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Abstract. In this paper, by providing some different conditions respect to another works,

we shall present two results on absolute retractivity of some sets related to some multifunc-

tions of the form F : X ×X → Pb,cl(X), on complete metric spaces.
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1 Introduction

In 1970, Schirmer provided some results about topological properties of the fixed point set

of multifunctions[5] . Later, some authors continued this review by providing different conditions

[1],[3]. Recently, Sintamarian proved some results on absolute retractivity of the common fixed

points set of two multivalued operators[6],[7] . Also, Afshari, Rezapour and Shahzad proved some

results about absolute retractivity of the common fixed points set of two multifunctions[4] . In

this paper, by providing some different conditions respect to another works, we shall present

two results on absolute retractivity of some sets related to some multifunctions of the form

F : X ×X → Pb,cl(X). Let X and Y be nonempty sets, P(Y ) the set of all nonempty subsets of Y ,

and F : X → P(Y ) a multifunctions. A mapping ϕ : X → Y is called a selection of F whenever

ϕ(x) ∈ Fx for all x ∈ X . Throughout the paper, for a topological space X we denote the set of

all closed and bounded subsets of X by Pb,cl(X) when X is a metric space.

Let (X ,d) be a metric space, B(x0,r) = {x ∈ X : d(x0,x) < r}. For x ∈ X and A,B ⊆ X , set

d(x,A) = inf
y∈A

d(x,y) and

H(A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)}.
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It is known that, H is a metric on closed bounded subsets of X which is called the Hausdorff

metric (for more details see [6] and [7]).

We say that a topological space X is an absolute retract for metric spaces whenever for

each metric space Y , A ∈ Pcl(Y ) and continuous function ψ : A → X , there exists a continuous

function ϕ : Y → X such that ϕ |A = ψ . Let M be the set of all metric spaces, X ∈ M, D ∈ P(M)

and F : X → Pb,cl(X) a lower semi-continuous multifunction. We say that F has the selection

property with respect to D if for each Y ∈ D, continuous function f : Y → X and continuous

functional g : Y → (0,∞) such that G(y) := F( f (y))∩B( f (y),g(y)) 6= /0 for all y ∈Y , A ∈ Pcl(Y ),

every continuous selection ψ : A → X of G|A admits a continuous extension ϕ : Y → X , which

is a selection of G. If D = M, then we say that F has the selection property and we denote this

by F ∈ SP(X) (for more details see [6] and [7]).

2 Main Results

Theorem 2.1. Let (X ,d) be a complete metric space and absolute retract for metric spaces

and F : X ×X → Pb,cl(X) a lower semicontinuous multifunction such that there exist

a11,a12, · · · ,a15,a21,a22, . . . ,a25 ∈ (0,1) with a11 +a13 +a14 +2a12 < 1, a21 +a23 +a24 +2a22 <

1,

H(F(u,v),F(x,y)) ≤ a11d(x,u)+ a12d(x,F(u,v))

+a13d(F(x,y),x)+ a14d(F(u,v),u)+ a15d(u,F(x,y))

and

H(F(u,v),F(x,y)) ≤ a21d(y,v)+ a22d(y,F(u,v))

+a23d(F(x,y),y)+ a24d(F(u,v),v)+ a25d(F(x,y),v)

for all u,v,x,y ∈ X. Then the set B = {(x,y) : x,y ∈ F(x,y)} is an absolute retract for metric

spaces.

Proof. It is easy to see that F ∈ SP(X ×X) and X ×X is an absolute retract for metric

spaces. Now, put 1 < q < min{(a11 + a13 + a14 + 2a12)
−1,(a21 + a23 + a24 + 2a22)

−1} and

l := max{
a11 + a12 + a13

1− (a12 + a14)
,

a21 + a22 + a23

1− (a22 + a24)
}.

It is not difficult to verify that ql < 1. Let Y be a metric space, A ∈ Pcl(Y ) and ψ : A → B a

continuous function. Since X ×X is an absolute retract for metric spaces, there exists a contin-

uous function ϕ0 : Y → X ×X such that ϕ0|A = ψ . Let ϕ0 = (ϕ1
0 ,ϕ2

0 ). Consider the function
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g0 : Y → (0,∞)× (0,∞) defined by g0 = (g1
0,g

2
0), where gi

0 is defined by

gi
0(y) = sup{d(ϕ i

0(y),z) : z ∈ F(ϕ0(y))}+ 1, i = 1,2

for all y ∈ Y . It is easy to see that the function g0 is continuous. Define

G1
1(y) := F(ϕ0(y))∩B(ϕ1

0 (y),g1
0(y)) = F(ϕ0(y))

for all y ∈ Y . Note that, the function ψ is a continuous selection of the multivalued mapping

A ∋ y ⊢ F(ϕ0(y)). Since F ∈ SP(X ×X), there exists a continuous function ϕ1 : Y → X ×X such

that ϕ1|A = ψ and ϕ i
1(y) ∈ F(ϕ0(y)) (i=1,2), where ϕ1 = (ϕ1

1 ,ϕ2
1 ). Thus, we obtain

d(ϕ1
1 (y),F(ϕ1(y))) = d(ϕ1

1 (y),F(ϕ1
1 (y),ϕ2

1 (y)))

