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Abstract. In this paper, the authors establish the boundedness of multilinear commu-
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1 Introduction and preliminaries

As an analogy of the classical Littlewood-Paley g function, Marcinkiewicz [1] introduced
the operator

M(f) () = (TR

0 £

t) —ZF(X) ’2 dt) %’ xe [0,27'(];

where F(x fo t)dt. This operator is now called the Marcinkiewicz integral. Zyg-
mund [2] proved that the operator M is bounded on the Lebesgue space L?([0,27]) for
p€(1,00). Stein [3] generalized the above Marcinkiewicz integral to the following higher-
dimensional case. Let Q) be homogeneous of degree zero in R? for d > 2, integrable and
have mean value zero on the unit sphere S~1. The higher-dimensional Marcinkiewicz
integral is defined by

) 2dty 3 .
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Stein in [3] proved that if Q€Lip;(S?~1) for some 5 € (0,1], then Mg, is bounded on LP(R?)
for any p€(1,2], and is also bounded from L' (R?) to L' (R). Since then, a lot of papers
focus on this operator. For some recent development, we mention that Al-Salman et al.
in [4] obtained the LP(R%)-boundedness for p € (1,00) of Mq if Q € L(logL)!/2(S4~1);
Fan and Sato in [5] proved that Mq is bounded from the Lebesgue space Ll(Rd) to
the weak Lebesgue space LV®(RY) if Q € LlogL(S“~!). There are many other interest-
ing works for this operator, among them we refer to [6,7] and their references. On the
other hand, Torchinsky and Wang in [8] first introduced the commutator generated by
the Marcinkiewicz integral M and the classical BMO(Rd) function, and established its
L?(R?)-boundedness for p € (1,00) when Q) € Lip;(S?~1) for some 6 € (0,1]. Such bound-
edness of this commutator is further discussed in [9, 10] when () only satisfies certain
size conditions. Moreover, its weak type endpoint estimate is obtained in [11,12] when
Q€Lip,;(S971) for some s € (0,1], and its weight weak type endpoint estimate is obtained
in [13, 14] when () satisfies a kind of Dini conditions. Also see [15-17] et al. for more
informations.

Motivated by the work above, the main purpose of this paper is to establish a similar
theory for the multilinear commutator generated by a Marcinkiewicz integral operator
and a RBMO(y) function or Oscexprr () function on R? with a positive Radon measure
which may be non doubling.

To be precise, let i be a positive Radon measure on RY which only satisfies the fol-
lowing growth condition that for all x € R? and all 7 >0,

u(B(x,r)) <Cor", (1.1)

where Cy >0 and n are some positive constants, 0 < n <d, and B(x,r) is the open ball
centered at x and having radius r. We recall that y is said to be a doubling measure, if
there is a positive constant C such that for any x € suppy and >0,

u(B(x,2r)) <Cu(B(x,r)),

and that the doubling condition is a key assumption in the classical theory of harmonic
analysis. In recent years, many classical results concerning the theory of Calderén-
Zygmund operators and function spaces have been proved to be still valid if the
Lebesgue measure is substituted by a measure y as in (1.1); see [18-25]. We mention
that the analysis on non-homogeneous spaces play an essential role in solving the long-
standing open Painlevé’s problem by Tolsa in [21].

To outline the structure of this paper, we first recall some notation and definitions. For
a cube Q C R, we mean a closed cube whose sides parallel to the coordinate axes, and
we denote its side length by /(Q) and its center by xg. Let v >1 and p > 7". We say that
a cube Q is an (1, p)-doubling cube if u(yQ) < Bu(Q), where yQ denotes the cube with
the same center as Q and /(vQ) =!(Q). For definiteness, if v and B are not specified, by
a doubling cube we mean a (2,2%*1)-doubling cube. Especially, for any given cube Q, we
denote by Q the smallest doubling cube which contains Q and has the same center as Q.
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Given two cubes Q; C Q, in RY, set

Ng, 0 k
12§ (2°Qy)
K =1+ _—
Q1,Q2 kg:l [l<2kQ1)]”

where N, o, is the smallest positive integer k such that

1(2°Q1) > 1(Q2).

