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Abstract. Let L be the infinitesimal generator of an analytic semigroup on L2(Rn) with
Gaussian kernel bound, and let L−α/2 be the fractional integrals of L for 0< α<n. In
this paper, we will obtain some boundedness properties of commutators

[
b,L−α/2

]

on weighted Morrey spaces Lp,κ(w) when the symbol b belongs to BMO(Rn) or the
homogeneous Lipschitz space.
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1 Introduction

Suppose that L is the infinitesimal generator of an analytic semigroup {e−tL}t>0 on L2(Rn)
with a kernel pt(x,y) satisfying a Gaussian upper bound; that is, there exist positive con-
stants C and A such that for all x, y∈Rn and all t>0, we have

|pt(x,y)|≤
C

tn/2
e−A

|x−y|2

t . (1.1)

Throughout this paper, we assume that the semigroup {e−tL}t>0 has a kernel satisfying
(1.1). This property is satisfied by a large class of differential operators, as is seen in [7].

For any 0<α<n, the fractional integral L−α/2 associated to the operator L is defined
by

L−α/2 f (x)=
1

Γ(α/2)

∫ ∞

0
e−tL( f )(x)tα/2−1dt. (1.2)
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Note that if L=−∆ is the Laplacian on Rn, then L−α/2 is the classical fractional integral
operator Iα, which is given by (see [20])

Iα f (x)=
Γ( n−α

2 )

2απ
n
2 Γ( α

2 )

∫

Rn

f (y)

|x−y|n−α
dy.

Let b be a locally integrable function on Rn. The commutator of b and L−α/2 is defined
as follows

[
b,L−α/2

]
( f )(x)=b(x)L−α/2( f )(x)−L−α/2(b f )(x). (1.3)

The first result on the theory of commutators is obtained by Coifman, Rochberg and
Weiss in [3]. Since then, many authors have been interested in studying this theory. When
0<α<n, 1< p<n/α and 1/q=1/p−α/n, Chanillo [2] proved that the commutator [b, Iα]
is bounded from Lp(Rn) to Lq(Rn) whenever b∈BMO(Rn). Paluszyński [18] showed that
b∈ Λ̇β(R

n) (homogeneous Lipschitz space) if and only if [b, Iα] is bounded from Lp(Rn)
to Ls(Rn), where 0<β<1, 1< p<n/(α+β) and 1/s=1/p−(α+β)/n. For the weighted
case, Segovia and Torrea [19] proved that when b∈BMO(Rn) and w∈Ap,q (Muckenhoupt
weight class), [b, Iα] is bounded from Lp(wp) to Lq(wq).

In 2004, by using a new sharp maximal function introduced in [14], Duong and Yan [7]
extended the result of [2] from (−∆) to the more general operator L defined above. More
precisely, they showed that

Theorem 1.1. Let 0< α < n, 1< p < n/α and 1/q = 1/p−α/n. If b ∈ BMO(Rn), then the
commutator

[
b,L−α/2

]
is bounded from Lp(Rn) to Lq(Rn).

In 2008, Auscher and Martell [1] considered the weighted case and obtained the fol-
lowing result (see also [4]).

Theorem 1.2. Let 0<α<n, 1<p<n/α, 1/q=1/p−α/n and w∈Ap,q. If b∈BMO(Rn), then

the commutator
[
b,L−α/2

]
is bounded from Lp(wp) to Lq(wq).

On the other hand, in 2009, Komori and Shirai [13] first introduced the weighted Mor-
rey spaces Lp,κ(w) which could be viewed as an extension of weighted Lebesgue spaces,
and investigated the boundedness of the Hardy-Littlewood maximal operator, singular
integral operator and fractional integral operator on these weighted spaces. Moreover,
they also proved the following theorem.

Theorem 1.3. Let 0 < α < n, 1 < p < n/α, 1/q = 1/p−α/n, 0 < κ < p/q and w ∈ Ap,q. If

b∈BMO(Rn), then the commutator [b, Iα] is bounded from Lp,κ(wp,wq) to Lq,κq/p(wq).