≤ H(F(ϕ0(y)),F(ϕ1(y))) = H(F(ϕ1
0 (y),ϕ2

0 (y)),F(ϕ1
1 (y),ϕ2

1 (y)))

≤ a11d(ϕ1
0 (y),ϕ1

1 (y))+ a12d(ϕ1
0 (y),F(ϕ1

1 (y),ϕ2
1 (y)))

+a13d(F(ϕ1
0 (y),ϕ2

0 (y)),ϕ1
0 (y))+ a14d(F(ϕ1

1 (y),ϕ2
1 (y)),ϕ1

1 (y))

+a15d(ϕ1
1 (y),F(ϕ1

0 (y),ϕ2
0 (y)))

≤ a11d(ϕ1
0 (y),ϕ1

1 (y))+ a12d(ϕ1
0 (y),ϕ1

1 (y))+ a12d(ϕ1
1 (y),F(ϕ1

1 )(y),ϕ2
1 (y))

+a13d(ϕ1
0 (y),ϕ1

1 (y))+ a14d(F(ϕ1
1 (y),ϕ2

1 (y)),ϕ1
1 (y)),

for all y ∈ X . Hence,

(1−a12 −a14)d(ϕ1
1 (y),F(ϕ1

1 (y),ϕ2
1 (y))) ≤ (a11 + a12 + a13)d(ϕ1

0 (y),ϕ1
1 (y))

≤
a11 + a12 + a13

1− (a12 + a14)
d(ϕ1

0 (y),ϕ1
1 (y)) ≤ ld(ϕ1

0 (y),ϕ1
1 (y)) < ld(ϕ1

0 (y),ϕ1
1 (y))+ q−1

,

for all y ∈ X . Thus, G2
1(y) := F(ϕ1(y))∩B(ϕ1

1(y), ld(ϕ0
1(y),ϕ1

1(y))+ q−1) 6= φ . But since

F ∈ SP(X ×X), there exists a continuous function ϕ2
1 : Y → X ×X such that ϕ2|A = ψ and

ϕ2
1(y) ∈ G2

1(y) for all y ∈ Y . Hence, ϕ2|A = ψ , ϕ2
1(y) ∈ F(ϕ1(y)) and

d(ϕ1
1(y),ϕ2

1(y)) ≤ ld(ϕ0
1(y),ϕ1

1(y))+ q−1

for all y ∈ Y . Now, by using a similar technique we obtain

d(ϕ2
1(y),F(ϕ2(y))) ≤ l2d(ϕ0

1(y),ϕ1
1(y))+ q−2

.

By continuing this process, we obtain a sequence of continuous functions {ϕn : Y → X}n≥0 such

that ϕn
1|A = ψ , ϕn

1(y) ∈ Fϕn−1(y) and

d(ϕn−1
1(y),ϕn

1(y)) ≤ ln−1d(ϕ0
1(y),ϕ1

1(y))+ q−(n−1)
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for all n ≥ 1 and y ∈Y . Define

Yλ := {y ∈ Y : d(ϕ0
1(y),ϕ1

1(y)) < λ}

for all λ > 0. Now, we prove that the family {Yλ : λ > 0} is an open covering of Y . Note

that for each y ∈ Y , since ϕ1
1(y) ∈ F(ϕ0(y)) and F(ϕ0(y))∩B(ϕ1

0 (y),g1
0(y)) = F(ϕ0(y)), we

have ϕ1
1(y) ∈ B(ϕ1

0 (y),g0
1(y)). If λ = g0(y), then d(ϕ0

1(y),ϕ1
1(y)) < λ . Thus, y ∈ Yλ and so

Y ⊆ ∪λ>0{y ∈ Y : d(ϕ0
1(y),ϕ1

1(y)) < λ}. Since l < 1, q > 1 and X is complete, the sequence

{ϕn
1}n≥0 converges uniformly on Yλ for all λ > 0. Note that,

d(ϕ1
2(y),F(ϕ1(y))) = d(ϕ1

2(y),F(ϕ1
1(y),ϕ1

2(y)))

≤ H(F(ϕ0(y)),F(ϕ1(y))) = H(F(ϕ0
1(y),ϕ0

2(y)),F(ϕ1
1(y),ϕ1

2(y)))

≤ a21d(ϕ0
2(y),ϕ1

2(y))+ a22d(ϕ0
2(y),F(ϕ1

1(y),ϕ1
2(y)))

+a23d(F(ϕ0
1(y),ϕ0

2(y)),ϕ0
2(y))

+a24d(F(ϕ1
1(y),ϕ1

2(y)),ϕ1
2(y))+ a25d(ϕ1

2(y),F(ϕ0
1(y),ϕ0

2(y)))

