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1 Introduction and preliminaries

As an analogy of the classical Littlewood-Paley g function, Marcinkiewicz [1] introduced
the operator

M( f )(x)=
(∫ π

0

|F(x+t)+F(x−t)−2F(x)|2

t3
dt
) 1

2
, x∈ [0,2π],

where F(x) =
∫ x

0 f (t)dt. This operator is now called the Marcinkiewicz integral. Zyg-
mund [2] proved that the operator M is bounded on the Lebesgue space Lp([0,2π]) for
p∈(1,∞). Stein [3] generalized the above Marcinkiewicz integral to the following higher-
dimensional case. Let Ω be homogeneous of degree zero in Rd for d≥ 2, integrable and
have mean value zero on the unit sphere Sd−1. The higher-dimensional Marcinkiewicz
integral is defined by

MΩ( f )(x)=
(∫ ∞

0

∣∣∣
∫

|x−y|≤t

Ω(x−y)

|x−y|d−1
f (y)dy

∣∣∣
2 dt

t3

) 1
2
, x∈Rd.
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Stein in [3] proved that if Ω∈Lipδ(S
d−1) for some δ∈(0,1], then MΩ is bounded on Lp(Rd)

for any p∈(1,2], and is also bounded from L1(Rd) to L1,∞(Rd). Since then, a lot of papers
focus on this operator. For some recent development, we mention that Al-Salman et al.
in [4] obtained the Lp(Rd)-boundedness for p ∈ (1,∞) of MΩ if Ω ∈ L(logL)1/2(Sd−1);
Fan and Sato in [5] proved that MΩ is bounded from the Lebesgue space L1(Rd) to
the weak Lebesgue space L1,∞(Rd) if Ω ∈ LlogL(Sd−1). There are many other interest-
ing works for this operator, among them we refer to [6, 7] and their references. On the
other hand, Torchinsky and Wang in [8] first introduced the commutator generated by
the Marcinkiewicz integral MΩ and the classical BMO(Rd) function, and established its
Lp(Rd)-boundedness for p∈ (1,∞) when Ω∈Lipδ(S

d−1) for some δ∈ (0,1]. Such bound-
edness of this commutator is further discussed in [9, 10] when Ω only satisfies certain
size conditions. Moreover, its weak type endpoint estimate is obtained in [11, 12] when
Ω∈Lipδ(S

d−1) for some δ∈(0,1], and its weight weak type endpoint estimate is obtained
in [13, 14] when Ω satisfies a kind of Dini conditions. Also see [15–17] et al. for more
informations.

Motivated by the work above, the main purpose of this paper is to establish a similar
theory for the multilinear commutator generated by a Marcinkiewicz integral operator
and a RBMO(µ) function or OscexpLr(µ) function on Rd with a positive Radon measure
which may be non doubling.

To be precise, let µ be a positive Radon measure on Rd which only satisfies the fol-
lowing growth condition that for all x∈Rd and all r>0,

µ(B(x,r))≤C0rn, (1.1)

where C0 > 0 and n are some positive constants, 0 < n ≤ d, and B(x,r) is the open ball
centered at x and having radius r. We recall that µ is said to be a doubling measure, if
there is a positive constant C such that for any x∈suppµ and r>0,

µ(B(x,2r))≤Cµ(B(x,r)),

and that the doubling condition is a key assumption in the classical theory of harmonic
analysis. In recent years, many classical results concerning the theory of Calderón-
Zygmund operators and function spaces have been proved to be still valid if the
Lebesgue measure is substituted by a measure µ as in (1.1); see [18–25]. We mention
that the analysis on non-homogeneous spaces play an essential role in solving the long-
standing open Painlevé’s problem by Tolsa in [21].

To outline the structure of this paper, we first recall some notation and definitions. For
a cube Q⊂Rd, we mean a closed cube whose sides parallel to the coordinate axes, and
we denote its side length by l(Q) and its center by xQ. Let γ>1 and β>γn. We say that
a cube Q is an (γ,β)-doubling cube if µ(γQ)≤ βµ(Q), where γQ denotes the cube with
the same center as Q and l(γQ)=γl(Q). For definiteness, if γ and β are not specified, by
a doubling cube we mean a (2,2d+1)-doubling cube. Especially, for any given cube Q, we
denote by Q̃ the smallest doubling cube which contains Q and has the same center as Q.
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Given two cubes Q1⊂Q2 in Rd, set

KQ1,Q2
=1+

NQ1,Q2

∑
k=1

µ(2kQ1)

[l(2kQ1)]n
,

where NQ1,Q2
is the smallest positive integer k such that

l(2kQ1)≥ l(Q2).

