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Abstract. The main objective of this work is to decompose orthogonally the reproducing

kernels Hilbert space using any conditionally positive definite kernels into smaller ones by

introducing the theory of power kernels, and to show how to do this decomposition recur-

sively. It may be used to split large interpolation problems into smaller ones with different

kernels which are related to the original kernels. To reach this objective, we will reconstruct

the reproducing kernels Hilbert space for the normalized and the extended kernels and give

the recursive algorithm of this decomposition.
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1 Introduction

The abstract theory of Reproducing Kernels Hilbert Space (RKHS) has been developed over

a number of years outside of different domains in Physics, Mathematics and/or Chemistry such

as the study of conformal mappings[1], integral equations[2] , and partial differential equations[3] .

The RKHS method has been used for a variety of applications, especially in data interpolation

and smoothing[4−7]. The RKHS method provides a rigorous and effective framework for smooth

multivariate interpolation of arbitrarily scattered data and for accurate approximation of gen-

eral multidimensional functions using conditionally/unconditionally positive kernels. Smooth

global multi-dimensional reproducing kernels have been successfully used in other contexts for

multivariate interpolation, e.g., in computer aided geometric design [8,9] and to solve differential

equations by collocation[10] . These reproducing kernels usually are simple and easily to com-

pute in closed forms[10,11]. The reproducing property imparts a rich physically based structure in
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the associated Hilbert space that possesses many important properties (e.g., the uniqueness and

positive definiteness of the reproducing kernel which are important for its practical utility).

The association of a Hilbert space to each conditionally positive definite function go back to

the analysis of Madych[13]. The practical advantage of all of this is that all useful conditionally

positive definite functions, which were constructed without any relation to an Hilbert space, can

be investigated thoroughly within their native space, once the latter is defined and characterized.

RKHS, in the conditionally positive definite case, turns out to be a Hilbert space plus a finite-

dimensional space[12,17,19] .

Section 2 will summarize the recent work in the construction of RKHS (will be called native

space) for the conditionally positive kernels Φ and also introduce the power kernels and its

native space [15]. Section 3 will present the construction of RKHS for the normalized kernel[18] .

Section 4 will introduce an extended kernel ΦP of the normalized kernel that have the same

RKHS. We will show the condition where the interpolation to ΦP does coincide with the one

associated to Φ. Section 5 is the core of this work. The main idea is to decompose large

interpolation problems into smaller ones using the theory of power kernels and its RKHS. The

orthogonal decomposition of the original native Hilbert space, involving the native space of the

power kernel which is proven in our previous work[15]. We will show how to do this orthogonal

decomposition of RKHS recursively. It turns out to be used to split large interpolation problems

into smaller ones with different kernels which is related to the original kernels Φ.

2 Native Space for the Power Kernels

The interpolation, of scattered data (xi, fi) ∈ R for pairwise points of discrete set X =

{x1, · · · ,xN} and real valued data f (x1), · · · , f (xN), uses a symmetric multivariate function Φ :

Rd ×Rd → R for all x,y ∈ Rd and the Q-dimensional space Pd
m of polynomials pk on Rd of

degree m, to construct the interpolant:

s(x) =
N

∑
j=1

α jΦ(x,x j)+
Q

∑
k=1

βk pk(x) where x ∈ Rd
, (2.1)

where αi and βi are real numbers, via the system























N

∑
j=1

α jΦ(x,x j)+
Q

∑
k=1

βk pk(x) = fi,

N

∑
j=1

α j pk(x j) = 0,

(2.2)
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For a finite-dimensional subspace of continuous real-valued functions P on Ω and the coeffi-

cients α satisfying (2.2), we define a suitable pre-Hilbert space LP(Ω) of functionals by

LP(Ω) := {λα ,X | λα ,X( f ) :=
N

∑
j=1

α j f (x j), λα ,X(P) = {0}}, (2.3)

equipped with the bilinear form

(λα ,X ,λβ ,Y )Φ =
N

∑
i=1

M

∑
j=1

αiβ jΦ(xi,y j), (2.4)

which is an inner product on LP(Ω).

