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Abstract. We present the existence of solution for a coupled system of fractional
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1 Introduction

Fractional differential equations have gained considerable importance due to their vari-
ous applications in visco-elasticity, electro-analytical chemistry and many physical prob-
lems [1-3]. So far there have been several fundamental works on the fractional derivative
and fractional differential equations, written by Miller and Ross [4], Podlubny [5] and
others in [6-8]. Mathematical aspects of fractional order differential equations have been
discussed in details by many authors [9-17].

Consider the Volterra integral equation of the second kind of the form:

u(t) :/\/OtK(t,s)ds—i—f(t),

where f, K are given functions, A is a parameter and u is the solution. This equation arises
very often in solving various problems of mathematical physics, especially in describing
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physical processes after effects [23,24]. Rabha W. Ibrahim and Shaher Momani [25] dis-
cussed the upper and lower bounds of solutions for fractional integral equations of the

form:
W () =a() P b(u(D) }+£(1), m=1,

where a(t), b(t), f(t) are real positive functions in C([0,T],R) and a € (0,1). Jinhua Wang
et al. have investigated the existence and uniqueness of positive solution to nonzero
boundary valued problem for a coupled system of nonlinear fractional equation and the
reader is referted to [18]. A. Arara et al. [19] have considered a class of boundary valued
problems involving Caputo fractional derivative on the half line by using the diagonal-
ization process.

In this paper, we investigate the existence of solution for the coupled system of non-
linear fractional differential equation:

DUx(t) =T f(1y(1) + F(Ly(1), 1€ (0,0), (1.1a)
DPy(t)=t1"g(t,x(t))+g(tx(t), te(0,00), (1.1b)
x(0)=x0, y(0)=yo, x(t) and y(t) are bounded on [0,c0), (1.1c)

where 1 <wa,<2,°D* and °DF are the Caputo fractional derivatives, -y, are real positive
numbers, I7 and I”7 are Riemann-Liouville fractional integral and f,g:[0,00) xR — R are
given continuous functions.

2 Basic definitions and preliminaries

We begin in this section to recall some notations, definitions and results for fractional
calculus which are used throughout this paper [4,5,7,20].

LetJ,=[0,1], L' (J,,R) denote the Banach space of functions x:J,— R that are Lebesgue
integrable with the norm

n
Il = [ e(e)a.

Recall that C(J,,R) is the Banach space of continuous functions from J,, into R endowed
with the uniform norm,
|| x||n =max{|x(t)|:t€, },

and C?=C x C is the Banach space of continuous functions from J, into R endowed with
the uniform norm

1Ge ) [l =max{[lx][u, lyllu: (x,y) €C?, tE€Tu}.

The Arzela-Ascoli theorem and Schauder fixed point theorem are recalled in the fol-
lowing. They play important roles in this article and the reader is referred to [20, 21].

Theorem 2.1. (Arzela-Ascoli Theorem). Let U be a compact metric space and ) any subset of
C(U). Then the following statements are equivalent:
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(i) Q) is a compact subset of the metric space C(U) equipped with the uniform metric.
(i1) Q) is closed, bounded, and equicontinuous.
Corollary 2.1. If {x,} is a sequence in C[a,b] and the functions in {x,} form a bounded

equicontinuous subset of Cla,b], then {x, } has a subsequence which converges uniformly
to some function in Cla,b].

Theorem 2.2. (Schauder Fixed Point Theorem). Let K be a closed, bounded and convex subset
of a Banach space. If F: K — K is a compact mapping, then F has a fixed point.

Definitions of Caputo and Riemann-Liouville fractional derivative/integral and their
relation are given bellow.

Definition 2.1. For a function x defined on an interval [4,b], the Riemann-Liouville frac-
tional integral of f of order & >0 is defined by

t
1 /(t—s)""lx(s)ds, t>a,

I;ﬁx(t)zm i

and the Remann-Liouville fractional derivative of x of order a > 0 is defined by

D%, x(t) dt” {I "ex ()},
where n—1 <a <n, while the Caputo fractional derivative of x of order a >0 is defined
by

DY x(t)=1"""{x" ()}

An important relation among Caputo fractional derivative and Riemann-Lioville frac-
tional derivative is the following expression

D% x(t) =Dy x( Z N a+1) (t—a) " 2.1)
We denote Dy, x(t) by “Dyx(t) and I% x(t) by Ifx(t) simply. Further ‘Dg;x(t) and
I§. x(t) are referred to °D"x(t) and I*x(t), respectively.