The purpose of this paper is to study the boundedness of
[
b,L−α/2

]
on the weighted

Morrey spaces Lp,κ(w) when b∈BMO(Rn) or b∈Λ̇β(R
n). Our main results are formulated

as follows.
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Theorem 1.4. Let 0<α<n, 1< p<n/α, 1/q=1/p−α/n, 0<κ< p/q and w∈Ap,q. Suppose

that b∈BMO(Rn), then the commutator
[
b,L−α/2

]
is bounded from Lp,κ(wp,wq) to Lq,κq/p(wq).

Theorem 1.5. Let 0 < β < 1, 0 < α+β < n, 1 < p < n/(α+β), 1/s = 1/p−(α+β)/n and
w∈Ap,s. Suppose that b∈ Λ̇β(R

n) and 0<κ< p/s, then the commutator
[
b,L−α/2

]
is bounded

from Lp,κ(wp,ws) to Ls,κs/p(ws).

Theorem 1.6. Let 0 < β < 1, 0 < α+β < n, 1/s = 1−(α+β)/n and w ∈ A1,s. Suppose that
b ∈ Λ̇β(R

n) and 0 < κ < 1/s, then the commutator
[
b,L−α/2

]
is bounded from L1,κ(w,ws) to

WLs,κs(ws).

Theorem 1.7. Let 0 < β < 1, 0 < α+β < n, 1 < p < n/(α+β), 1/s = 1/p−(α+β)/n and
w∈Ap,s. Suppose that b∈Λ̇β(R

n) and κ=p/s, then the commutator
[
b,L−α/2

]
is bounded from

Lp,κ(wp,ws) to BMOL.

2 Notations and definitions

First let us recall some standard definitions and notations. The classical Ap weight theory
is first introduced by Muckenhoupt in the study of weighted Lp boundedness of Hardy-
Littlewood maximal functions in [16]. Let w be a nonnegative, locally integrable function
defined on Rn, B=B(x0,rB) denotes the ball with the center x0 and radius rB. Given a ball
B and λ> 0, λB denotes the ball with the same center as B whose radius is λ times that
of B, we also denote the Lebesgue measure of B by |B| and the weighted measure of B by
w(B), where w(B)=

∫
B w(x)dx. We say that w∈Ap, 1< p<∞, if

( 1

|B|

∫

B
w(x)dx

)( 1

|B|

∫

B
w(x)−1/(p−1)dx

)p−1
≤C, for every ball B⊆Rn,

where C is a positive constant independent of B.

For the case p=1, w∈A1, if

1

|B|

∫

B
w(x)dx≤C ·ess inf

x∈B
w(x), for every ball B⊆Rn.

For the case p=∞, w∈A∞ if it satisfies the Ap condition for some 1< p<∞.

We also need another weight class Ap,q introduced by Muckenhoupt and Wheeden
in [17]. A weight function w belongs to Ap,q for 1< p< q<∞ if there exists a constant
C>0 such that

( 1

|B|

∫

B
w(x)qdx

)1/q( 1

|B|

∫

B
w(x)−p′dx

)1/p′

≤C, for every ball B⊆Rn,

where p′ denotes the conjugate exponent of p>1; that is, 1/p+1/p′=1.
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When p= 1, w is in the class A1,q with 1< q<∞ if there exists a constant C> 0 such
that

( 1

|B|

∫

B
w(x)qdx

)1/q
(

ess sup
x∈B

1

w(x)

)
≤C, for every ball B⊆Rn.

A weight function w is said to belong to the reverse Hölder class RHr if there exist
two constants r>1 and C>0 such that the following reverse Hölder inequality holds

( 1

|B|

∫

B
w(x)rdx

)1/r
≤C

( 1

|B|

∫

B
w(x)dx

)
, for every ball B⊆Rn.

