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Abstract. In the present paper we consider quartic piecewise polynomial for approxima-

tion to the function f ∈C2[0,1]. A convex type condition has been imposed in the partition

so that the matrix involved for the computation of pp functions is of lower band. This

reduces the computation for constructions of the pp functions for the approximation.
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1 Introduction and Notations

Let 0 = x0 < x1 < · · · < xn = 1 be a mesh, denoted by ∆, of [0,1]. We write

xi − xi−1 = hi, i = 1,2, · · · ,n

and πm the set of all real algebraic polynomials of degree at most m ≥ 1. When the partition

points are equidistant i.e, uniform partition we write h = hi, for i. The class of deficient polyno-

mial splines of degree m with deficiency k, a non-negative integer, k < m−1 is defined as

S(mk,∆) = {s(x) : s(x) ∈Cm−k−1[0,1],s(x) ∈ πm,x ∈ [xi−1,xi], i = 1,2, · · ·n}.

For k = 0, i.e., S(m0,△) = S(m,△) denotes the class of splines of degree m.

The approximation by means of different kind of quartic spline functions has been stud-

ied by Marsden[5], Sharma and Tzimbalario[10] and Rana[8,9]. Spline functions specially cubic

spline functions have been studied extensively, e.g. Meir and Sharma[6,7], Dikshit[1], Dikshit and

Powar[2], and Kumar and Govil[4].

In order to reduce continuity requirements of the spline function, correspondingly restric-

tions of interpolations were imposed and such splines were termed as Deficient Splines. These

functions are also termed as pp functions.

Here continuity requirement of the second derivative of splines function is replaced by the

following condition:

αs(xi−1 + m1hi)+ (1−α)s(xi−1 + m2hi) = s(xi−1 + hi(αm1 +(1−α)m2)), i = 1,2, · · · ,n,

(1)
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where α , m1 and m2 are positive numbers such that 0 < m1 < m2 < 1 and 0 < α < 1. We call this

condition as a convexity type condition and denote such class of spline functions by S(4c
1,∆).

S(3c
1,∆) has a similar meaning for cubic case which was studied by Kumar and Das in [3].

The spline in the class S(4c
1,∆) involves parameters α , m1 and m2. The approximation of the

function naturally depends on the parameters, which are selected so that the error is minimum.

We also consider deviation of the second derivative of the function and the spline function.

First we consider the existence of the Quartic Deficient Spline Function and prove the fol-

lowing:

Theorem 1. Let α , m1 and m2 be non-negative real numbers such that m1 + m2 = 1, α 6=
{0,1} and m2 6= 1

2
. Then there exists a unique 1-periodic function of the class S(4c

1,△) for

uniform partition satisfying the interpolatory condition:

f (xi) = s(xi), i = 1,2, · · · ,n.

provided

m2 ≤
1

α2 +(α −1)2
max{α2,(α −1)2}

m2 ≥
1

α2 +(α −1)2
min{α2,(α −1)2}.

We make use of the following result:

Lemma . (a) Let

Cn(r,q, p;c1,c2) =



























q p 0 0 . . . c1

r q p 0 0 . . 0

0 r q p 0 0 . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

c2 0 0 . . . r q



























,

and Cn = Cn(r,q, p;0,0) = Cn(r,q, p). We have

(i) |Cn| =
β n+1

1 −β n+1
2

β1 −β2

, where β1 + β2 = q and β1 −β2 =
√

q2 −4pr;

(ii) |Cn(r,q, p;r, p)| = q|Cn−1|−2pr|Cn−2 |+(−1)n+1(pn + rn),

where |A| denotes the determinant of the matrix A.

(b) If Cn(r,q, p;r, p) is a non-singular matrix, then the (i, j) entry âi j of its inverse matrix is

given by

âi j =































(−1)i− j{ri− j|Cn−(i− j)−1|+(−1)n pn−(i− j)|Ci− j−1|}
|Cn(r, q, p; r, p)| , j < i,

(−1) j−i{p j−i|Cn−( j−i)−1|+(−1)nrn−( j−i)|C j−i−1|}
|Cn(r, q, p; r, p)| , j > i,

|Cn−1|
|Cn(r, q, p; r, p)| , j = i,
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where |C−1| = 0, |C0| = 1.

The above lemma is contained in [3].

Proof of The Theorem. We write s′′i (x) = s
′′
(x) in [xi−1,xi], i = 1,2, · · · ,n. We have

s′′(x)hi = −Mi−1{2(xi − x)(x− xi−1)− (xi − x)2}
−Mi{2(xi − x)(x− xi−1)− (x− xi−1)

2}
+ ηi{6(xi − x)(x− xi−1)},

where η ′
i s are constants and s′′(xi) = Mi. Whence

s(x)h2 = −Mi−1{
1

3
(xi − x)(x− xi−1)

3 +
1

6
(x− xi−1)

4 − 1

12
(xi − x)4}

−Mi{
1

3
(xi − x)(x− xi−1)

3 +
1

12
(x− xi−1)

4}

+ηi{(xi − x)(x− xi−1)
3 +

1

2
(x− xi−1)

4}+ δi(x− xi−1)hi + γihi,

(2)

where δi and γi are again constants. The interpolatory condition gives

si(xi) = f (xi) = −1

6
hiMi−1 −

1

12
Mihi +

1

2 i
ηi + δihi + γih

2
, i = 1,2, · · ·n. (3)

Now we impose continuity requirement on s(x) at xi, i.e. si(xi) = si+1(xi). This yeilds