The concept of KQ1,Q2
is first appeared in [20], where some useful properties of KQ1,Q2

can
be found. The following space RBMO(µ) is introduced by Tolsa in [20].

Definition 1.1. (see [20]) Let ρ>1 be a fixed constant. A function b∈ L1
loc(µ) is said to be

in the space RBMO(µ) if there exists some constant B>0 such that

(i) for any cube Q centered at some point of supp(µ),

sup
Q

1

µ(ρQ)

∫

Q

∣∣b(x)−m
Q̃
(b)

∣∣dµ(x)≤B<∞.

(ii) for any two doubling cubes Q
1
⊂Q2 ,

|m
Q1
(b)−m

Q2
(b)|≤BKQ

1
,Q

2
.

Where the supremum is taken over all cubes centered at some point of supp(µ), and
mQ(b) denotes the mean value of b over the cube Q. The minimal constant B as above is
defined to be the norm of b in the space RBMO(µ) and denoted by

‖b‖RBMO(µ)=‖b‖∗.

Tolsa in [20] proved that the definition of the space RBMO(µ) is independent of the
choice of ρ. The definition of the following function space of Orlicz type is a variant with
a non doubling measure of the space OscexpLr in [22].

Definition 1.2. (see [22]) For r ≥ 1, a function b ∈ L1
loc(µ) is said to be in the space

OscexpLr(µ) if there is a constant B1>0 such that

(i) for any Q,

∥∥b−m
Q̃
(b)

∥∥
expLr,Q,µ/µ(2Q)

= inf
{

γ>0 :
1

µ(2Q)

∫

Q
exp

( |b−m
Q̃
(b)|

γ

)r
dµ≤2

}
≤B1.

(ii) for any doubling cubes Q1 ⊂Q2 ,

|m
Q1
(b)−m

Q2
(b)|≤B1KQ

1
,Q

2
.

The minimal constant B1 satisfying (i) and (ii) is the norm of b in the space OscexpLr(µ)
and denoted by ‖b‖OscexpLr (µ).
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Obviously, for any r≥ 1, OscexpLr(µ)⊂RBMO(µ). Moreover, from John-Nirenberg’s
inequality in [20], it follows that OscexpL1(µ) = RBMO(µ). In [26], Pérez and Trujillo-

González point that if µ is a Lebesgue measure in Rd, the counterpart of the space
OscexpLr(µ) when r>1 is a proper subspace of the classical space BMO(Rd). However, it is
still unknown whether the space OscexpLr(µ) is a proper subspace of the space RBMO(µ)
when µ is a non doubling measure.

We now introduce the Marcinkiewicz integral related to the measure µ as in (1.1). Let
K be a locally integrable function on Rd×Rd\{(x,y) : x= y}. Assume that there exists a
constant C>0 such that for all x,y,y′∈Rd with x 6=y,

|K(x,y)|≤C|x−y|−(n−1) (1.2)

and ∫

|x−y|≥2|y−y′|

|K(x,y)−K(x,y′)|+|K(y,x)−K(y′,x)|

|x−y|
dµ(x)≤C. (1.3)

The Marcinkiewicz integral M( f ) associated to the above kernel K and the measure µ as
in (1.1) is defined by

M( f )(x)=
(∫ ∞

0

∣∣∣
∫

|x−y|≤t
K(x,y) f (y)dµ(y)

∣∣∣
2 dt

t3

) 1
2
, x∈Rd. (1.4)

Obviously, if µ is the d-dimensional Lebesgue measure in Rd, and

K(x,y)=
Ω(x−y)

|x−y|d−1

with Ω homogeneous of degree zero and Ω∈Lipδ(S
d−1) for some (δ∈(0,1], then it is easy

to verify that K satisfies (1.2) and (1.3), and M in (1.4) is just the Marcinkiewicz integral
MΩ introduced by Stein in [3]. Thus, M in (1.4) is a natural generalization of the classical
Marcinkiewicz integral in the current setting.

To state the main result, we also need to introduce the following notation. As in [26],
given any positive integer m, for all i ∈ [1,m], we denote by C

m
i the family of all finite

subsets σ= {σ(1),σ(2),··· ,σ(i)} of {1,2,··· ,m} with i different elements. For any σ∈C
m
i ,

we define the complementary sequence σ′={1,2,··· ,m}\σ.