We give the following results that will be used in the sequel.

Lemma 2.1. (see [10]) Let w ∈ Ap with p ≥ 1. Then for any ball B there exists an absolute
constant C>0 such that

w(2B)≤Cw(B).

In general, for any λ>1, we have

w(λB)≤C ·λnpw(B),

where C does not depend on B nor on λ.

Lemma 2.2. (see [11]) Let w∈RHr with r>1. Then there exists a constant C>0 such that

w(E)

w(B)
≤C

( |E|
|B|

)(r−1)/r

for any measurable subset E of a ball B.

Next we shall give the definitions of some function spaces. A locally integrable func-
tion b is said to be in BMO(Rn) if

‖b‖∗=sup
B

1

|B|

∫

B
|b(x)−bB|dx<∞,

where bB = |B|−1∫
B

b(y)dy and the supremum is taken over all balls B in Rn.

Theorem 2.1. (see [6, 12]) Assume that b∈BMO(Rn). Then for any 1≤ p<∞, we have

sup
B

(
1

|B|

∫

B

∣∣b(x)−bB

∣∣p
dx

)1/p

≤C‖b‖∗.
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Let 0<β≤1. The homogeneous Lipschitz space Λ̇β(R
n) is defined by

Λ̇β(R
n)=

{
b :‖b‖Λ̇β

= sup
x,h∈Rn,h 6=0

|b(x+h)−b(x)|

|h|β
<∞

}
.

Given a Muckenhoupt’s weight function w on Rn, for 1≤ p<∞ we denote by Lp(w)
the space of all functions f satisfying

‖ f‖Lp(w)=

(∫

Rn
| f (x)|pw(x)dx

)1/p

<∞.

When p=∞, L∞(w) will be taken to mean L∞(Rn), and

‖ f‖L∞(w)=‖ f‖L∞ =ess sup
x∈Rn

| f (x)|.

In [13], Komori and Shirai first defined the weighted Morrey spaces and obtained
some known results relevant to this paper. For the boundedness of some other operators
on these spaces, we refer the reader to [21–24].

Definition 2.1. (see [13]) Let 1≤ p<∞, 0< κ < 1 and w be a weight function. Then the
weighted Morrey space is defined by

Lp,κ(w)=
{

f ∈L
p
loc(w) :‖ f‖Lp,κ(w)<∞

}
,

where

‖ f‖Lp,κ(w)=sup
B

( 1

w(B)κ

∫

B
| f (x)|pw(x)dx

)1/p

and the supremum is taken over all balls B in Rn.

We also denote by WLp,κ(w) the weighted weak Morrey space of all locally integrable
functions satisfying

‖ f‖WLp,κ(w)=sup
B

sup
t>0

1

w(B)κ/p
t·w

({
x∈B : | f (x)|> t

})1/p
<∞.

In order to deal with the fractional order case, we need to consider the weighted
Morrey space with two weights.

Definition 2.2. (see [13]) Let 1≤ p<∞ and 0< κ<1. Then for two weights u and v, the
weighted Morrey space is defined by

Lp,κ(u,v)=
{

f ∈L
p
loc(u) :‖ f‖Lp,κ(u,v)<∞

}
,

where

‖ f‖Lp,κ(u,v)=sup
B

( 1

v(B)κ

∫

B
| f (x)|pu(x)dx

)1/p
.
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Theorem 2.2. (see [13]) Let 0<α<n, 1< p<n/α, 1/q=1/p−α/n and w∈ Ap,q. Then the

operator Iα is bounded from Lp,κ(wp,wq) to Lq,κq/p(wq).

Theorem 2.3. (see [13]) Let p=1, 0<α<n, 1/q=1−α/n and w∈A1,q. Then the operator Iα

is bounded from L1,κ(w,wq) to WLq,κq(wq).