The concept of K, o, is first appeared in [20], where some useful properties of Kg, o, can
be found. The following space RBMO() is introduced by Tolsa in [20].

Definition 1.1. (see [20]) Let p > 1 be a fixed constant. A function be L] () is said to be
in the space RBMO( ) if there exists some constant B >0 such that

(i) for any cube Q centered at some point of supp(u),
; /
sup——=— [ |b(x)—m_(b)|du(x)<B<oco.
o ALCRRCILICE

(i) for any two doubling cubes Q, C Q,,
my (8)—my (b)| <BKg, ..

Where the supremum is taken over all cubes centered at some point of supp(y), and
mgq(b) denotes the mean value of b over the cube Q. The minimal constant B as above is
defined to be the norm of b in the space RBMO(y) and denoted by

1b]lRBMO () = N1D1] -

Tolsa in [20] proved that the definition of the space RBMO(y) is independent of the
choice of p. The definition of the following function space of Orlicz type is a variant with
anon doubling measure of the space Osceyprr in [22].

Definition 1.2. (see [22]) For r > 1, a function b € Llloc(y) is said to be in the space
Oscexprr (i) if there is a constant By >0 such that

(i) for any Q,
| 1 b (B)]
Hb—mé(b)HeXpU,Q,H/V(ZQ)zlnf{'y>0.m/Qexp<f> dyﬁZ}ﬁBl.

(i) for any doubling cubes Q, C Q,,
‘le (b) —sz (b)’ < BlKQ],QZ'

The minimal constant B; satisfying (i) and (ii) is the norm of b in the space OscexpL- ()

and denoted by ||bHOscexpu(V)'
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Obviously, for any 7 >1, Oscexpr (1) C RBMO(j). Moreovet, from John-Nirenberg's
inequality in [20], it follows that Osceyp 1 () = RBMO(p). In [26], Pérez and Trujillo-

Gonzélez point that if y is a Lebesgue measure in R?, the counterpart of the space
Oscexprr (1) whenr>1 is a proper subspace of the classical space BMO(R?). However, it is
still unknown whether the space Oscexprr (1) is a proper subspace of the space RBMO()
when y is a non doubling measure.

We now introduce the Marcinkiewicz integral related to the measure y as in (1.1). Let
K be a locally integrable function on R? x R*\ {(x,y) : x =y}. Assume that there exists a
constant C > 0 such that for all x,y,y’ € R? with x #y,

IK(x,)| < Cl—y] == 1.2)
and , /
/ [K(x,y) —K(x,y") |+ [K(y,x) —K(y ’x)’dy(x) <C. (1.3)
lx—y|>2[y—y| x=yl

The Marcinkiewicz integral M( f) associated to the above kernel K and the measure y as
in (1.1) is defined by

00 2d¢ 1
MA@ =[] Kewfmdum)| ) xer (14
0 |x—y| <t t
Obviously, if u is the d-dimensional Lebesgue measure in R?, and
Q(x—y)
K(x,y)=—"—""7%
W=y

with O homogeneous of degree zero and Q€ Lip;(S?~1) for some (6 € (0,1], then it is easy
to verify that K satisfies (1.2) and (1.3), and M in (1.4) is just the Marcinkiewicz integral
Mq introduced by Stein in [3]. Thus, M in (1.4) is a natural generalization of the classical
Marcinkiewicz integral in the current setting.

To state the main result, we also need to introduce the following notation. As in [26],
given any positive integer m, for all i € [1,m], we denote by €/ the family of all finite
subsets o = {c(1),0(2),---,0(i)} of {1,2,---,m} with i different elements. For any o € C",
we define the complementary sequence 0’ ={1,2,---,m}\ 0.