Let LΦ,P(Ω) = clos(.,.)Φ
LP(Ω) be the completion form of the pre-Hilbert space LP(Ω). This

space is a space of functionals and we don’t know if it is acting on functions. In order to verify

this property, LΦ,P(Ω) must be a Hilbert space. For this, we define a functional for all fixed

P-unisolvent subset Z = {z1,z2, · · · ,zQ} of points on Ω:

Ξ(x)( f ) = f (x)−πP( f )(x) with πP( f )(x) =
Q

∑
k=1

pk(x) f (zk), (2.5)

and we define also a map RΦ,Ω:

RΦ,Ω : LP(Ω) → RΦ,Ω

(

LP(Ω)
)

, RΦ,Ω

(

λα ,X

)

(x) =
(

λα ,X ,Ξ(x)

)

Φ
, (2.6)

which is injective on LP(Ω). Then, we can interpret RΦ,Ω(LP(Ω)) as a space of functions van-

ishing in Z and we can define the inner product on the space RΦ,Ω(LP(Ω)) by

(

RΦ,Ω(λα ,X),RΦ,Ω(λβ ,Y )
)

Φ
:= (λα ,X ,λβ ,Y )Φ for all λα ,X , λβ ,Y ∈ LP(Ω), (2.7)

which turns the space RΦ,Ω(LP(Ω)) into a pre-Hilbert space. This application is isometric to

LP(Ω) via RΦ,Ω. For simplicity, in both spaces we use the same notion for the inner product as

is defined in 4.

Hence, the completions of the pre-Hilbert space RΦ,Ω(LP(Ω)) with respect to the inner prod-

ucts (., .)Φ will be denoted by RΦ,Ω(LΦ,P(Ω)) which is the continuous extension of RΦ,Ω, and

the new inner products are also denoted by (., .)Φ for simplicity. Thus, the completed space

RΦ,Ω(LΦ,P(Ω)) is a space of functions satisfying the following property:

f ∈ LΦ,P(Ω) ⇒ RΦ,Ω( f )(x) = ( f ,Ξ(x))Φ for all x ∈ Ω. (2.8)

Now we are able to define the native space of a conditionally positive definite kernel Φ.
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Definition 2.1 The RKHS to a symmetric kernel Φ, which is conditionally positive definite

on Ω with respect to P is defined by [15]:

NΦ(Ω) = RΦ,Ω(LΦ,P(Ω))+ P,

and is equipped with the semi-inner product:











( f ,g)NΦ(Ω) := (R−1
Φ,Ω( f −πP( f )),R−1

Φ,Ω(g−πP(g)))Φ, for all f ,g ∈ NΦ(Ω),

(p, .)NΦ(Ω) := 0 for all p ∈ P.

Since ‖ f‖Φ is undefined for f ∈ NΦ(Ω), then we characterize the norms ‖.‖Φ and ‖‖NΦ(Ω)

with the following property

f −πP( f ) ∈ RΦ,Ω(LΦ,P(Ω)) and ‖ f‖NΦ(Ω) = ‖ f −πP( f )‖Φ. (2.9)

Theorem 2.2. For a fixed finite set X satisfying the system (2.2), if we define the space

SXmΨ := πX(NΦ(Ω)) which is spanned by all interpolants to functions f ∈ NΦ(Ω) by func-

tions from P and translates of Φ, then NΦ(Ω) is an orthogonal decomposition with respect to

(., .)NΦ(Ω). ie:

NΦ(Ω) = SX ,Φ +{ f ∈ NΦ(Ω) : f (X) = {0}}. (2.10)

In particular, if s f ,X ,Φ interpolates f on X using Φ, then:

f − s f ,X ,Φ ⊥NΦ(Ω) SX ,Φ and ‖ f‖2
NΦ(Ω) = ‖ f − s f ,X ,Φ‖

2
NΦ(Ω) +‖s f ,X ,Φ‖

2
NΦ(Ω).

The power kernel KX(., .) of Φ with respect to X = {x1, · · · ,xN} for all x,y ∈ Ω is given by

KX (x,y) = Φ(x,y)−
N

∑
i=1

uX
i (x)Φ(xi,y)−

N

∑
j=1

uX
j (y)Φ(x,x j)+

N

∑
i=1

N

∑
j=1

uX
i (x)uX

j (y)Φ(xi,x j), (2.11)

where u j are the Lagrange functions satisfying the property[16]: ui(x j) = δi j for 1 ≤ i, j ≤ N.