We are going to conclude this section by defining the function spaces BMOL. Duong
and Yan [8] introduced and developed a new function space BMOL associated with an
operator L. Assume that the kernel pt(x,y) of {e−tL}t>0 satisfies an upper bound

|pt(x,y)|≤ t−n/2g
( |x−y|

t1/2

)
,

for all x,y∈Rn and all t>0. Here g is a positive, bounded, decreasing function satisfying

lim
r→∞

rn+ǫg(r)=0, for some ǫ>0. (2.1)

Let ǫ be the constant in (2.1) and 0< β< ǫ. A function f ∈ L
p
loc(R

n) is said to be of type
(p,β) if f satisfies

(∫

Rn

| f (x)|p

(1+|x|)n+β
dx

)1/p

≤ c<∞. (2.2)

We denote by M(p,β) the collection of all functions of type (p,β). If f ∈M(p,β), then the
norm of f in M(p,β) is defined by

‖ f‖M(p,β)
= inf

{
c≥0 : (2.2) holds

}
.

It is easy to see that M(p,β) is a Banach space under the norm ‖ f‖M(p,β)
<∞. We set

Mp =
⋃

β:0<β<ǫ

M(p,β).

For any f ∈Lp(Rn), 1≤ p<∞, Martell [14] defined a kind of sharp maximal function M#
L f

associated with the semigroup {e−tL}t>0 by the expression

M#
L f (x)=sup

x∈B

1

|B|

∫

B

∣∣ f (y)−e−tB L f (y)
∣∣dy,

where tB = r2
B and rB is the radius of the ball B. Let f ∈Mp with 1< p<∞, then we say

that f ∈ BMOL if the sharp maximal function M#
L f ∈ L∞(Rn), and we define ‖ f‖BMOL

=∥∥M#
L f

∥∥
L∞ . For further details about the properties and applications of BMOL spaces, we

refer the reader to [5, 8, 9].
Throughout this article, we will use C to denote a positive constant, which is indepen-

dent of the main parameters and not necessarily the same at each occurrence. By A∼B,
we mean that there exists a constant C>1 such that

1

C
≤

A

B
≤C.

Moreover, we denote the conjugate exponent of q>1 by q′=q/(q−1).
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3 Proofs of Theorems 1.4, 1.5 and 1.6

Proof. Fix a ball B=B(x0,rB)⊆Rn and decompose f = f1+ f2, where f1= f χ2B , χ2B denotes

the characteristic function of 2B. Since
[
b,L−α/2

]
is a linear operator, we have

1

wq(B)κ/p

(∫

B

∣∣[b,L−α/2
]

f (x)
∣∣qwq(x)dx

)1/q

≤
1

wq(B)κ/p

(∫

B

∣∣[b,L−α/2
]

f1(x)
∣∣qwq(x)dx

)1/q

+
1

wq(B)κ/p

(∫

B

∣∣[b,L−α/2
]

f2(x)
∣∣qwq(x)dx

)1/q

=I1+ I2.

For the term I1, since w∈ Ap,q, then we get wq ∈ A1+q/p′(see [17]). Hence, it follows from
Theorem 1.2 and Lemma 2.1 that

I1≤
1

wq(B)κ/p

∥∥[b,L−α/2
]

f1

∥∥
Lq(wq)

≤C‖b‖∗ ·
1

wq(B)κ/p
‖ f1‖Lp(wp)

=C‖b‖∗ ·
1

wq(B)κ/p

(∫

2B
| f (x)|pwp(x)dx

)1/p

≤C‖b‖∗‖ f‖Lp,κ(wp,wq) ·
wq(2B)κ/p

wq(B)κ/p

≤C‖b‖∗‖ f‖Lp,κ(wp,wq). (3.1)

We now turn to deal with the term I2. Denote the kernel of L−α/2 by Kα(x,y), then for any
x∈B, we write

∣∣[b,L−α/2
]

f2(x)
∣∣=

∣∣∣∣
∫

(2B)c

[
b(x)−b(y)

]
Kα(x,y) f (y)dy

∣∣∣∣

≤
∣∣b(x)−bB

∣∣·
∫

(2B)c
|Kα(x,y)|| f (y)|dy+

∫

(2B)c
|b(y)−bB||Kα(x,y)|| f (y)|dy

=I+II.