Theorem 2.3. Let y< C™([0,b],R) and a,f € (m—1,m), m €N and x € C*([0,b],R). Then
(1) “D*I*x(t) =x(t);
(2) I*IPx(t) =I"Px(t);
(3) lim; o+ {°D*y(t) } =lim; o+ {I"y(t)};
(4) *D*A =0, where A is a constant;
(5) 1 D)} =y(t) ~ £ e
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Part (1) and (2) can be shown by using the semigroup properties of the Caputo deriva-
tive and Theorem 3.1 in [7]. For the proof of the last part, the reader is also referred to
Theorem 2.22 in [10].

Proposition 2.1. Let y€C([0,00),R), n€N and a >0, >0, then

(3) I(ty(£)) = 1"y (1) —al* Ty (1),
(i) I{IPy ()} =t Py (1) —al™ PH1y (1),

Proof. (i) can be found in [pp. 53, [4]] and (ii) is an immediate consequence of (i) and
Theorem 2.5 (2). O

Lemma 2.1. (Lemma 2.22 [7]). Let a >0, then I*(°D*x(t)) = x(t)+co+cit+cot?>+---+
c,_1t" 1 for some c;€R,i=0,1,--- ,r—1,r=[a] +1.

3 Main result

LetneN,y>0,7>0and 1<a,f<2. Consider the system of boundary value problem

‘Dx(t)=tI"f(ty(t) +f(ty(t), tE€T, (3.1a)
‘DPy(t) =t1"g(t,x(t))+g(t,x(t)), ted,, (3.1b)
x(0)=xp, x'(n)=0, y(0)=yo, y'(n)=0, (3.1c)

where f,g:[0,00) xR— R are given continuous functions.
In this section, we first discuss the system of nonlinear fractional differential equa-
tions (3.1) which has at least one solution.

Proposition 3.1. Assume that x,y€C([0,n],R), then the system of boundary valued prob-
lem (3.1) is equivalent to the following system of Volterra fractional integral equation

x(t) = —co—ctt+H T f(1y(8) —al T (8y(6) + I f(y (1),
y(t)=—co—cit-+tIF gt x(1)) = BIPFT T g (1 y (1) +1Pg (1 x(1)).

Proof. By integrating both sides of Egs. (3.1a)-(3.1b) of order «, B, respectively and using
Proposition 2.1 together with Lemma 2.1, the lemma is proved. O

The next lemma shows that the solvability of the system of boundary value problem
(3.1) is equivalent to the solvability of a system of the fractional integral equation.

Lemma 3.1. Assume that f,g € C(J, XxR,R) and consider the linear system of fractional order
differential equation
‘D x(t)=tI"f(t,y(t))+ ), t€d,, 1<a<2, (3.2a)
‘DPy(t)=tI"g(t,x(t))+g(tx(t)), ted, 1<Bp<2, (3.2b)

flty(t
, (t,x(t
x(0)=x9, x'(n)=0, y(0)=yo, y'(n)=0. (3.2¢)

4
4



A. Babakhani / Anal. Theory Appl., 29 (2013), pp. 47-61 51

Then x,y € C(3,,R) is a solution (3.2a)-(3.2¢) if and only if x,y is a solution of the system of the
fractional integral equation:

x(t)=x(0) —|—/On Gn(t,s)f(s,y(s))ds, (3.3a)

v =y(0)+ [ Hi(ts)3(5,(5))ds (3:3b)

where Gy (t,5), Hy(t,s) are the Green's functions defined by

tt—s)t 71 w(t—s)?tT  (t—s)*!
Gul(t,s) Taty)  TagrrD) T T ToWbs) 0ssstsm (3.4)
9(t,s), 0<t<s<m,
with
—tn—s)* L n(n—s)*"2 at(n—s)*tT L t(n—s)*2
S =iy Taty-D) T(aty)  T(a—1) ' (3.52)
tt—s)PH1=1  B(t—s)Pt1 (t—s)P~1
Halt,s) { gy T(prgrn) | T(p o) Ossstsn (3.5b)
3(ts), 0<t<s<n,
where
iH(f/g):—t(n—s)ﬁ*’l*1 n(n—s)Pt1-2 B(n—s)Pt1-1  t(n—s)F=2 (3.6)