The native space for the symmetric unconditionally positive definite function KX on Ω\X is

given by

NKX
(Ω\X) = { f ∈ NΦ(Ω) : f (X) = {0}}, (2.12)

equipped with the inner product (., .)NKX
and has the reproducing property

f (y) = ( f ,KX(y, .))KX
,

For all f ∈ NKX
(Ω\X), the norm ‖ · ‖KX

of NKX
(Ω\X) is defined by

‖ f‖2
KX

= ‖gY −gX‖
2
Φ, (2.13)
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where gX and gY are in the space spanned by Φ(·,xk) and Φ(·,yl) respectively

gX(x) ∈ Span{Φ(·,xk)} and gX(x) ∈ Span{Φ(·,yl)}. (2.14)

Note that if Φ is an positive definite kernel, we have

‖ f‖2
KX

= ‖ f‖2
Φ for all f ∈ NKX

(Ω\X). (2.15)

3 RKHS for the Normalized Kernel

For all x,y ∈ Ω, we define the normalized kernel function h : Ω×Ω → R by [reference]:

h(x,y) =
(

Id −πP

)x(

Id −πP

)y

Φ(x,y) = (Ξ(x),Ξ(y))Φ. (3.1)

Substituting (2.5) in (3.1), the normalized kernel will be expressed as

h(x,y) = Φ(x,y)−
Q

∑
j=1

p j(x)Φ(z j,y)−
Q

∑
k=1

pk(y)Φ(x,zk)

+
Q

∑
j=1

Q

∑
k=1

p j(x)pk(y)Φ(z j,zk), (3.2)

which is unconditionally positive on Ω\Z.

Note that for all 1 ≤ k ≤ Q we have h(.,zk) = 0 because p1, · · · , pQ is a Lagrange basis for

P with respect to the points z1, · · · ,zQ.

Using (3.2), we can re-write (2.5) in a simpler form:

f (x) = (πP( f ))(x)+
(

h(x, .), f
)

NΦ(Ω)
for all x ∈ Ω and f ∈ NΦ(Ω). (3.3)

For all function f ∈ NΦ(Ω), the equation (3.3) permits the reproduction property in the sens of

the following theorem:

Theorem 3.1. The bilinear form (., .)NΦ
defines an inner product on the Hilbert space

MΦ = NΦ ∩{ f ∈ NΦ(Ω) : f (zk) = 0, 1 ≤ k ≤ Q}

which has the function h(., .) as reproducing kernel.

Proof. The space MΦ coincides with RΦ,Ω(LΦ,P(Ω)) due to equation (2.9). Thus it is a

Hilbert space under (., .)Φ which is isometric via RΦ,Ω to LΦ,P(Ω). But for all g∈RΦ,Ω(LΦ,P(Ω))

we get from (2.9)

g(x) = (g,h(x, ·))Φ = (g,h(x, ·))NΦ(Ω)
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holds for all x ∈ Ω.

The inner products (., .)Φ and (., .)NΦ(Ω) coincides on MΦ. This implies [14]:

Theorem 3.2. The space MΦ is the native space of the unconditionally positive kernel

h(., .) on Ω\Z.

4 RKHS for the Extended Kernels of an CPD Kernels

In the previous section, we started with a CPD-kernel Φ on Ω with respect to P and we con-

structed a RKHS NΦ(Ω) for Φ on which the normalized kernel function h(., .) is a generalized

reproducing kernel. The native space for Φ, however, was not a Hilbert space, because it carried

only a semi-inner product. The new kernel had a native Hilbert space, but on Ω\Z, where Z was

a unisolvent set for P. This calls for a new kernel that we will denote ΦP, now unconditionally

positive definite on all of Ω, such that the native space NΦ(Ω) of Φ coincides as a vector space

with the native space of ΦP, which is now carrying an inner product that is closely related to the

previous semi-inner product (., .)Φ defined in (2.4).

