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Abstract. We characterize polynomial growth of cosine functions in terms of the resolvent

of its generator and give a necessary and sufficient condition for a cosine function with an

infinitesimal generator which is polynomially bounded.
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1 Introduction

It is well known that the semigroup theory is a useful tool to deal with the first order Cauchy

problems. As an important component of semigroup theory, cosine functions play a similar role

for the second order Cauchy problem. Since M.Sova introduces the concept of cosine function

in 1966, many mathematicians have studied in this field, and many valuable results have been

obtained (see [1-4]).

A classical problem in semigroup theory is to characterize the boundedness of a strongly

continuous semigroup. Recently,(see [5-6])bounded and polynomially bounded semigroups and

groups have been characterized by using only the first and the second power of resolvent of the

generator. In this paper we characterize the polynomial growth of cosine functions in terms of
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the resolvent of its generator and give a necessary and sufficient condition for a cosine function

with an infinitesimal generator which is polynomially bounded.

Definition 1.1. A strongly continuous family {T (t)}t≥0 is called a cosine function, if

{T (t)}t≥0 satisfies T (0) = I and 2T (S)T (t) = T (S+ T )+ T(S−T ).

Definition 1.2. Assume that A is closed,λ 2 ∈ ρ(A) and the resolvent of A satisfies

R(λ 2
,A) = λ−1

∫ b

a
e−λtT (t)dx

then A is called the generator of {T (t)}t≥0.

We denote by s0(A) := inf{a ∈ R : R(λ 2,A) that is bouned on {Reλ > a}} the pseudo-

spectral bound of A.

Definition 1.3. A strongly continuous family {T (t)}t≥0 is called polynomially bounded if

‖T (t)‖ ≤C(1+ td) for some constant C,d ≥ 0 and all t ≥ 0.

In this paper we assume the following conditions hold:

(1)

∫ ∞

−∞
‖(a+ is)R((a+ is)2

,A)x‖pds < ∞, for all x ∈ X ,

(2)

∫ ∞

−∞
‖(a+ is)R((a+ is)2

,A
′
)y‖qds < ∞, for all y ∈ X ′.

where a,b > s0(A),1 < p,q < ∞,
1

p
+

1

q
= 1.

Definition 1.4. A Banach space is called of Fourier type p if the Fourier transform extends

to a bounded linear operator from Lp(R,X) to Lq(R,X
′
), where

1

p
+

1

q
= 1.

2 Characterization of Polyniomail Growth

Lemma 2.1. Let a be densely defined on a Banach space X, then for every a > s0(A) and

x ∈ X, λR(λ 2,A)x → 0, |λ | → ∞, Reλ ≥ a.

Proof. Let a > s0(A).Then there exists a constant M > 0 such that ‖R(λ 2,A)‖ ≤ M for all

Reλ ≥ a. Let now x ∈ X and Reλ ≥ a, then

‖λR(λ 2
,A)x‖ =

1

|λ |
‖x+ R(λ 2

,A)Ax‖ ≤
1

|λ |
(‖x‖+ M‖Ax‖)

and therefore we have λR(λ 2,A)x → 0, |λ | → ∞,Reλ ≥ a for all x ∈ D(A).Since D(A) is dense

in X and the resolvent of A is uniformly bouned on Reλ ≥ a,this is true for all x ∈ X .

Theorem 2.1. Let a densely defined and closed operator A be the generator of a cosine

function {T (t)}t≥0. It satisfies the conditions (1) and (2).Assume that Reλ > 0 is contained in

the resolvent set of A and there exist a0 > 0 and M > 0 such that the following conditions hold:
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(a) ‖R(λ 2,A)‖ ≤ M
|λ |d

for all λ with 0 < Re(λ ) < a0 and for some d ≥ 0.

(b) ‖R(λ 2,A)‖ ≤ M for all λ with Reλ > a0.

Then

‖T (t)‖ ≤ N(1+ t2d−2)

hold for some constant N > 0 and all t ≥ 0.

Conversely,if {T (t)}t≥0 is a cosine function on a Banach space with ‖T (t)‖ ≤ K(1 + tγ)

for every a0 > 0,there exists a constant M > 0 ,such that the resolvent of the generator satisfies

conditions (a) and (b) above for d = γ + 2.

Proof. The idea of the proof of the first part is based on the inverse Laplace transform of

the cosine function. From the condition (a) and (b) we obtained that s0(A)≤ 0. By the condition

(1) and the uniform bounded principle there exists a constant M0 > 0 such that

‖(a+ i·)R((a+ i·)2
,A)x‖Lp(R,X) ≤ M0‖x‖ (3)

hold for all x ∈ X .Similarly,one obtains by (2) the dual reslut, i.e.,

‖(b+ i·)R((b+ i·)2
,A

′
)y‖Lq(R,X

′) ≤ M
′

0‖y‖, (4)

hold for all y ∈ X
′
.

