) be a polynomial of degree 7, then for any R>1, k<1 we have

k" ‘rr‘lax]P( )]anﬁa>]§|P(z)|. (2.10)
= z|l=

3 Proof of theorems

Proof of Theorem 1.1: If P(z) has a zero on |z| =k, then the inequality (1.9) is trivial.
Therefore we assume that P(z) has all its zeros in |z| <k. Then m =min,_¢|P(z)| >0
and for « with |a| <1, we have |am(z/k)"| <m <|P(z)|, where |z| =k. Thereby Rouche’s
theorem implies that the polynomial G(z) = P(z) —am(z/k)" has all its zeros in |z| < k.
Applying Lemma 2.1, we get for R>1, x| <1 and |z| =1,

= (57) fr@-an(3)]

‘P(Rz)—amR”(%)

Therefore for || <1 the polynomial

pe) ok () "+ (1) {Pee)-om(5) ),
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ie.,

1) {pirer (25 p ) -en(2) {25

will have no zeros on |z| =1. As |a| <1, we have for |B| <1

ok 5 (SE) 2= () (e () Y
E w5 () P2 (A5 o
for |z| =1.

For B with || =1, (3.1) follows by continuity. This completes the proof of Theorem
1.1.

Proof of Theorem 1.2: Let m =min,|_¢|P(z)|. For a with [a| <1, we have |am|<m <
|P(z)|, where |z| =k.

Therefore by Rouche’s theorem the polynomial G(z)=P(z)—am has no zeros in |z| <k.
Correspondingly the polynomial

z

Hz)=(7) Gw77)

has all its zeros in |z| <k and |G(z)|=|H(z)| for |z|=k. Therefore, by Lemma 2.2, we have
for |B|<1and |z|=1,R>1,

R—I—k)

o(Ra)+ (1) o) < re) 48 (1) )

Hence by the equality

satsfies
‘{P (Rz) ocm}-l—,B(Il{j__II:) {P(z)— am}‘
<|{owa-arm(F)"}+e(T57) {o@-am(F) '}
This implies

\p(Rz)ﬂz(fT*:)"P(z)(—\a\m(uﬁ(ﬁ:)"(

<oty ep(R5E) Q- (2 e+ ()|

(3.2)
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As [P(z)|=|Q(z)| for |z| =k, i.e.,, m=min|, _¢|P(z)| =min|; _;|Q(z)|. On applying Theo-
rem 1.1 for the polynomial Q(z)

R+k

Joma)+(157) 0| 2R +p( )

Rn+ﬁ(1+k

where |z| =1 and |B| <1.
Now by suitable choice of the argument «, we get for |z| =1 and |B| <1,

Jarre)+4(T5) 0@ -an(() r+ o (1)
~|oa)+(157) 0t - R (1) | ©3)
Thereby we can rewrite (3.2) as
ey +5(135)" e |- 1+8(135)'
<latke)+5(17) @) —labm [R+5(15)'
ie.,
PR )+’B(1+k> 2)| - |atka) +ﬁ(1j-rl]<(> Q)|
<=l Rerprg) - [ree(3)
for |z|=1.
Making || —1, we get for |z|=1and R>1,
ptra)+6(Ti7) Pia)| - Jaia)+4(1) o)
<= {irReen(3) |- fe () e e
On the other hand, by Lemma 2.4, we have for |z|=1and R>1,
e +p(T) P HQ )+ (1 5) Q) ®5)
<o () P o

Addition of the inequalities (3.4) and (3.5) easily leads to the inequality (1.11) and the
theorem follows.
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