Since the kernel of e−tL is pt(x,y), then it follows immediately from (1.2) that (see [15])

Kα(x,y)=
1

Γ(α/2)

∫ ∞

0
pt(x,y)tα/2−1dt. (3.2)

Thus, by using the Gaussian upper bound (1.1) and the expression (3.2), we can deduce
(see [7] and [15])

|Kα(x,y)|≤
1

Γ(α/2)

∫ ∞

0
|pt(x,y)|tα/2−1dt≤C

∫ ∞

0
e−A

|x−y|2

t tα/2−n/2−1dt

≤C ·
1

|x−y|n−α
. (3.3)

So we have

I≤
∣∣b(x)−bB

∣∣·
∞

∑
k=1

1

|2k+1B|1−α/n

∫

2k+1B
| f (y)|dy.
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By using Hölder’s inequality and the fact that w∈Ap,q, we can get

∫

2k+1B
| f (y)|dy≤

(∫

2k+1B
| f (y)|pwp(y)dy

)1/p(∫

2k+1B
w−p′(y)dy

)1/p′

≤C‖ f‖Lp,κ(wp,wq)

∣∣2k+1B
∣∣1/q+1/p′

·
1

wq(2k+1B)1/q−κ/p

=C‖ f‖Lp,κ(wp,wq)

∣∣2k+1B
∣∣1−α/n

·
1

wq(2k+1B)1/q−κ/p
. (3.4)

Hence

1

wq(B)κ/p

(∫

B
Iqwq(x)dx

)1/q

≤C‖ f‖Lp,κ(wp,wq)
1

wq(B)κ/p

∞

∑
k=1

1

wq(2k+1B)1/q−κ/p
·

(∫

B
|b(x)−bB|

qwq(x)dx

)1/q

=C‖ f‖Lp,κ(wp,wq)

∞

∑
k=1

wq(B)1/q−κ/p

wq(2k+1B)1/q−κ/p
·

(
1

wq(B)

∫

B
|b(x)−bB|

qwq(x)dx

)1/q

.

We now claim that for any 1<q<∞ and v∈A∞, the following inequality holds

(
1

v(B)

∫

B
|b(x)−bB|

qv(x)dx

)1/q

≤C‖b‖∗. (3.5)

In fact, since v ∈ A∞, then we know that there exists r > 1 such that v ∈ RHr. Thus, by
Hölder’s inequality and Theorem 2.1, we obtain

(
1

v(B)

∫

B
|b(x)−bB|

qv(x)dx

)1/q

≤
1

v(B)1/q

(∫

B
|b(x)−bB|

qr′dx

)1/(qr′)(∫

B
v(x)rdx

)1/(qr)

≤C

(
1

|B|

∫

B
|b(x)−bB|

qr′dx

)1/(qr′)

≤C‖b‖∗,

which is our desired result. Note that wq ∈ A1+q/p′ ⊂ A∞. In addition, we have wq ∈RHr

with r>1. Thus, by Lemma 2.2, we get

wq(B)

wq(2k+1B)
≤C

( |B|

|2k+1B|

)(r−1)/r
. (3.6)

Consequently

1

wq(B)κ/p

(∫

B
Iqwq(x)dx

)1/q

≤C‖b‖∗‖ f‖Lp,κ(wp,wq)

∞

∑
k=1

( 1

2kn

)(1−1/r)(1/q−κ/p)

≤C‖b‖∗‖ f‖Lp,κ(wp,wq), (3.7)
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where the last series is convergent since r>1 and 0<κ< p/q. On the other hand

II≤
∞

∑
k=1

∫

2k+1B\2kB
|b(y)−bB||Kα(x,y)|| f (y)|dy

≤
∞

∑
k=1

∫

2k+1B\2kB

∣∣b(y)−b2k+1B

∣∣|Kα(x,y)|| f (y)|dy

+
∞

∑
k=1

∫

2k+1B\2kB

∣∣b2k+1B−bB

∣∣|Kα(x,y)|| f (y)|dy

=III+IV.