Let~b=(b1,b2,··· ,bm) be a finite family of locally integrable functions. For all 1≤ i≤m

and σ={σ(1),σ(2),··· ,σ(i)}∈Cm
i , we will denote~bσ=(bσ(1),bσ(2),··· ,bσ(i)) and the product

bσ =bσ(1)bσ(2) ···bσ(i). With this notation, we write

(
b(x)−b(y)

)
σ
=
(
bσ(1)(x)−bσ(1)(y)

)
···

(
bσ(i)(x)−bσ(i)(y)

)
,

and (
bQ−b(y)

)
σ
=
(
(bσ(1))Q−bσ(1)(y)

)
···

(
(bσ(i))Q−bσ(i)(y)

)
,
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where Q is any cube in Rd,x,y∈Rd, and

fQ =
1

|Q|

∫

Q
f (y)dy.

In particular, for bi ∈RBMO(µ) (1≤ i≤m), we write

‖~bσ‖∗=‖bσ(1)‖∗‖bσ(2)‖∗ ···‖bσ(i)‖∗.

If σ={1,2,··· ,m}, then σ′ is an empty set, we denote ‖~bσ‖∗ simply by ‖~b‖∗.

Let m be a positive integer, b,bi∈RBMO(µ) (1≤i≤m) and~b=(b1,b2,··· ,bm), we define
the multilinear commutators M~b

by

M~b
( f )(x)=

(∫ ∞

0

∣∣∣
∫

|x−y|≤t
K(x,y) f (y)×

m

∏
i=1

(
bi(x)−bi(y)

)
dy

∣∣∣
2 dt

t3

) 1
2

(1.5)

for x∈Rd with kernel K satisfying (1.2) and the following Hörmander-type condition that

sup
|y−y′|≤r

r>0,y,y′∈Rd

∞

∑
l=1

lm
∫

2lr<|x−y|≤2l+1r
(|K(x,y)−K(x,y′)|+|K(y,x)−K(y′ ,x)|)

1

|x−y|
dµ(x)

≤C, (1.6)

which is slightly stronger than (1.3). In what follows, if m=1 and~b=b, we denote M~b
( f )

simply by Mb( f ); and when b1 = b2 = ···= bm = b, we denote M~b
( f ) simply by Mb,m( f )

which is called the mth order commutator.
Let Bk={x∈Rd : |x|≤2k} and Ak=Bk\Bk−1 for k∈Z. And let χ

k
=χ

Ak
for k∈Z be the

characteristic function of the set Ak.

Definition 1.3. (see [23]) Let α ∈ R, 0< p ≤ ∞, 0< q <∞ and λ ≥ 0. The homogeneous

Morrey-Herz spaces MK̇α,λ
p,q (µ) are defined by

MK̇α,λ
p,q (µ)={ f ∈L

q
loc(R

d\{0},µ) :‖ f‖
MK̇α,λ

p,q (µ)
<∞},

where

‖ f‖
MK̇α,λ

p,q (µ)
= sup

k0∈Z

2−k0λ

( k0

∑
k=−∞

2kαp‖ f χ
k
‖

p

L
q
(µ)

) 1
p

with the usual modifications made when p=∞.

Compare the homogeneous Morrey-Herz spaces MK̇α,λ
p,q (µ) with the homogeneous

Herz spaces K̇
α,p
q (µ) (see [25]), where

K̇
α,p
q (µ)=

{
f ∈L

q
loc(R

d\{0},µ) :
∞

∑
k=−∞

2kαp‖ f χ
k
‖

p

Lq(µ)
<∞

}
.
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Obviously, MK̇α,0
p,q(µ)= K̇

α,p
q (µ). Moreover, it is easy to observe that K̇

0,q
q (µ)= Lq(µ).

Throughout this paper, C denotes a constant that is independent of the main param-
eters involved but whose value may differ from line to line. For any index p∈ [1,∞], we
denote by p′ its conjugate index, namely, 1/p+1/p′=1. For A∼B, we mean that there is
a constant C>0 such that C−1B≤A≤CB.

2 Main result and its proof

The following theorem is the main result of this paper, which is new even when b1=b2=
···=bm=b, namely, Theorem 2.1 is also new even for the commutator of the m-th order.

Theorem 2.1. Let λ≥0, 0< p<∞, 1<q<∞. If M in (1.4) is bounded on L2(µ) when K(x,y)
satisfies (1.2) and (1.6), then for any positive integer m and bi ∈ RBMO(µ) (1 ≤ i ≤ m), the

multilinear commutator M~b
in (1.5) is bounded on MK̇α,λ

p,q (µ) with

−
n

q
+λ<α<n

(
1−

1

q

)
+λ.