Letb= (b1,b, - ,by,) be a finite family of locally integrable functions. For all 1<i<m
and c={0(1),0(2),---,0(i) } €€, we will denote by= <ba(1)/b¢7(2)/' . ,ba(i)) and the product
by =bg(1)bs(2) - by(i)- With this notation, we write

and
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where Q is any cube in Rd,x,y €R4, and

1
fo=rg1 /Qf(y) y

In particular, for b; e RBMO(u) (1<i<m), we write
1ol = 11Bo 1) 8o -+ 1Bl

If c={1,2,---,m}, then ¢’ is an empty set, we denote ||b,||» simply by ||b]|..
Let m be a positive integer, b,b; ERBMO() (1<i<m) and b= (b1,ba,- - ,by), we define
the multilinear commutators M; by

w5000 =[]/ ke =TT(mem-vm)afS) a9

for x € R? with kernel K satisfying (1.2) and the following Hérmander-type condition that

o]

lm/ K(x,y)—K(x /)| + K (v, %) —K(v/, )| ) ——d
WS};EY ]; 217<\x7y|§21+17<’ (x,y)—K(x,y")|+|K(y,x) —K(y x)’)‘x_y’ (x)
r>0,y,y/€Rd

<C, (1.6)

which is slightly stronger than (1.3). In what follows, if m=1 and b=b, we denote M;(f)
simply by M;(f); and when by =by =--- =b,, = b, we denote M;(f) simply by My, (f)
which is called the mth order commutator.

Let By={x€R?:|x| <2} and Ay =B;\B_; for k€ Z. And let yx, =X, for k€Z be the
characteristic function of the set A;.

Definition 1.3. (see [23]) Leta € R, 0<p <00, 0 <g< o0 and A > 0. The homogeneous
Morrey-Herz spaces MK?:? (u) are defined by

MRS (1) = {f €L, (RO} 1) | fll g oy <0}
where

1
g = $0p2 W( ¥ 2l

ko€Z k=—o00

with the usual modifications made when p=co.

Compare the homogeneous Morrey-Herz spaces MK%‘(;M) with the homogeneous
Herz spaces K" (1) (see [25]), where

Ky?(0) = { Fe Ll RN (0h): Y 29I1fx, I, <o)

k=—c0
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Obviously, MK, 2( u) =Kg" (1). Moreover, it is easy to observe that Kg’q( w)=L(p).

Throughout this paper, C denotes a constant that is independent of the main param-
eters involved but whose value may differ from line to line. For any index p € [1,00], we
denote by p’ its conjugate index, namely, 1/p+1/p’ =1. For A~ B, we mean that there is
a constant C >0 such that C"'1B< A< CB.

2 Main result and its proof

The following theorem is the main result of this paper, which is new even when by =b, =
--=by, = b, namely, Theorem 2.1 is also new even for the commutator of the m-th order.

Theorem 2.1. Let A >0, 0< p<oco, 1 <g<oo. If M in (1.4) is bounded on L*(1) when K(x,y)
satisfies (1.2) and (1.6), then for any positive integer m and b; € RBMO(u) (1 <i<m), the
multilinear commutator My in (1.5) is bounded on MK%‘(y) with

—g+)&<rx<n(1—%) +A.

Proof. Let f € MKy (). Write

- Y fn= Y .

j==eo ==

Then, we have

ko 1
NG gy =3P 2™ (3 27 IM(F)xclfa )"

koeZ k=—o0
py 1
§Csup27k0A< Z Zk“p( Z X g(fj)HL‘l(y)) )p
koeZ k=—c0 j=—o0
ko ) N
+Csup2 (3 27 (Y I dG(Hllag) )
ko€Z k=—c0 j=k+2
=E{+E,.

To estimate E;, we first consider

walm=( [, (][, Keaso TTnt dy(y)z%);dy(x))%

i=1

(/Ak(/ox(/l;c—yq ()il H\b Idﬂ(y))2%)%du(x))%
+ (/Ak (/I:(/x—y|<t ) fiy)l- 1_[|b d]l(y))z%)gdy(x))a

=Eq1+E1p.