≤ a21d(ϕ0
2(y),ϕ1

2(y))+ a22d(ϕ0
2(y),ϕ1

2(y))+ a22d(ϕ1
2(y),F(ϕ1

1(y),ϕ1
2(y)))

+a23d(ϕ0
2(y),ϕ1

2(y))+ a24d(ϕ1
2(y),F(ϕ1

1(y),ϕ1
2(y)))

for all y ∈ Y . Thus,

d(ϕ1
2(y),F(ϕ1

1(y),ϕ1
2(y))) ≤

a21 + a22 + a23

1− (a22 + a24)
d(ϕ0

2(y),ϕ1
2(y))

≤ ld(ϕ0
2(y),ϕ1

2(y)) < ld(ϕ0
2(y),ϕ1

2(y))+ q−1

for all y ∈ Y . Hence G2
2(y) := F(ϕ1(y))∩B(ϕ1

2(y), ld(ϕ0
2(y),ϕ1

2(y))+ q−1) 6= φ . But since

F ∈ SP(X ×X), there exists a continuous function ϕ2 : Y → X ×X such that ϕ2|A = ψ , ϕ2
2 (y) ∈

F(ϕ1(y)) and

d(ϕ1
2(y),ϕ2

2(y)) ≤ ld(ϕ0
2(y),ϕ1

2(y))+ q−1

for all y ∈ Y . Thus,

d(ϕ2
2(y),F(ϕ2

2(y))) ≤ l2d(ϕ0
2(y),ϕ1

2(y))+ q−2

for all y ∈ Y . Again by continuing this process, we obtain a sequence of continuous functions

{ϕn
2 : Y → X}n≥0 such that ϕn

2|A = ψ , ϕn
2(y) ∈ F(ϕn−1(y)) and

d(ϕn−1
2(y),ϕn

2(y)) ≤ ln−1d(ϕ0
2(y),ϕ1

2(y))+ q−(n−1)

for all n ≥ 0 and y ∈ Y . Now for each λ > 0, put Yλ = {y ∈ Y : d(ϕ0
2(y),ϕ1

2(y)) < λ}. Since

l < 1, q > 1 and X is complete, the sequence {ϕn
2}n≥1 converges uniformly on Yλ for all λ > 0.
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Let ϕ i : Y → X be the pointwise limit of {ϕn
i}n≥0 (i=1,2). Then, the function ϕ i is continuous.

Thus ϕ : Y → X ×X defined by ϕ(y) = (ϕ1(y),ϕ2(y)) is continuous. Since ϕn|A = ψ for all

n ≥ 1, ϕ |A = ψ . Note that,

ϕ1
n (y) ∈ F(ϕn−1(y)),ϕn

2
(y) ∈ F(ϕn−1(y))

for all y ∈Y and n ≥ 1. If n → ∞, then ϕ1(y),ϕ2(y) ∈ F(ϕ(y)). Therefore, the set {(x,y) : x,y ∈

F(x,y)} is an absolute retract for metric spaces.

Also by providing a similar technique, we can prove the following results.

Theorem 2.2. Let (X ,d) be a complete metric space and absolute retract for metric spaces

and F : X ×X → Pb,cl(X) a lower semicontinuous multivalued mapping such that there exist

a11, . . . ,a15,a21, . . . ,a25 ∈ (0,1) with a11 + a13 + a14 + 2a12 < 1, a21 + a23 + a24 + 2a22 < 1,

H(F(u,v),F(x,y)) ≤ a11d(x,u)+ a12d(x,F(u,v))

+a13d(F(x,y),x)+ a14d(F(u,v),u)+ a15d(u,F(x,y))

and

H(F(x,y),F(u,v)) ≤ a21d(x,u)+ a22d(x,F(u,v))

+a23d(y,F(x,y))+ a24d(u,F(u,v))+ a25d(v,F(x,y))

for all u,v,x,y ∈X. Then {(x,y) : x∈F(x,y),y ∈F(y,x)} is an absolute retract for metric spaces.

Theorem 2.3. Let (X ,d) be a complete metric space and absolute retract for metric spaces

and F1,F2 : X ×X → Pb,cl(X) lower semicontinuous multifunctions such that there exist

a11, · · · ,a15,a21, · · · ,a25 ∈ (0,1) with a11 + a13 + a14 + 2max{a12,a15} < 1, a21 + a23 + a24 +

2max{a22,a25} < 1,

H(F1(x,y),F2(u,v)) ≤ a11d(x,u)+ a12d(x,F2(u,v))

+a13d(F1(x,y),x)+ a14d(F2(u,v),u)+ a15d(u,F1(x,y))

and

H(F1(x,y),F2(u,v)) ≤ a21d(y,v)+ a22d(y,F2(u,v))

+a23d(F1(x,y),y)+ a24d(F2(u,v),v)+ a25d(F1(x,y),v)

for all u,v,x,y ∈ X. Then the set {(x,y) : x,y ∈ F1(x,y)∩F2(x,y)} is an absolute retract for

metric spaces.
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