Proof. Let f ∈MK̇α,λ
p,q (µ). Write

f (x)=
∞

∑
j=−∞

f (x)χj(x)≡
∞

∑
j=−∞

f j(x).

Then, we have

‖M~b
( f )‖

MK̇α,λ
p,q (µ)

= sup
k0∈Z

2−k0λ
( k0

∑
k=−∞

2kαp‖M~b
( f )χ

k
‖

p

Lq(µ)

) 1
p

≤C sup
k0∈Z

2−k0λ
( k0

∑
k=−∞

2kαp
( k+1

∑
j=−∞

‖χ
k
M~b

( f j)‖Lq(µ)

)p) 1
p

+C sup
k0∈Z

2−k0λ
( k0

∑
k=−∞

2kαp
( ∞

∑
j=k+2

‖χ
k
M~b

( f j)‖Lq(µ)

)p) 1
p

≡E1+E2.

To estimate E1, we first consider

‖χ
k
M~b

( f j)‖Lq(µ)≤

(∫

Ak

(∫ ∞

0

∣∣∣
∫

|x−y|≤t
K(x,y) f j(y) ·

m

∏
i=1

(bi(x)−bi(y))dµ(y)
∣∣∣
2 dt

t3

) q
2
dµ(x)

) 1
q

≤

(∫

Ak

(∫ |x|

0

(∫

|x−y|≤t
|K(x,y) f j(y)|·

m

∏
i=1

|bi(x)−bi(y)|dµ(y)
)2 dt

t3

) q
2
dµ(x)

) 1
q

+

(∫

Ak

(∫ ∞

|x|

(∫

|x−y|≤t
|K(x,y) f j(y)|·

m

∏
i=1

|bi(x)−bi(y)|dµ(y)
)2 dt

t3

) q
2
dµ(x)

) 1
q

=E11+E12.



68 J. L. Wu and Q. G. Liu / Anal. Theory Appl., 29 (2013), pp. 62-71

Note that when x∈Ak,y∈Aj and j≤ k+1, we have |x|∼ |x−y|. Therefore, for x∈Ak,
by the mean-value theorem of differentials, we have

∣∣∣
1

|x|2
−

1

|x−y|2

∣∣∣≤C
|y|

|x−y|3
. (2.1)

Let Qj be the smallest cube which contains Aj with center at the origin. For j≤ k+1, by
(1.2), (2.1), |x|∼ |x−y|, Minkowski’s inequality and with the aid of the fact

m

∏
i=1

(
bi(x)−bi(y)

)
=

m

∑
i=0

∑
σ∈Cm

i

(
b(x)−mQ̃ j

(b)
)

σ

(
mQ̃ j

(b)−b(y)
)

σ′
,

we have

E11≤C

(∫

Ak

(∫

A j

| f (y)|∏m
i=1 |bi(x)−bi(y)|

|x−y|n−1

|y|
1
2

|x−y|
3
2

dµ(y)
)q

dµ(x)

) 1
q

≤C2
j
2−k(n+ 1

2 )
(∫

Ak

(∫

A j

∣∣ f (y)
∣∣

m

∏
i=1

|bi(x)−mQ̃j
(bi)|dµ(y)

)q
dµ(x)

) 1
q

+C2
j
2−k(n+ 1

2 )

(∫

Ak

m−1

∑
i=1

∑
σ∈Cm

i

(∫

A j

∣∣∣
(

b(x)−mQ̃j
(b)

)

σ

×
(

mQ̃j
(b)−b(y)

)

σ′

∣∣∣
∣∣ f (y)

∣∣dµ(y)
)q

dµ(x)

) 1
q

+C2
j
2−k(n+ 1

2 )

(∫

Ak

(∫

A j

∣∣ f (y)
∣∣

m

∏
i=1

|mQ̃j
(bi)−bi(y)|dµ(y)

)q
dµ(x)

) 1
q

=E111+E112+E113.