IN
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Note that when x € Ay, y € A; and j <k+1, we have |x|~|x—y|. Therefore, for x € Ay,
by the mean-value theorem of differentials, we have

1

|
‘W_ r= @.1)

< .
ylz‘_ lx—y?

Let Q; be the smallest cube which contains Aj with center at the origin. For j <k+1, by
(1.2), (2.1), |x| ~ |x—y|, Minkowski’s inequality and with the aid of the fact

ﬁ(bim =3 % (b -mg ) (me0)-b) ,

i=00eC}

we have

F )T [bi(x) =bi(y)| ]2
Fu SC</Ak( A; \xly\”—l xy%dy(y))

<cttHe ([ ([, 1T - () ldnty) dn(o) )
+C22 k(n+3) (/Akl R /‘ )0’

x (g, (0)=b(») w\dﬂ(y))qdﬂ(x))q

w2t ([ ([ 17 Timo 00— 0 lautn) auts) )

=E11+E112+Ens.
We first estimate the term Eq11. With the aid of the fact K 5.0 < C(k—j) (see Lemma 2.1

in [20]), by (1.1), Minkowski’s inequality, Holder’s inequality and the property of RBMO
function, we have

e <C2t 00 ( [ 1701 [, Tt -me, ot ) ann)
<Cob-k(r+] </ |f(y \]_[ / |bi(x (bi)|"dp(x ))r}qd#(y)>
<cat-srsh / I (W|bi|*+zw@/@k|bz-|*)du<y>)

=

7l fila

Y3+
2t

SC]_[HbiH*(k—])
i=1

where 1/r1+--+1/r,=1 (r;>1,i€[1,m]).
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Now, let us consider Eq1,. Similar to the estimate for E{11, we have

Enp<C24 1) (z‘1 L (k=) TEel- [, o D)er| [ F)|du()
<Clk—jy2i7 0 (3 21 L el Wl sy )

4 A (—K) (341
<C[ [lvill«(k—j)"2 "N fill La gy
i=1

For Eq13, similar to the estimate for E;1; and Ej12, we also have

1

m
Ens <CL bl (k=27 0 il
i=1
Combining the estimates above then gives

Exy < CT [ |1t (k—j)m2Y"

i=1

,_.

2 1
/

A L9 (u
For Ej,, similar to the estimate for E{;, we can get

m _ 1 ﬁ
Erp <CT T lbaflo (k=279 £ o

i=1

Then, when j <k+1, we obtain

-

262G (Fi) [ <Cl_[|\b [ | fillia

Therefore, using the fact for

o d
il <27 Y 2% flly

i=—o0

we get

<=

B <CT Tl supz 4 (35 20 %0 (-2 ¥ L))

i=1 koeZ k=—o0 j=—o0
koA & kA %
<CI Tl sup2 ™ (3 297) 1l
=1 koeZ k=—0o0 !

gCHHbiII*HfHMKZ:Q(V)
i=1
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An argument similar to the estimate for E;, and note that when x € A,y € A; and
j>k+2, |y| ~|x—y|. For x € A, via the mean-value theorem of differentials gives

1 1 | x|
—_— < . )
5E Ty <Croyp @2)

We thus obtain m
E, < CHHbiH* HfHMKg;f,\(u)'
i=1

Combining the estimate above for E; and E;, we complete the proof of Theorem 2.1. O

The result of Theorem 2.1 for A =0 is also new on homogeneous Herz spaces K?;’P( 1.
Furthermore, when « =A =0 and p=¢q in Theorem 2.1 we can obtain the following corol-
lary.

Corollary 2.1. Let 1 <g<oco. If M in (1.4) is bounded on L?(u) when K(x,y) satisfies (1.2)
and (1.6), then for any positive integer m and b; € RBMO(p) (1 <i<m), the multilinear
commutator M; in (1.5) is bounded on L(u).

Remark 2.1. The result above is also new for any b; € Oscexprri (1) C RBMO(p), where
1<ri<ocandi=1,2,---,m.
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