C(B+m)  T(+y=1) = T+ T(E-1)
Proof. Let x,y € C(J,,R) be a solution of Egs. (3.2a) and (3.2b) respectively. In view of
Proposition 3.1, we have
x(H) =t f(Ly(5) —al* T f(4y(8) + I f(Ly(t) —co—cit, (3.7a)
y(H) =t g (tx(t) — BIFT g (1,2 (1) + 1P (t,x (1) —do — it (3.7b)

for arbitrary constants cy and c;. By differentiating (3.2a) and (3.2b), we get

, t (tis)ﬂtﬂ")’*l t(tis)ﬂcﬁ“)’*z IX(t*S)DHJY?l (tis)ﬂtfz

x(t):/o{ T(a+7y) F(oc—i—'y—l)}i T'(a+7) +1"(04—1) }f(s,y(s))dsfcl, (38a)
L 1 o (e e (e
o=, gt e TR 6T

}g(s,x(s))ds—cl. (3.8b)

Hence using the boundary conditions (3.2c) into (3.8a) and (3.8b), we obtain ¢y = —x,
do=—1yp and
04+’Y 1 n(n_s)ac+’y—2 “(n_s)a+'y—l (n—s)"“z ;
/ w+’y Taty-1) Tty | La-1) }f(s'y(s)) K

4 :/O { (n—s)Pti-1 N n(n—s)ptn-2 B B(n—s)Pt1=1 (n—s)f2 }g(s,x(s))ds.

TB+n) | T(B+g—-1)  T(B+y)  T(B-1)
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Substituting the values co = —xp, dg = —yo and the above values of c; and c; into (3.7a)
and (3.7b), we get

n nt(n S)a+’y 1 oct(n S)D‘+,Y t(n—s)“*z
xo*/ I(

{ aty—1)  T(aty)  T(a—1) b (sys))ds
/ { tr(so); -+ Zﬁ;) 1r((i,¢f2::)}f(sfy(5))ds, (3.9a)
o [ (- M~ Sy et
[ trf;l;l e ﬁf;; : r((}_fﬁz)}g(s»c(s))(s)ds, (3.9b)
and then
B e e
-l s

=x(0 +/nGn t,s)f(s,y(s))ds,
y0+/ (t,5)g(s,x(s ds—i—/ )+(t—s)

t—s B+n
_ 1@(([3+;7)+1) }g(S,x(s))ds
:y(0)+/0 Hy(t,5)g(s,x(s))ds,
where §(t,s) and H(t,s) are as before.
Conversely, suppose that x,y € C(J,,R) satisfying in (3.3a)-(3.3b), then x, y satisfying
in Eq. (3.9a) and Eq. (3.9b), thus x(0) = xo, y(0) =yo. By differentiating of Eq. (3.9a) and
Eq. (3.9b), we have

V(0= [ g y(s))ds—9<t —0)+3(t,1-0)
TAE s s T
téiai)f;iif— e st
- e - e

n (n_s)ac+’y—1 (n_s)ac+’y—2 (n—s)“+7—1
_/0 { Ma+1) | Tlaty—1)  T(at7) }f(s’y<s))ds
2

+ /Ot (ﬁ(ﬂ) Fs,y(s))ds— /0 ' <;(—“s_)1) Fls,y(s))ds.
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And similarly,
y’(t):/tn aj{a(;’s)g(s,x(s))ds—ﬂ-((t £—0)+3(t,t—0)
Bths (t—s)P~2 (t—s)‘””’l
s I(G-D T+

t(t— s)5+’7 2 B(t—s)Pti-
Ty~ Ty Jeeaton
ot (t_s)lﬂﬂfl t(t—s)5+’772 ,B(t—s)ﬁJrW*l
=) e  TE D RO
n(n—s)PH1=1  (n—g)Pt1=2 (n—g)Pti-1
7/0{ TB+n) TB+g—1)  T(B+7) fa(sx(s)ds

/3 2 n(n—g)B—2
+ [ty st rends— [ T sts x(ss

Thus x’'(n) =0, y'(n)=0 and

cyu _cpya—1_ys _cpa—1 t(t_s)a—Z
D*x(£) =*D* ¥/ (£) =D /O F )/ (ox(e)ds

R t (t_S)lX*F’)/*l t(t_s)ﬂhu)’*z a(t_s)uhwfl
#0 e T T e
=DM IO flay ()} + 0 Dy ()]}

— () +HF (Y (D).