Under the assumptions made so far, we can pick a fixed unisolvent set Z = {z1, · · · ,zQ} for

P and a Lagrange basis p1, · · · , pQ of P. Then, for all functions f ,g ∈ NΦ(Ω) and all x,y ∈ Ω,

we define:

(

f ,g
)

P
=

Q

∑
k=1

f (zk)g(zk) and ΦP(x,y) = h(x,y) +
Q

∑
l=1

pl(x)pl(y). (4.1)

At this point, one is tempted to use Φ instead of h in the above definition of the kernel,

in order to avoid the point set Z to enter into the kernel. However, it turns out that one has

difficulties proving positive definiteness in that case.

For all g, f ∈ NΦ(Ω), we define the inner product (·, ·)ΦP
by

( f ,g)ΦP
=
(

f ,g
)

NΦ(Ω)
+
(

f ,g
)

P
.

The bilinear form (., .)ΦP
is positive definite because for all f ∈ NΦ(Ω) with ( f , f )ΦP

= 0, we

have

0 = ( f , f )ΦP
= ( f , f )NΦ(Ω) +

Q

∑
k=1

| f (zk)|
2
.

But then ( f , f )NΦ(Ω) = 0, f ∈ P, and f (zk) = 0 hence f = 0. Thus (., .)ΦP
is positive definite.

This implies

Theorem 4.1. The native space NΦ(Ω) to a conditionally positive definite kernel Φ on Ω

with respect to P carries the inner product (·, ·)ΦP
that is given by

( f ,g)ΦP
=
(

f −πP( f ),g−πP(g)
)

Φ
+
(

πP( f ),πP(g)
)

P
,
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which turns the decomposition of the native space NΦ(Ω) of Φ in definition 2.1 into an orthog-

onal decomposition. Furthermore, the bilinear forms (., .)Φ, (., .)ΦP
, and (., .)NΦ(Ω) coincide on

RΦ,Ω(LΦ,P(Ω)).

Theorem 4.2. The native space NΦ(Ω) to a conditionally positive definite kernel Φ with

respect to a finite-dimensional subspace P is a Hilbert space with the extended kernel ΦP

from (4.1) as reproducing kernel, if the inner product (., .)ΦP
from Theorem 4.1 is used.

Proof. For proving the reproducing kernel property, we have for all f ∈ NΦ(Ω):

( f ,ΦP(x, .))ΦP
= ( f ,ΦP(x, .))NΦ(Ω) +( f ,ΦP(x, .))P

= ( f ,h(x, .))NΦ(Ω) + 0+
Q

∑
k=1

f (zk)h(x,zk)+
Q

∑
k=1

f (zk)
Q

∑
l=1

pl(x)pl(zk)

= f (x)−πP

(

f
)

(x)+ 0+
Q

∑
k=1

f (zk)pk(x)

= f (x).

The reproduction property implies that ΦP is positive semi-definite. To prove positive definite-

ness, we take a set of points Y = {y1, · · · ,yM} ∈ Ω \ Z, vectors β = (β1, · · · ,βM) ∈ RM and

γ = (γ1, · · · ,γQ) ∈ RQ. Then we look at the quadratic form:

M

∑
j,k=1

β jβkΦP(y j,yk) + 2
M

∑
j=1

Q

∑
k=1

β jγkΦP(y j,zk)+
Q

∑
j,k=1

γ jγkΦP(z j,zk)

=
M

∑
j,k=1

β jβkh(y j,yk)+ 0+ 0+

+
Q

∑
l=1

M

∑
j,k=1

β jβk pl(y j)pl(yk) + 2
Q

∑
l=1

M

∑
j=1

Q

∑
k=1

β jγk pl(y j)pl(zk)

+
Q

∑
l=1

Q

∑
j,k=1

γ jγk pl(z j)pl(zk)

=
M

∑
j,k=1

β jβkh(y j,yk) +
Q

∑
l=1

(

M

∑
j=1

β j pl(y j)+
Q

∑
k=1

γk pl(zk)

)2

=
M

∑
j,k=1

β jβkh(y j,yk) +
Q

∑
l=1

(

γl +
M

∑
j=1

β j pl(y j)

)2

,

and this is nonnegative, since h is positive definite on Ω \Z. If the quadratic form is zero, then

we conclude that β vanishes. Finally, γ must also vanish.