To estimate III and IV, we observe that when x∈B, y∈(2B)c, then |y−x|∼|y−x0 |. Hence,
it follows directly from the kernel estimate (3.3) that

III≤C
∞

∑
k=1

1

|2k+1B|1−α/n

∫

2k+1B

∣∣b(y)−b2k+1B

∣∣| f (y)|dy.

An application of Hölder’s inequality yields
∫

2k+1B

∣∣b(y)−b2k+1B

∣∣| f (y)|dy

≤

(∫

2k+1B

∣∣b(y)−b2k+1B

∣∣p′
w−p′(y)dy

)1/p′(∫

2k+1B
| f (y)|pwp(y)dy

)1/p

≤‖ f‖Lp,κ(wp,wq) ·w
q
(
2k+1B

)κ/p
(∫

2k+1B

∣∣b(y)−b2k+1B

∣∣p′
w−p′(y)dy

)1/p′

.

We set v(y)=w−p′(y), then we have v∈ A1+p′/q ⊂ A∞ because w∈ Ap,q (see [17]). By the
previous estimate (3.5) and the fact that w∈Ap,q, we obtain

(∫

2k+1B

∣∣b(y)−b2k+1B

∣∣p′
v(y)dy

)1/p′

≤C‖b‖∗v
(
2k+1B

)1/p′

≤C‖b‖∗ ·
|2k+1B|1/q+1/p′

wq(2k+1B)1/q
. (3.8)

Note that 1/q+1/p′=1−α/n. Hence, by (3.6) and (3.8), we have

1

wq(B)κ/p

(∫

B
IIIqwq(x)dx

)1/q

≤C‖b‖∗‖ f‖Lp,κ(wp,wq)

∞

∑
k=1

wq(B)1/q−κ/p

wq(2k+1B)1/q−κ/p

≤C‖b‖∗‖ f‖Lp,κ(wp,wq). (3.9)
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Since b∈BMO(Rn), then a simple calculation gives

∣∣b2k+1B−bB

∣∣≤C ·k‖b‖∗ .

Thus, by the estimates (3.3) and (3.4), we get

IV≤C‖b‖∗
∞

∑
k=1

k·
1

|2k+1B|1−α/n

∫

2k+1B
| f (y)|dy

≤C‖b‖∗‖ f‖Lp,κ(wp,wq)

∞

∑
k=1

k·
1

wq(2k+1B)1/q−κ/p
.

Therefore

1

wq(B)κ/p

(∫

B
IVqwq(x)dx

)1/q

≤C‖b‖∗‖ f‖Lp,κ(wp,wq)

∞

∑
k=1

k·
wq(B)1/q−κ/p

wq(2k+1B)1/q−κ/p

≤C‖b‖∗‖ f‖Lp,κ(wp,wq)

∞

∑
k=1

k

2knδ

≤C‖b‖∗‖ f‖Lp,κ(wp,wq), (3.10)

where wq∈RHr and δ=(1−1/r)(1/q−κ/p). Summarizing the estimates (3.9) and (3.10),
we thus obtain

1

wq(B)κ/p

(∫

B
IIqwq(x)dx

)1/q

≤C‖b‖∗‖ f‖Lp,κ(wp,wq). (3.11)

Combining the inequalities (3.1) and (3.7) with the above inequality (3.11) and taking the
supremum over all balls B⊆Rn, we complete the proof of Theorem 1.4.

Obviously, by (3.3) we have the following pointwise inequality

∣∣L−α/2( f )(x)
∣∣≤C · Iα(| f |)(x) for all x∈Rn.