Hence “D*x(t)—tI" f(t,y(t)) = f(t,y(t)) and similarly we have ‘D*y(t)—tI7g(t,x(t)) =
g(t,x(t)). The proof is therefore complete. O

Remark 3.1. For each t €J,,, denote the functions
n n
- /O (G (,5)|ds,  hn(t) = /0 \HL, (£,5)|ds.
Then g,,h, are continuous on J,, and hence bounded. Let

én:max{gn(t):tefln}, I}n:max{hn(t):teﬂn}.

Theorem 3.1. Assume that f(t,-) and g(t,-) are continuous on [0,00) x R — R and there exist
four continuous and nondecreasing functions w,o,v,p:[0,00) — R such that

(H1D) |f(t,u)| <w(t)o(|u]), |g(tu)| <v(t)u(|ul) for each t €]0,00) and u € R,
(H2) There exist two positive constants r, p such that

r>|x0|+@na(r) Gy, > yol+vn pt(p) Hy, (3.10)

where wy=max{w(t):t€7,} and v,=max{v(t):t€, }.
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Then the system (1.1a)-(1.1c) has at least one solution (x(t),y(t)) on [0,00) such that |x(t)|<r
and ly(1)| <p.

Before starting the proof of Theorem 3.1 we need to prove the following lemma.

Lemma 3.2. Assume that f(t,-) and g(t,-) are continuous on [0,00) x R— R and there exist four
continuous and nondecreasing functions w,o,n,u:[0,00) — RT such that (H1)-(H2) hold.
Let
C=C(I,,R)xC(Iy,R) and Q={(x,y)€C:|(x,y)|. <R},

where
[l =max{[|x(E)[ln, ly(B)]ln, t€Tn} and R=max{r,p},

so that r, p are the constants from (H2). Consider the operator F:C— C defied by
(F(xy))(8) = ((Tx) (1), (Uy)(1)),

where
(Tx)(#) = x(0) + /0 " Gu(t,5) f(s,5(s) )ds, (3.11a)
(Uy)(£) = y(0) + /0 " Hi(£,5)g(s,x(5))ds. (3.11b)

Then the following statements hold:

(I) Q)is a closed, convex sub set of C,

(I) F is continuous,

(III) F maps Q) into a bounded set of C,

(IV) F maps Q) into an equicontinuous set of C,

(V) F is completely continuous,

(VD) F(Q)CQ.
Proof. (I)is clear so we try to prove (II). Let { (x;,1;) } €€ be a sequence such that { (x;,y;) } —
(x,y) € € and let L=max{||x;|| <L1,|ly1|| <Lz, ||x|| < L3 and ||y|| < L4}, then for each t €7,

it is sufficient to show that || Tx;—Tx|, —0 and ||Uy; —Uy||, —0 as [ —oco. Foreach t€J,
by (H1) we have

() (0= (TR0 < [ 1Ga(t5) 1 F(s,31(5)) — Fs,x(5) s
< [ @(©)1Gu(t3) ol (s)]) +o(x(s)])1ds

* n * *
<24, 0(R) / G (£,5)|ds <2Goy 0 (R) G,
0
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where ||m|| =max{|w(t)|:t €J,}. Thus the Lebesgue dominated convergence theorem
implies that || Tx;—Tx||,, — 0 as I — co. The proof of continuity of U is similar to that of T
which was done in above.

(IIT) Let (x,y) €Q then ||F(x,y) ||, =max{||Tx|», ||Uy||»} and for each t€J,, using (H1)
we have

(T <[xol+ [ 1Gu(E3)]I(5,5() s

<hol+ 16, (t3) w(s)o(|x(s) s

* n * *
S!x0\+wnU(HXHn)/O |G (t,5)|ds = [xo |+ wn o ([|x[|n) Gu:= My,

and
\(Uy)<f)\§\yo\+/o | Ho(1,5)118(5,y(5))|ds < |yo |+ v pe (||| w) Hyi= M.

Let M=max{M;j, M}, then |F(x,y)||» < M. That is to say, F(Q)) is uniformly bounded.

(IV) Since G, (t,s) and H,(t,s) are continuous on J, xJ,, they are uniformly continu-
ous on J,, xJ,. Thus, for fixed s € J,, and any € > 0 there exists a constant § > 0 such that
for any t1,t €7, and |t —t2| <,

|G (t1,5) — Gu(t2,5)| < m
and
€
]Hn(tl,s) —Hn(tz,s)‘ < m
Then
(T)(12) = (T ()] < [ [Gulta5) ~Gultr ) f(s.x(s)) ds< . (312
Similarly
(W) (2) = U ()] < [ F(t25) ~ Hul )8y @)lds < 555, (13

Using (H1), Egs. (3.12), (3.13) and for the Euclidean distance d on R?, we have that if
t1,tp €3, are such that |t; —t| <), then

d(F(x,y)(t2) = F(x,y) (1)) Z\/[(TX)(tz)—(TX)(tl)]2+ [(Uy)(t2) — (Uy) (1)]*
<V2{[(Tx)(t2) = (Tx) (1) |+ (Uy) (t2) = (Uy) (t1) | }

<e€.
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That is to say, F(Q) is equicontinuous.