Theorem 4.3. The interpolation associated to ΦP does coincide with the interpolation

associated to Φ, if the data points include the point set Z.
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If the data point set X = {x1, · · · ,xN} for interpolation includes the point set Z, the interpolant

s f ,X to some function f ∈ NΦ(Ω) on the data X with respect to Φ or ΦP can be calculated as

follows: First calculate π( f ), this interpolates f on Z. Second interpolate f −π( f ) in X \Z using

the kernels ΦP or h with no functions from P added, and with no conditions on the coefficients.

Call the resulting function s. Then s+ π( f ) = s f ,X is the solution.

5 Multistage Recursive RKHS

We are given a set X = {x1, . . . ,xN} of pairwise distinct points x1, . . . ,xN in a set Ω ⊆ Rd ,

and a real-valued function f with f : Ω ⊆ Rd → R, d ≥ 1. We take a conditionally positive

definite continuous kernel Φ : Ω×Ω → R with respect to a finite-dimensional subspace P. To

avoid complications as in Theorem 4.3, we shall always assume Z ⊆ X in the rest of this paper.

Then we denote the resulting interpolant to f by s f ,X ,Φ, making the dependence on f ,X , and Φ

transparent. For all functions f ∈ NΦ(Ω), we define the residual function or error function g f

on Ω by:

g f : x 7→ f (x)− s f ,X ,Φ(x).

We now interpolate the function g f on a new finite set Y of points from Ω \X using KX , and

denote the interpolant to g f on Y associated to KX by sg f ,Y,KX
. We remark that for all x j ∈ X with

1 ≤ j ≤ N we have g f (x j) = 0 and sg f ,Y,KX
(x j) = 0. Then we conclude that for all x ∈ X ∪Y

(

g f − sg f ,Y,KX

)

(x) =
(

f − s f ,X ,Φ − sg f ,Y,KX

)

(x) = 0.

We want to find a relation between the interpolants s f ,X ,Φ +sg f ,Y,KX
and s f ,X∪Y,Φ to f at all points

in X ∪Y . The uniqueness of the interpolant for data on X ∪Y with centers in X ∪Y proves the

following:

Proposition 5.1. The interpolant of Φ on X ∪Y is given by

s f ,X∪Y,Φ = s f ,X ,Φ + sg f ,Y,KX
.

There is a interesting relation between the power function associated to Φ on X and the

power function to KX on Y . To present this relation, we define the power function as

PX ,Φ = sup{ f (x) : f ∈ NΦ(Ω), ‖ f‖NΦ(Ω) ≤ 1, f (X) = {0}}. (5.1)

Proposition 5.2. If Φ is a positive definite kernel, then the power function PX∪Y,Φ is given

by:

PX∪Y,Φ = PY,KX
.
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Proof. We use the equations (5.1) for PX∪Y,Φ and for PY,KX
. Then, we get

PX∪Y,Φ = sup{ f (x) : f ∈ NΦ(Ω), ‖ f‖NΦ(Ω) ≤ 1, f (X ∪Y ) = {0}}

and

PY,KX
= sup{ f (x) : f ∈ NKX

, ‖ f‖KX
≤ 1, f (Y ) = {0}} (5.2)

= sup{ f (x) : f ∈ NKX
, ‖ f‖NΦ(Ω) ≤ 1, f (Y ) = {0}} (5.3)

= sup











(g−πX(g))(x) :
g ∈ NΦ(Ω), ‖g−πX(g)‖Φ ≤ 1

(g−πX(g))(Y ) = {0}











(5.4)

≤ sup{ f (x) : f ∈ NΦ(Ω), ‖ f‖NΦ(Ω) ≤ 1, f (X ∪Y) = {0}} (5.5)

= PX∪Y,Φ. (5.6)

The inequality sign in (5.5) follows from the fact that every g−πX(g) of (5.4) is some function

f (5.5). The other inequality follows directly when we take any f from (5.5) and define g := f

with πX( f ) = πX(g) = 0 in (5.4).

The proposition 5.2 implies that the interpolation error can be bounded as:

| f (x)− s f ,X∪Y,Φ(x)| ≤ PY,KX
‖ f‖Φ for all f ∈ NΦ(Ω). (5.7)

Proposition 5.3. If Φ is an unconditionally positive definite kernel, then for finite sets X , Y

with X ∩Y = /0 we have

(KX ,Φ)
Y,KX ,Φ

= KX∪Y,Φ,

where we indicated the appropriate “mother” kernels in the notation.