Furthermore, by the definition of b∈ Λ̇β(R
n) and (3.3), we deduce

∣∣[b,L−α/2
]
( f )(x)

∣∣≤
∫

Rn
|b(x)−b(y)||Kα(x,y)|| f (y)|dy

≤C‖b‖Λ̇β

∫

Rn

| f (y)|

|x−y|n−α−β
dy

≤C‖b‖Λ̇β
Iα+β(| f |)(x). (3.12)

Hence, Theorems 1.5 and 1.6 follows immediately from Theorems 2.2 and 2.3.
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4 Proof of Theorem 1.7

Proof. For any given x∈Rn, fix a ball B=B(x0,rB) containing x. We decompose f = f1+ f2,
where f1= f χ2B, and set tB = r2

B. Then we write

1

|B|

∫

B

∣∣∣
[
b,L−α/2

]
f (y)−e−tB L

[
b,L−α/2

]
f (y)

∣∣∣dy

≤
1

|B|

∫

B

∣∣∣
[
b,L−α/2

]
f1(y)

∣∣∣dy+
1

|B|

∫

B

∣∣∣e−tB L
[
b,L−α/2

]
f1(y)

∣∣∣dy

+
1

|B|

∫

B

∣∣∣
[
b,L−α/2

]
f2(y)−e−tB L

[
b,L−α/2

]
f2(y)

∣∣∣dy

=J1+ J2+ J3.

We are now going to estimate each term respectively. For the first term J1, since w∈ Ap,s,
then the operator Iα+β is bounded from Lp(wp) into Ls(ws) (see [17]). We also know that
ws∈A1+s/p′⊂As. Applying Hölder’s inequality, the inequality (3.12), Lemma 2.1 and the
fact that ws∈As, we obtain

J1≤
1

|B|

(∫

B

∣∣[b,L−α/2
]

f1(y)
∣∣sws(y)dy

)1/s(∫

B
w−s′(y)dy

)1/s′

≤C‖b‖∗ ·
1

|B|

(∫

2B
| f (y)|pwp(y)dy

)1/p(∫

B
w−s′(y)dy

)1/s′

≤C‖b‖∗‖ f‖Lp,κ(wp,ws) ·
ws(2B)κ/p

ws(B)1/s

≤C‖b‖∗‖ f‖Lp,κ(wp,ws),

where the last inequality is due to our assumption κ = p/s. For the term J2, since the
kernel of e−tB L is ptB

(y,z), then we may write

J2≤
1

|B|

∫

B

∫

Rn

∣∣ptB(y,z)
∣∣∣∣[b,L−α/2

]
f1(z)

∣∣dzdy

≤
1

|B|

∫

B

∫

2B

∣∣ptB(y,z)
∣∣∣∣[b,L−α/2

]
f1(z)

∣∣dzdy

+
∞

∑
k=1

1

|B|

∫

B

∫

2k+1B\2kB

∣∣ptB(y,z)
∣∣∣∣[b,L−α/2

]
f1(z)

∣∣dzdy

=J′2+ J′′2 .

For any y∈B and z∈2B, by (1.1), we have
∣∣ptB

(y,z)
∣∣≤C ·(tB)

−n/2. Thus

J′2≤C ·
1

|B|

∫

B

∫

2B

1

(tB)n/2

∣∣[b,L−α/2
]

f1(z)
∣∣dzdy

≤C ·
1

|2B|

∫

2B

∣∣[b,L−α/2
]

f1(z)
∣∣dz.
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Using the same arguments as in the estimate of J1, we can also deduce

J′2≤C‖b‖∗‖ f‖Lp,κ(wp,ws).

As before, we note that for any y∈B, z∈(2B)c, then |z−y|∼|z−x0|. In this case, by using
(1.1) again, we get

∣∣ptB
(y,z)

∣∣≤C ·
(tB)

n/2

|y−z|2n
.