(V) It is a consequence of (I) - (III) together with Theorem 2.1 and combining Corollary
2.1.

(IV) Let (x,y) € ), thatis || (x,y)]|» <R with R=min{r,p}. We prove that F(x,y) € Q.
For each t € J, and using (H1)-(H2) we have

PGl =ma{ Tl Uy}
<max{[sal+ [ 1Gs(t3) 1f(s:x(E)lds, lyo|+ [ 1 (1) g(5(6)) s}

<max{ @, (|1x]1n) G,V (| ]1) Ho | <max{r,p} =R
We complete the proof of Lemma 3.2. O

Proof of Theorem 3.1: Necessary conditions of Schauder’s fixed point theorem for the
operator F:C — € was obtained in Lemma 3.2, therefore F has fixed points (x,,y,) in Q,
hence by Lemma 3.1, the fixed points of F are solutions of the system of the boundary
valued problem:

Dx(t)=I"f(ty(t))+f(ty(t)), te€T, 1<a<2, (3.14a)
‘DPy(t)=TI"g(t,x(t))+g(tx(t)), te€T,, 1<B<2, (3.14b)
x(0)=x0, ¥'(1)=0, y(0)=yo, ¥(n)=0. (3.140)

x'(n
Using diagonalization process, we prove the system (1.1a)-(1.1c) has a bounded solution
on [0,00).
For k€ N, assume that (xx,yx) is a solution of the boundary valued problem (3.14a)-

(3.14¢) on [0,n;] and {my }« Elil is a sequence satisfying 0 <n; <np < --- <mp < --- T 0.
Let

(Xi(),Yi(t)) :{ E “(f ))yk<( );) {Z:k] o). (3.15)
If we consider
$={(X1,11),(X2,Y2), -},
then for each t € [0,111] and k€ N we have
11X, Y ) || =max{ | X[, | Ve[ }
=max { max{|xc(t)|:t€[0,m]}, max{|y(t/:t€[0,n1]}}
=max { || x|, [yl } <max{r,p} =R,
and
X, (F) = x0+ /0 " G (4,5) (5, Yo (5))ds, (3.16a)

Yo () =yo+ /0 " H (£5)(5, X, (5))ds. (3.16b)
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Thus, for each t,7€[0,n1] and k€N, from the system (3.16a)-(3.16b) and by (H1)-(H2) we
get

X, (0= X (DI <A1 [ G (1) =G ()]s,

Yor (6= Yo, (D)1 <0 [ [y (65)~ o ()]s,

where
A =max{w o(r), 01 u(p)}.
Hence the Arzela-Ascoli Theorem guarantees that there is a subsequence N; of N and

two functions uy,v; € C([0,n1],R) such that (X,,,Yy,) — (u1,v1) € C([0,n1],R) as k — oo
through Nj.

Let Ny=N;—{1}. Notice that ||(Xy,,Yy,)|| <R for each t € [0,n1,] and k € N. With
repetition of the above process on the interval [0,75], that is for each t € [0,n2] and k€N
from the system (3.16a)-(3.16b) and by (H1)-(H2), we have

3, (=X (D] <A [ G (£:9) =G ()]s,

Yo (6= Yo, (D)1 <02 [ [y (65)~ ()]s,

where Ay =max{w,0(r),02:(p) }. Hence the Arzela-Ascoli Theorem guarantees that there

is a subsequence N, of N7 and two functions uy,v; € C([0,n2],R) such that (X, Yy, ) —
(u,v2) € C([0,n2],R) as k— co through Nj. It is clear that (u1(t),v1(t)) = (u2(t),v2(t)) for

each t€[0,n1], as Ny CNj.
Let Np,=Np —{2}. Proceed inductively to obtain for m € {3,4,--- } a subsequence N, of

Nyu—1 and two functions u,,, v, € C([0,11,,],R) such that (X, Yy, ) = (4m,0m) € C([0,1],R)
as k— oo through Nj,,.

