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Abstract. The aim of this work is to generalize Szdsz-Mirakian operator in the sense
of Stancu-Durrmeyer operators. We obtain approximation properties of these opera-
tors. Here we study asymptotic as well as rate of convergence results in simultaneous
approximation for these modified operators.
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1 Introduction

Let « and 8 be two non-negative parameters satisfying the condition 0 <a <. For any
nonnegative integer 1,

FeC[0,00)—SEP) £,

the Stancu type Szdsz-Mirakian-Durrmeyer operators are defined by

(1.1)

)
0

Sr(la;:ﬁ) )= y n nk+r nita dt,
(5 =nLs £ [swen(f (55 )

n+p

where
o (nx)k
Sn,k(x) =e k'
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For a = =0 these operators become the well known Szdsz-Mirakian-Durrmeyer op-
erators

SWO(f, ) =Sul(f,2)

introduced by Mazhar and Totik [3]. In [1] the author established some direct results in
simultaneous approximation for this special case. Gupta et al. [2] estimated the rate of
convergence for functions having derivatives of bounded variation for this special case
a=pB=r=0. Also for this special case [4] estimated the rate of convergence for the Bézier
variant of Szdsz-Mirakian-Durrmeyer operators.

The purpose of this paper is to study approximation properties of the Stancu type
Szasz-Mirakian-Durrmeyer operators. We give the rate of convergence and Voronovskaya
type asymptotic result for the same operators.

2 Basic results

In this section we establish a recurrence formula for the moments.
For simultaneous approximation, we need the following form of the operators (1.1)

@B f oy T ” nite
Sy <f’X)_n,§)Sn'k<x)/0 Sﬂfk”(t)f(n-l-ﬁ)dt'

Lemma 2.1. For n,me NU{0}, 0<a <B, let us consider

o, Q, m = o0 t+ m
pi () =S (=)™ 2) =n L sux(®) [ s () (S =) "t
k=0

n+p
we get
1_
wifw=1 W=
(5<) B2x24+2(n—af—B—Pr)x+(a+r+1)(a+r+2)—
‘unZV (1’l+‘5) 4
and

(4B E) | () =x i ()] + (mrat r+1— ) i) (x)
(2(n+/3x “)y(“’ﬁ) (x). (2.1)

nm—1,r

Proof. By simple calculation we can easily obtain

xs,n,k<x) = <k_ nx)sn,k<x)'
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We have from the definition of y,ﬁ"‘,f ) (x)

[.ui(’lanf)z _nzxsnk /Snk+r()(nt+lx x>mdt

n+p
© nt+u m—1
nmxkg‘ésn/k(x)/o sn/kﬂ(t)( y x) dt

3 * nt+ua m (a,8)
- k= (= —x) dt— .
I’Zkgosn,k(x)/o ( TIX)Sn,k+r( )( n+ﬁ X) mxyn,m_l,r(x)

x|l o)) +mpug ()]

d nt+1x m ? e ®© nt+a m
= ts' B ———x) dt /t t dt
1L sn(x) |t 0 g ) e Lsns(x) | snieer(8) (55 =)

ad o0 nt+u m
—n(nx+r) an'k(x)/o sn,kH(t)(—fx) dt.
k=0

n+pB
Putting
= (50 (g )+ ()
we have

iy o))+ mpf) ()]

=1 L) [ it (F) ()
() S ) [0 (5 )"

£ oua) [ sunan) () (g - ) (G )
—(nxt )P, ()

— ("EBY om0 ()~ { U bt 0 ()
(Y o)) SRR ) () ) )

—— et - { SV ) (B, (0

—{a— () il (x) — (nx+r) i (x).
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Hence
(B 1,0 (%) =i ()] - (a1 = B (%)
—|—m{2 n:f_; a};blfff)l,r(x)'
This completes the proof. O

Remark 2.1. From Lemma 2.1, for n> %+ (a+7)?+3r+2a+2 and any x € (0,00), we have

(x+1)2
n+p

Vflzﬁr)( )<

Remark 2.2. Applying Cauchy-Schwarz inequality and Remark 2.1, for n> g%+ (a+r)2+
3r+2a+2, we have
x+1

1
S (1t =x1,0) < [y (0] < ==

1

Lemma 2.2. Suppose that x € (0,00), then for n >1?+3r+2, we have

o y (x+1)2
= n nk+r(f dt< ———, 0<y<x,
w9) =1 Lsus(¥) [ om0t L E y<x

& o0 (x+1)?
1= (x2) =1 L) [ om0t 0

x<z<oo.