Proof. The native space of the right-hand side is

{ f ∈ NΦ(Ω) : f (X ∪Y ) = {0}} ,

while the native space for the left-hand side is the same:

{

f ∈ NKX ,Φ : f (Y ) = {0}
}

= { f ∈ NΦ : f (X ∪Y ) = {0}} .

If f is an element of that space, the two reproduction properties are

f (x) = ( f ,KX∪Y,Φ(x, ·))Φ

f (x) = ( f ,(KX ,Φ)
Y,KX ,Φ

(x, ·))KX ,Φ

,
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and since Φ is an unconditionally positive definite kernel, we can use any of the inner products

(., .)Φ, (., .)KX ,Φ and (., .)KX∪Y,Φ here. Now by uniqueness of reproducing kernels, the assertion

follows first on Ω\ (X ∪Y), but since both kernels vanish on X ∪Y , we are done.

The appropriate mother kernels (KX ,Φ)Y,KX ,Φ
implies that there are orthogonal decomposi-

tions with respect to the inner product (., .)Φ of NΦ(Ω) given by:

NΦ(Ω) = SX ,Φ +, NKX ,Φ(Ω\X) = SX∪Y,Φ + NKX∪Y,Φ(Ω\ (X ∪Y)). (5.8)

So far, we have made a step from X to X ∪Y . We now want to do a sequence of such steps.

Definition 5.4. We can assume to have a kernel Φ on Ω which is conditionally positive

definite with respect to some finite-dimensional space P of functions on Ω, and we want to

interpolate a function f ∈ NΦ(Ω). We start with a finite set X of data points which contains a

P-unisolvent subset Z. The recursion algorithm will be then given by the Table-1.

Table 1. Recursive Algorithm

Start a recursion with Do the following for j ≥ 0

j := 0 j ≥ 0

X0 := X X j+1 := X j ∪Yj ⊃ X j

Ω0 := Ω\X Ω j+1 := Ω\X j+1 ⊂ Ω j

Y0 ⊂ Ω0 Yj ⊂ Ω j

Φ0 := Φ Φ j+1 := KX j
Positive Definite on Ω j

f0 := f − s f ,X0,Φ0
f j+1 := f j − s f j,Y j,Φ j+1

j := j +1, Repeat.

Note that from the second step on we have unconditional positive definiteness, while the first

step from Φ0 := Φ to Φ1 := KX has the complications we encountered around equation (2.15).

Theorem 5.5. The native space NΦ j+1
of Φ j+1 can be expressed as

NΦ j+1
= NΦ1

∩{ f | f (X j) = {0}} for all j ≥ 0.

and for all j ≥ 1 and f ∈ NΦ(Ω), using equation (2.15) we get

‖ f‖2
Φ j

= ‖ f‖2
Φ j−1

= ‖ f‖2
Φ j−2

= . . . = ‖ f‖2
Φ1

= ‖ f‖2
Φ +‖sgy−gX ,X ,Φ‖

2
Φ. (5.9)



Anal. Theory Appl., Vol. 28, No.2 (2012) 121

with gY and gX from (2.14).

Now we need the recursive power kernel form of our kernels. We conclude

Φ j+1 = KX j,Φ = KYj−1∪X j−1,Φ =
(

KX j−1,Φ

)

Yj−1,KXj−1 ,Φ
.

Using Proposition 5.3, the last implies

Φ j+1 = (Φ j)Yj−1,Φ j
for all j ≥ 1.

Note that we can always write the function f j in the form

f j = f j − s f j,Yj,Φ j+1
+ s f j,Yj ,Φ j+1

= f j+1 + s f j ,Yj,Φ j+1
for all j ≥ 0. (5.10)

The orthogonality property of the interpolation together with (2.15) allows us to write

‖ f j‖
2
Φ j+1

= ‖ f j+1‖
2
Φ j+1

+‖s f j ,Yj,Φ j+1
‖2

Φ j+1
= ‖ f j‖

2
Φ j

for all j ≥ 0. (5.11)

Under the hypotheses of the definition 5.4 and using (5.11), the summation term-to-term gives

‖ f1‖
2
Φ1

= ‖ f j+1‖
2
Φ j+1

+
j

∑
r=1

‖s fr ,Yr,Φr+1
‖2

Φr+1
for all j ≥ 0. (5.12)

Now we need the recursive interpolation error form using our kernels. Under the hypotheses

of the definition 5.4, we can generalize Proposition 5.1 to get

s f ,X j+1,Φ = s f ,X j ,Φ + s f j ,Yj,Φ j+1
for all j ≥ 0. (5.13)

Theorem 5.6. Under the hypotheses of the definition 5.4 and using (5.13), the interpola-

tion error for any function f ∈ NΦ(Ω) is given by

f j = f − s f ,X j ,Φ.