We first estimate the term E111. With the aid of the fact K
Q̃j,Q̃k

≤C(k− j) (see Lemma 2.1

in [20]), by (1.1), Minkowski’s inequality, Hölder’s inequality and the property of RBMO
function, we have

E111≤C2
j
2−k(n+ 1

2 )

(∫

A j

∣∣ f (y)
∣∣
(∫

Ak

m

∏
i=1

|bi(x)−mQ̃j
(bi)|

qdµ(x)
) 1

q
dµ(y)

)

≤C2
j
2−k(n+ 1

2 )

(∫

A j

∣∣ f (y)
∣∣

m

∏
i=1

(∫

Ak

|bi(x)−mQ̃j
(bi)|

riqdµ(x)
) 1

riq
dµ(y)

)

≤C2
j
2−k(n+ 1

2 )
(∫

A j

∣∣ f (y)
∣∣

m

∏
i=1

(
2

kn
riq ‖bi‖∗+2

kn
riq K

Q̃j ,Q̃k
‖bi‖∗

)
dµ(y)

)

≤C
m

∏
i=1

‖bi‖∗(k− j)m2
(j−k)( 1

2+
n
q′
)
‖ f j‖Lq(µ),

where 1/r1+···+1/rm =1 (ri >1, i∈ [1,m]).
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Now, let us consider E112. Similar to the estimate for E111, we have

E112≤C2
j
2−k(n+ 1

2−
n
q )
(m−1

∑
i=1

∑
σ∈Cm

i

(k− j)i‖~bσ‖∗

∫

Aj

∣∣(mQ̃ j
(b)−b(y))σ′

∣∣∣∣ f (y)
∣∣dµ(y)

)

≤C(k− j)m2
(j−k)( 1

2+
n
q′
)
(m−1

∑
i=1

∑
σ∈Cm

i

‖~bσ‖∗‖~bσ′‖∗‖ f j‖Lq(µ)

)

≤C
m

∏
i=1

‖bi‖∗(k− j)m2
(j−k)( 1

2+
n
q′
)
‖ fi‖Lq(µ).

For E113, similar to the estimate for E111 and E112, we also have

E113≤C
m

∏
i=1

‖bi‖∗(k− j)m2
(j−k)( 1

2+
n
q′
)
‖ fi‖Lq(µ).

Combining the estimates above then gives

E11≤C
m

∏
i=1

‖bi‖∗(k− j)m2
(j−k)( 1

2+
n
q′
)
‖ fi‖Lq(µ).

For E12, similar to the estimate for E11, we can get

E12≤C
m

∏
i=1

‖bi‖∗(k− j)m2
(j−k)( 1

2+
n
q′
)
‖ fi‖Lq(µ).

Then, when j≤ k+1, we obtain

‖χ
k
M~b

( f j)‖Lq(µ)≤C
m

∏
i=1

‖bi‖∗(k− j)m2
(j−k)( 1

2+
n
q′
)
‖ fi‖Lq(µ).

Therefore, using the fact for

‖ f j‖
p

Lq(µ)
≤2−jαp

j

∑
i=−∞

2iαp‖ fi‖
p

Lq(µ)
,

we get

E1≤C
m

∏
i=1

‖bi‖∗ sup
k0∈Z

2−k0λ
( k0

∑
k=−∞

2kαp
( k+1

∑
j=−∞

(k− j)m2
(j−k) n

q′ ‖ f j‖Lq(µ)

)p) 1
p

≤C
m

∏
i=1

‖bi‖∗ sup
k0∈Z

2−k0λ
( k0

∑
k=−∞

2kλp
) 1

p
‖ f‖

MK̇α,λ
p,q (µ)

≤C
m

∏
i=1

‖bi‖∗‖ f‖
MK̇α,λ

p,q (µ)
.
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An argument similar to the estimate for E1, and note that when x ∈ Ak,y ∈ Aj and
j≥ k+2, |y|∼ |x−y|. For x∈Ak, via the mean-value theorem of differentials gives

∣∣∣
1

|y|2
−

1

|x−y|2

∣∣∣≤C
|x|

|x−y|3
. (2.2)

We thus obtain

E2≤C
m

∏
i=1

‖bi‖∗‖ f‖
MK̇α,λ

p,q (µ)
.

Combining the estimate above for E1 and E2, we complete the proof of Theorem 2.1.

The result of Theorem 2.1 for λ=0 is also new on homogeneous Herz spaces K̇
α,p
q (µ).

Furthermore, when α=λ=0 and p=q in Theorem 2.1 we can obtain the following corol-
lary.

Corollary 2.1. Let 1<q<∞. If M in (1.4) is bounded on L2(µ) when K(x,y) satisfies (1.2)
and (1.6), then for any positive integer m and bi ∈RBMO(µ) (1≤ i≤m), the multilinear
commutator M~b

in (1.5) is bounded on Lq(µ).

Remark 2.1. The result above is also new for any bi ∈ OscexpLri (µ)⊂RBMO(µ), where
1≤ ri <∞ and i=1,2,··· ,m.
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