Let 0 < r < a0,r > a. By the resolvent equality we have

‖R((r + iω)2
,A)x‖ = [I + |a2 − r2|‖R((r + iω)2

,A)‖]‖R((a+ iω)2
,A)x‖

and hence

‖R((r + iω)2
,A)x‖ ≤ [1+ |(r + iω)2 − (a+ iω)2|‖R((r + iω)2

,A)‖]‖R((a+ iω)2
,A)x‖

≤ [1+ |a− r|
|(a+ iω)+ (r + iω)|

|r + iω |

M

|r + iω |d−1
]‖R((a+ iω)2

,A)x‖

≤ [1+ 2|a− r|]‖
M

|r + iω |d−1
]‖R((a+ iω)2

,A)x‖

= [1+ 2|a− r|]‖
M

|r + iω |d−1
]‖(a+ iω)R((a+ iω)2

,A)x‖
1

|a+ iω |

≤ [1+ 2|a− r|
M

|r + iω |d−1
]‖(a+ iω)R((a+ iω)2

,A)x‖
1

|a|

≤ K[1+
M

′

|rd−1|
]‖(a+ iω)R((a+ iω)2

,A)x‖,

where we have used (a).Combining this with the estimate (3) ,we find that

‖R((r + i·)2
,A)x‖Lp(R,X) ≤ M0K[1+

M
′

rd−1
]‖ ≤ M1[1+

1

rd−1
]‖x‖. (5)
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Similarly,we find that

‖R((r + i·)2
,A

′
)y‖

Lq(R,X
′
) ≤ M

′

1[1+
1

rd−1
]‖y‖ (6)

and

‖(r + iω)R((r + iω)2
,A)x‖

≤ [1+ |(r + iω)2 − (a+ iω)2|‖R((r + iω)2
,A)‖]‖(r + iω)R((a+ iω)2

,A)x‖

≤ [1+ |a− r|
|(a+ iω)+ (r + iω)|

|r + iω |

M

|r + iω |d−1
]‖(a+ iω)R((a+ iω)2

,A)x‖|
r + iω

a+ iω
|

≤ [1+ 2|a− r|
M

|r + iω |d−1
‖(a+ iω)R((a+ iω)2

,A)x‖|
r

a
|

≤ K
′
[1+ 2|a− r|

M

|r + iω |d−1
‖(a+ iω)R((a+ iω)2

,A)x‖

≤ K
′
[1+

M
′

rd−1
‖(a+ iω)R((a+ iω)2

,A)x‖

hence

‖(r + i·)R((r + i·),A)x‖Lp(R,X) ≤ M0K
′
[1+

M
′

rd−1
]‖x‖ ≤ M2[1+

1

rd−1
]‖x‖. (7)

Similarly

‖(r + i·)R((r + i·)2
,A

′
)y‖

Lq(R,X
′
) ≤ M

′

2[1+
1

rd−1
]‖y‖. (8)

By the estimates (5),(6), (7),(8)and Cauchy-Schwarz inequality we obtain

∫ ∞

−∞
|〈(r + iω)2R((r + iω)2

,A)2x,y〉|dω

=

∫ ∞

−∞
|〈(r + iω)R((r + iω)2

,A)x,(r + iω)R((r + iω)2
,A

′
)y〉|dω

=
∫ ∞

−∞
|〈(r + iω)R((r + iω)2

,A)x,(r + iω)R((r + iω)2
,A

′
)y〉|dω

≤ ‖(r + iω)R((r + iω)2
,A)x‖Lp(R,X)‖(r + iω)R((r + iω)2

,A
′
)y‖

Lq(R,X
′
)

≤ M1M
′

1‖x‖‖y‖[1+ 1
rd−1 ]

2.

(9)

We define

T (t) :=
1

2πi

∫
Reλ=r

eλt λR(λ 2
,A)dλ . (10)

On one hand ,integrate by parts gives

T (t) :=
1

2πi

∫
Reλ=r

eλt λR(λ 2
,A)dλ =

1

2πit

∫
Reλ=r

λR(λ 2
,A)deλt

=
1

2π
[λR(λ 2

,A)eλt ]|+∞
−∞ +

1

2πit

∫
Reλ=r

eλt [2λ 2R(λ 2
,A)2 −R(λ 2

,A)]dλ ].
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By Lemma2.1 we obtain

T (t) =
1

2πit

∫
Reλ=r

eλt [2λ 2R(λ 2
,A)2 −R(λ 2

,A)]dλ ]. (11)

By (5) and (9) the integral of (10) and (11) converge.

On the other hand, by Fubini theorem and Cauchy integral theorem we can easily obtain:

∫ ∞

0
e−λtT (t)dt =

1

2π

∫ ∞

0
e−λt

∫ ∞

−∞
(a+ iω)e−(a+is)tR((a+ iω)2

,A)dωdt

=
1

2π

∫ +∞

−∞
[

∫ ∞

0
e−λte−(a+is)tdt](a+ iω)R((a+ iω)2

,A)dω

=
1

2π

∫ +∞

−∞

(a+ iω)R((a+ iω)2,A)

λ − (a+ iω)
dω = λR(λ 2

,A).

By (5) and (9),

|〈T (t)x,y〉| ≤
1

πt

∫ +∞

−∞
ert |〈(r + iω)2R((r + iω)2

,A)2x,y〉|dω

+ 1
2πt

∫ +∞
−∞ ert |〈R((r + iω)2,A)2x,y〉|dω

≤ 1
πt

ertM1M
′

1‖x‖‖y‖[1+ 1
rd−1 ]

2 + 1
2πt

ertM1[1+ 1
rd−1 ]‖x‖‖y‖

≤ C ert

t
[1+ 1

rd−1 ]
2‖x‖‖y‖.

(12)

Since this holds for 0 < r < a0, we may choose r = 1
t

for t large enough and deduce

|〈T (t)x,y〉| ≤C
e

t
‖x‖‖y‖[1+ td−1]2 ≤ N[1+ t2d−2]‖x‖‖y‖.

From the representation R(λ 2,A) = λ−1

∫ ∞

0
e−λtT (t)dt, we can obtained the second part of

the theorem easily.

Corollary 2.1. Let A generate a cosine function {T (t)}t≥0 on the Banach space that has

the Fourier type p. If A satisfies the conditions (a) and (b) of Theorem 2.1 for some d ≥ 0 and

a0 ≥ 0 then there exists N ≥ 0 such that ‖T (t)‖ ≤ N(1+ t2d−2) for t ≥ 0 .
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