Proof. We will prove it by induction. The assertion is true for j = 0. If it holds for j, we

use (5.13) to get

f j+1 = f j − s f j ,Yj,Φ j+1

= f − s f ,X j ,Φ − s f j,Yj ,Φ j+1

= f − s f ,X j+1,Φ.

The relation of the power kernel to the power function implies that we can generalize the

result of Proposition 5.2 to get

PX j+1,Φ j
(x) = PYj,Φ j+1

(x) for all j ≥ 1. (5.14)
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Proposition 5.2 and (5.14) show

PX j+1,Φ j
(x) = PX j+1,Φ1

(x) for all j ≥ 1. (5.15)

The last work that we wanr to show is to bound the interpolation error on the set Xi.

Lemma 5.7. Under the preceding assumptions of the definition 5.4 and for all x ∈ Ω j we

have:

| f (x)− s f ,X j ,Φ(x)| ≤ PX j,Φ1
(x)‖ f j−1‖Φ1

.

Proof. We start with the definition of f j to get

| f j(x)| = | f j−1(x)− s f j−1,X j−1,Φ j
(x)| ≤ PYj−1,Φ j

(x)‖ f j−1‖Φ j
.

Using (5.14) and (5.15), we get:

PYj−1,Φ j
(x) = PX j,Φ j−1

(x) = PX j,Φ1
(x).

Then

| f j(x)| ≤ PX j,Φ1
(x)‖ f j−1‖Φ1

.

Theorem 5.8. Let Φ be a positive definite kernel on a domain Ω, Xi be a set of point

satisfied the hypothesis of the assumptions of the definition 5.4, and Kx be the power kernel.

Then for any function f ∈ NPO we have:

| f (x)− s f ,X j ,Φ(x)| ≤ PX j,KX
(x)‖ f − s f ,X ,Φ‖Φ.

Proof. Using Corollary 3.1 until order j−1 we get the equation:

‖ f j−1‖
2
Φ1

= ‖ f j−1‖
2
Φ j−1

= ‖ f1‖
2
Φ1

−
j−2

∑
r=1

‖s fr ,Yr,Φr+1
‖2

Φr
,

for all j ≥ 2. We can go one step further, using:

‖ f0‖
2
Φ1

= ‖ f0 − s f0,Y0,Φ1
‖2

Φ1
+‖s f0,Y0,Φ1

‖2
Φ1

= ‖ f1‖
2
Φ1

+‖s f0,Y0,Φ1
‖2

Φ1

to get:

‖ f j−1‖
2
Φ1

= ‖ f0‖
2
Φ1

−
j−2

∑
r=0

‖s fr ,Yr ,Φr+1
‖2

Φr
≤ ‖ f − s f ,X ,Φ‖

2
Φ1

.

If Φ is unconditionally positive definite, we can replace the norm by ‖.‖Φ. Thus the assertion is

proven via Lemma 5.7.
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Using (5.8) and the hypothesis of of the assumptions of the definition 5.4, one can write down

an orthogonal decomposition of the native space related to the above construction as follows:

Theorem 5.9. The orthogonal decomposition of the native space of order n under the

assumptions of the definition 5.4 is given by:

NΦ(Ω) = SXn,Φ + NΦn+1
(Ωn).

Conclusion

The theory of power kernels and their native spaces from any conditionally positive definite

permits to decompose orthogonally the reproducing kernels Hilbert space of a superior order

using any conditionally positive definite kernels into smaller ones. We have shown how to do

this decomposition recursively. We also have shown how the power kernels are used to split

large interpolation problems into smaller ones with different kernels which are related to the

original kernels. This permits to characterize the the interpolant of superior order.
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