Let J\}km: Ny —{m}. We define two functions x,y on (0,00) as follows.
Fix t € (0,00) and let m € N with s <n,,. Then define x(t) = X,,(t) and y(t) = Y;(t).
Then x,y € C([0,00),R), x(0) =xp, ¥(0) =yo and |x(t)| <R, |y(t)| <R for t € [0,00). Again

*

fix t € [0,00) and let m € N with s <#n,,. Then for n €N,, we have

X () =30+ [ G (5) £ (5, Yoy (9))ds,

Y (B =vo+ [ Hu ()35, X0, ().
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*
Let 1y — oo through N, to obtain

Xom(t) :xo—i—/onm Gn,, (T,5)f(5,Ym(s))ds,
V() =vo+ [ Ha, (7,985, X ($)ds,

that is

We can use this method for each 7 € [0,7,,], and for each m € N. Thus

Dx(t)=1"f(t,y(t))+f(ty(t)), te[0,nm],
‘DPy(t)=1"g(t,x(t))g(t,x(t)), te(0,nm],

for each m € N and «, € (1,2] and the constructed functions x,y are a solution of the
system (1.1). This completes the proof of the theorem.

Example 3.1. Consider the boundary value problem

R LeVy)N - V()
D2x(t)—t12( e )_ e £>0,
! 17/ x(t) x(t)
D3yﬁy—ﬂs(1+€t): S £>0,

x(0)=1, y(0)=1, x and y are bounded on [0,00).

Here,

fow=YL =l sw=va

1+ T 1+
_ Vu _ 1 _
g(t’u)_1+et’ v(u)_l—i_et, ]’l(u)_\/a/

f and g are continuous for each (t,u) €[0,00) x R. The four functions w,o, % and y are con-
tinuous on [0,00) and satisfying (H1), thatis | f(t,u)|<w(t)o(|u|) and |g(t,u)|<v(t)u(|u|)
for each t €[0,00) and u € R. We have

wWy=sup{w(t):t€J,}=1 and v,=sup{v(t):t€d,}= %
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The Green functions for this example are by Eq. (3.4)

a(t—s)?  t—s
Gn(t,S)dS:{ t(tis)i 2 +r(3/2)+9(t/s)/ OSSStSn,
S(t,s), 0<t<s<n,
where
t
t,s)=(a—1t(n—s)—n— ———.
Sts)=(a=Dtn=s)=n = s
Hence
n
ansup{/o |G (t,5)]ds, teJn}
exists. Since
llm ﬁ: llm M g llm 3 :OO,
M_wol—i-wn(T(M)Gn Moewo(M) M=o /M

then there exists r > 0 such that

Y
14w, 0(r) Gy,
On the other hand, Eq. (3.5b) yields
Ht—s)5 B(t—s)3 (t—s)3
— H(t,s), 0<s<t<m,
Hy(t,s)ds = r(3) r(%) " r(3) (L) ’ "
F(t,s), 0<t<s<mn,
where
—t(n—s)% n(n—s)%] ﬁt(n—s)% t(n—s)*é
H(ts)= 5y T 5 1
I'(3) I'(3) I'(3) I'(7)
Hence

exists. Since

lim ——— = lim —— = lim ——=co,
Nﬁool_i_l;kny(N) Hn M%oo],l(N) M—)oo\/ﬁ

then there exists p >0 such that

140, (p) Hy

Hence this example satisfies in (H2). Therefore by Theorem 3.1 the system of this example
has a bounded solution (x,y) € QCC.
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Remark 3.2. Proposition 2.1 (i) can be generalized, that is, if p is nonnegative integrable,
then (see [5], pp. 53)

P s P s —k
I*(try(t) =Y < k"‘> (DB [ y(h] =) < k"‘) %I”ky(t).

k=0 k=0

Hence, using Theorem 2.3 (2) the above equation yields

ey} =3 () FEEA

where

<—oc) (1) x oc(oc-|-1)..1;!(oc+k—1) (1) x l;{('oli-(:j;)

Therefore we can prove that the system of nonlinear fractional differential equation:

(1) =P ITf(Ly(1) + f(Ly(1), tE(0,0),
Dy (1) =1 11g(tx(1)) +g(1,3(1)), 1€ (0,09),
x(0)=x0, ¥(0)=yo, x(t) and y(t) are bounded on [0,0),

under which the conditions (H1) and (H2) have at least one bounded solution on [0,00),
where p is a nonnegative integer.
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