Proof. The result follows directly from Remark 2.1 in the case a = =0, as for the first
inequality, we have

= y S ((t=x)%%) _ (x+1)?
= t)dt=— <
) <L ona () | o) (y—x2 " n(x—yP
Similarly, we can prove the second inequality. O

Lemma 2.3. Let f be s times differentiable on [0,00) such that f=) (£)=0O(t7), as t — oo where
q is a positive integer. Then for any r,s € N° and n>max{q,r+s+1}, we have

A0 = () silory, D=1

Proof. First, by simple computation, we have

D[si(x)]=n[syx—1(x) =5, k(x)]. (2.2)
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The identity (2.2) is true even for the case k=0, as we observe that for » <0, s, ,(x) =0.
We shall prove the result by using the principle of mathematical induction. Using (2.2),
we have

D[S,Sf;ﬁ)(f,x)] :nléDsn'k(X) /Ooosn,ker(t)f(Zt:g)dt

> ®© nt+ua
:nlg)n[sn,k_l(x)—sn,k(x)]/o sn,k+r(t)f< )dt

n+p
angsn,k(x) /oc>o [Sniir1(t) =Supir ()] f ( Zt:g ) dt.

Using (2.2), and integrating by parts we have
Dsnarﬁ (f,x)= zzsnk / _D[Sn,k+r+1(t)]f<”t+“>dt

n n+p
n2 = o nt+uo
=g Loni(0) [ sk 0F0 (3 Y

_n:l_ﬁsnr+l(Dfx)

which means that the identity is satisfied for s =1. Let us suppose that the result holds

fors=Ilie.,
D' (f,x) = (niﬁ) S\ (D'f,x)
lOO

=n(5r5) Lot | “snara(OD'f (g )

Now,

pitigle (x‘B (f,x) n(nj—ﬁ) ZDSnk / S”'k“H(t)DIf(T::’g)dt
- (5) ,;0 suisr 110 =Sk or1(0)] [ snserss D (S5 )t
:n2<niﬁ)’isnk(x)/ow [Sn'k+r+l+1<f)—sn,k+y+1( )]Df(”t+"‘)
:n2<niﬁ)l,§)sn'k<x)/0w_D[Sn’H;HH( )]Df(nt-l-g)

Integrating by parts for the last integral, we get

«, n \+1 & nt+oa
Dl+15,(7,yﬁ)(f,X):n<n+ﬁ) Y sulx / Suktr+1+1(t)D le( n—l—ﬁ)
k=0
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Therefore,

n I+1
D”ls,(f/‘r’ﬁ)(f,x) = (@) S;gp,ér’i)Hl(Dlﬂf(x))‘

Thus the result is true for
s=I1+1,

hence by mathematical induction, the lemma is valid. O

3 Rate of converence
The class of absolutely continuous functions f defined on (0,00) is defined by B,(0,c0),
g >0 and satisfying:

Q) |f(t)|<C1t7,C1>0,

(ii) having a derivative f’ on the interval (0,c0) which coincides a.e. with a function of
bounded variation on every finite sub-interval of (0,00). It can be observed that for
all functions f € B;(0,00) possess for each ¢ >0 the representation

X
FE)=fe)+ [ pinat, x=c.
Cc
Theorem 3.1. Let f € B,(0,00), >0 and x € (0,00). Then for n sufficiently large, we have

sui(fx)— ()|
X 2 [Vn)x+x/k X x+x//n )2 ,
<ETDTY (M+2= V (F)e) + YD £ 00) — f(x)—xf ()]

n
k=1x—x/k x—x/\/n

x+1)2 X
A +0(r) +|f () T +%1/_r:2[3
afrel-pr

e RG]

where \/° f(x) denotes the total variation of f, on [a,b], and the auxiliary function fy is defined
by

nx

f ()= f/(x7)]

0, t=x,
f(H)—f(xh), x<t<oo.

ft)—f(x7), 0<t<x,
fx(t){

Proof. Using the identity

fl(u) :(f’)x(u)ﬁ—f/(xﬂ;f/(x) +f/<x+);f/(x)
[ - L O, ), 61

sgn(u—x)
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where
()= 1, u=x,
Xae\U) = 0, u#x.
Applying the mean value theorem, we get

i)~ f =51 ([ t £/ (w)du, ). (3.2)

Now, by using the above identity (3.1) in (3.2) and the fact that

t
Snf(/ Xx(u)du,x) =0,
X
after simple computation, we have

£ £ <] [ ([ et sslsusen

—i—/ / du) ank )Sujesr(t dt‘

Fe)+f () ) =f (x7)
- > ‘u%?@%% ; ‘w%@un“z

FEH ) g
=[Anr(f,x)+Bur(f,x)|+ 5 P,y (%)
1t (v—

f(x )2f<x >Mymﬁkx”1m. .

n2yr

+

Applying Remark 2.1 and Remark 2.2 to (3.3), we have
") —f ()] x41
Sz’ﬁ s - <|A s + B s + |f (
P2~ £ ()| <l A (f0) |+ B (£,3)] 2 Jnip

N ')+ f () atr+1—pBx
2 (n+B)

(3.4)

The estimation of the terms A, ,(f,x) and B, ,(f,x) will lead to proof of the theorem.