Hence

J′′2 ≤C
∞

∑
k=1

1

|B|

∫

B

∫

2k+1B\2kB

(tB)
n/2

|y−z|2n

∣∣[b,L−α/2
]

f1(z)
∣∣dzdy

≤C
∞

∑
k=1

1

2kn

1

|2k+1B|

∫

2k+1B

∣∣[b,L−α/2
]

f1(z)
∣∣dz.

Following along the same lines as before, we can also show that

∫

2k+1B

∣∣[b,L−α/2
]

f1(z)
∣∣dz≤C

(∫

2B
| f (z)|pwp(z)dz

)1/p(∫

2k+1B
w−s′(z)dz

)1/s′

≤C‖b‖∗‖ f‖Lp,κ(wp,ws)
ws(2B)κ/p

ws(2k+1B)1/s
·
∣∣2k+1B

∣∣.

Consequently

J′′2 ≤C‖b‖∗‖ f‖Lp,κ(wp,ws)

∞

∑
k=1

1

2kn
·
( ws(2B)

ws(2k+1B)

)1/s
. (4.1)

Observe that ws∈A1+s/p′ , then there exists a number r∗>1 such that ws∈RHr∗ . Moreover,
by using Lemma 2.2 again, we get

ws(2B)

ws(2k+1B)
≤C

( |2B|

|2k+1B|

)(r∗−1)/r∗

. (4.2)

Substituting the above inequality (4.2) into (4.1), we thus obtain

J′′2 ≤C‖b‖∗‖ f‖Lp,κ(wp,ws)

∞

∑
k=1

( 1

2kn

)1+(r∗−1)/(sr∗)

≤C‖b‖∗‖ f‖Lp,κ(wp,ws).

Summarizing the estimates of J′2 and J′′2 derived above, we can get

J2≤C‖b‖∗‖ f‖Lp,κ(wp,ws).

In order to estimate the last term J3, we need the following result given in [5] (see
also [7]).
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Lemma 4.1. For 0 < α < n, the difference operator (I−e−tL)L−α/2 has an associated kernel
K̃α,t(y,z) which satisfies the following estimate

∣∣K̃α,t(y,z)
∣∣≤ C

|y−z|n−α

t

|y−z|2
. (4.3)

Hence, by the above kernel estimate (4.3) and the definition of b∈ Λ̇β(R
n), we have

J3=
1

|B|

∫

B

∣∣∣
(

I−e−tB L
)

L−α/2
(
[b(y)−b(·)] f2

)
(y)

∣∣∣dy

≤
1

|B|

∫

B

∫

(2B)c

∣∣K̃α,tB
(y,z)

∣∣|b(y)−b(z)|| f (z)|dz

≤C‖b‖Λ̇β
·

1

|B|

∫

B

∫

(2B)c

1

|y−z|n−α−β

r2
B

|y−z|2
| f (z)|dzdy

≤C‖b‖Λ̇β

∞

∑
k=1

1

22k

1

|2k+1B|1−(α+β)/n

∫

2k+1B
| f (z)|dz.

Since w∈Ap,s, then by using the estimate (3.4) and the fact that κ= p/s, we obtain

∫

2k+1B
| f (z)|dz≤C‖ f‖Lp,κ(wp,ws)

∣∣2k+1B
∣∣1/s+1/p′

·
1

ws(2k+1B)1/s−κ/p

=C‖ f‖Lp,κ(wp,ws)

∣∣2k+1B
∣∣1−(α+β)/n

.

Therefore

J3≤C‖b‖Λ̇β
‖ f‖Lp,κ(wp,ws)

∞

∑
k=1

1

22k

≤C‖b‖Λ̇β
‖ f‖Lp,κ(wp,ws).

Combining the above estimates for J1, J2 and J3 and taking the supremum over all balls
B⊆Rn, we finally conclude the proof of Theorem 1.7.
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