V. Gupta, N. Deo and X. M. Zeng / Anal. Theory Appl., 29 (2013), pp. 86-96 93

First,
A1) =| [ ([ st Essatsnean(ra

:‘/: /xt(f/ ) ank X)sp er(B)dt
+/ / d”)dt(l Ang(x, t))‘

<[ snst [ (f(t)—f(x))sn,w(t)dt\
+;f/(x+)|‘nlésn,k(x)/:sn,m(t)(t—x)dt\

| [T 200+ [ 1O~ A

Applying Remark 2.1 with « = =0, we have
|[Anr(f,%)]

%) o) x 00 o]
<1 Y50 [ snarenCar+ L Losusle) [ oneer -0
k=0

HIFO [0 sk Dl \dt+(””x) £~ fx) —xf ()|
2 [y ¥ i 0
TV (9+2= V(9. 65)
k=1 «x x

To estimate the integral n) ;> s, «(x) f;;sn,kJrr(t)Cl t24dt in (3.5) above, we proceed as fol-
lows:
Obviously t >2x implies that t <2(t—x) and it follows from Lemma 2.1, that

”an,k(x)/ Sn,k+r(t)t2th§22qan,k(x)/ Sujer(£) (E—x)2dt
k:O 2x 0
=22qﬂffz§)r( )=0(n"1), n—reo.

Applying Schwarz inequality and Remark 2.1 (¢ =$=0), the third term in right hand side
of (3.5) is estimated as follows:

00 (¢S]
() Y suk(x) [ s (8)—xlat
k=0 2x

nx

O 5 6 0) [ st = ) D
k=0
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Thus by Lemma 2.1 and Remark 2.1 (¢ = =0), we have

‘A”"(ff")‘SO(ﬂ‘q)+|f’<x+>|-(xI—j)2
+(1+1/x (1f (20) = f(x) =2f () [+ f(2)])
ﬂf’”‘k 2

Applying, Lemma 2.2 with y=x—x/+/n, and integrating by parts, we have
BurtF 0l =] [ [ (st hns ()
= [ et (< ( [+ [0l s
2 py X x X
<P PV gt [V

n ¢ X—

x 2y X X
S( Zl) /Oj\t/((f’)x)oc_l—t)zdwﬁx\/ ((f")x)-

Letu=x/(x—t), then we have

x+1)2 v\ x41)2 fVA X
el J,Zl) /y\/((f/)x)(x_ltzdt:( “)/1 V (1))

nx sy
Thus
| B (f,x)] < V() +—=V (f)x) (3.7)
nx e \/Ex—%

The required result is obtained by combining (3.4), (3.6) with (3.7).

As a consequence of Lemma 2.3, we have the following corollary:

Corollary 3.1. Let f*) € DB,(0,00), >0 and x € (0,00). Then for 1 sufficiently large, we
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have

\Dssﬁ‘,‘;ﬁkf,x)—f(s)(x)\

2[\/_]X+x/k X xhx/
L1V (00T Vo)

x—x/k x—=x/\/n
+%(\D5f(zx)—DSf(x)—xDS“f(x*)\+\Dsf<x>\)+0(n")
+(x+1) ’Ds+1f< )H-l\;ci‘Derlf( - DS+1f(x7)‘
#5107+ D e LB,

where \/? f(x) denotes the total variation of f, on [4,b], and f, is defined by

DSFLf(H) —Dsf(x7), 0<t<x,

DS+1fx(t){ 0, t=x,
DT (H) =D f(xh), x<t<oo.

4 Asymptotic formula

We consider the class L[0,00) of all measurable functions defined on [0,c0) such that
L[0,00):= {f:/ e~ " f(t)dt < co for some positive integer 1}.
0

It can be observed that this class is bigger than that of all integrable functions on [0,c0).
Further we consider

Ly[0,00):={f€L[0,00): f(t)=0O(e"), t— 00, a>0}.
We have the following asymptotic formula by using Lemma 2.1.

Theorem 4.1. Let f € L,[0,00) and suppose it is bounded on every finite subinterval of [0,00)
having a derivative of order r+2 at a point x € (0,00), then we have

tim (S ) (f,2) = £ ()] = (et r+1= ) FUD) () + £ ) ().

n—o0

The proof follows along the line of [1].
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