ηi =
1

3
Mi +

1

3
Mi−1 −2δi + 2(γi+1 − γi), i = 1,2, · · · ,n. (4)

And the continuity of s′(x) at xi gives

ηi = −1

3
(Mi −Mi−1)+ (δi+1 −δi), i = 1,2, · · · ,n. (5)

We apply the convexity condition, that is, the condition (1), and obtain for i = 1,2, · · · ,n,

A1

A0

Mi−1 +
A2

A0

Mi = ηi, (6)

where

A1 =
1

12
(12α2m2

2 + 3α2 −12α2m2 −12αm2
2 + 16αm2 −5α + 6m2

2 −8m2 + 1),

A2 =
1

12
(−12α2m2 + 12α2m2

2 + 3α2 −12αm2
2 + 8αm2 −α + 6m2

2 −4m2 −1)

and

A0 =
1

2
(α2 −4α2m2 + 4α2m2

2 −4αm2
2 + 4αm2 −α + 2m2

2 −2m2 −1).

Whence

ηi+1 −ηi = −A1

A0

Mi−1 +(
A1 −A2

A0

)Mi +
A2

A0

Mi+1, i = 1,2, · · · ,n. (7)

From (3) and (4) we find that

γi+1 = hi fi −
1

12
Mi. (8)
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From (3) we see that

( fi+1 − fi)hi = − 1

12
Mi −

1

12
Mi+1 +

1

6
Mi−1 +

1

2
(ηi+1 −ηi)

+(δi+1 −δi)+ (γi+1 − γi).

Using (5) - (9) and the fact that M0 = Mn, we obtain the following equations for i = 1,2, · · · ,n:

12A0( fi+1 −2 fi + fi−1)hi

2m2 −1
= rMi−1 + qMi + pMi+1, (10)

where

r = (2α2 −2α + 1)m2 −α2 + 2α −1

q =
8(2α −1−2α2)m2 + 8(2α2 −2α + 1)m2

2 + 4α(α −1)−1

2m2 −1

p = (2α2 −2α + 1)m2 −α2
.

The coefficient matrix of the equation (10) is A = Cn(r,q, p;r, p). It can be seen that the

coefficient r of Mi−1 is non-negative for

m2 ≥
(α −1)2

α2 +(α −1)2
. (11)

Further, we see that the numerator of the coefficient of q of Mi is zero for

m2 =
1

2
+

1

4

√
12α2 −12α + 6

2α2 −2α + 1
> 1 for 0 ≤ α ≤ 1 (12)

and

m2 =
1

2
− 1

4

√
12α2 −12α + 6

2α2 −2α + 1
< 0 for 0 ≤ α ≤ 1. (13)

For m2 = 0 we find that the numerator of the coefficient q of Mi is

4α(α −1)−1 < 0.

Thus, the numerator of q has negative sign for 0 ≤ m2 ≤ 1.

The coefficient p of Mi+1 is non-negative for

m2 ≥
α2

α2 +(α −1)2
. (14)

We have

max{α2
,(1−α)2} = (1−α)2 or α2 if α <

1

2
or α >

1

2
.

Thus for α <
1

2
and m2 ≥

(α −1)2

α2 +(α −1)2
>

1

2
or for α >

1

2
and m2 ≥

α2

α2 +(α −1)2
>

1

2
.

We see that for this case

D1 = −Coeff. of Mi −Coeff. of Mi−1 −Coeff. of Mi+1

=
6[(4α2 −4α + 2)m2(1−m2)+ α(1−α)]

2m2 −1
> 0.

(15)
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That is the matrix is diagonally dominant with diagonal element of coefficient of Mi for

m2 ≥
1

α2 +(α −1)2
max{α2

,(1−α)2}.

Now min{α2,(α −1)2} = (α −1)2 or α2 according as α >
1

2
or α <

1

2
. We have in either

case m2 <
1

2
. Again for m2 ≤

1

α2 +(α −1)2
min{α2,(α −1)2}.

In this case we have

D2 = Coeff. of Mi + Coeff. of Mi−1 + Coeff. of Mi+1

=
6[(4α2 −4α + 2)m2(1−m2)+ α(1−α)]

1−2m2

> 0
(15′)

that is, in this case also the matrix is also diagonally dominant with the diagonal element Mi.

2 Error of Approximation

We denote the error function s(x)− f (x) by e(x). We use the notation g(xi) = gi. From

equation(10), we have

re
′′
i−1 + qe

′′
i + pe

′′
i+1 =

12A0( fi+1 −2 fi + fi−1)h
−2

2m2 −1
− r f

′′
i−1 −q f

′′
i − p f

′′
i+1.

By Taylor′s theorem we can write

( fi+1−2 fi + fi−1)h
−2 = f ′′(δi−1)+

1

2
[ f ′′(ηi)− f ′′(ηi−1)],

where xi ≤ ηi ≤ xi+1 andxi−1 ≤ δi−1 ≤ xi. Using this we get

(2m2 −1)(r e
′′
i−1 + q e

′′
i + p e

′′
i+1)

= 12A0( f ′′(δi−1)+
1

2
[ f ′′(ηi)]− f ′′(ηi−1))]− (2m2 −1)(r f

′′
i−1 + q f

′′
i + p f

′′
i+1).

We denote the expression on the right hand side by Ui. We have

Ui = 6A0[ f ′′(δi−1)− f ′′(ηi−1)]+q(2m2 −1)[ f ′′(ηi)− f ′′i ]+ r(2m2 −1)[ f ′′(δi−1)− f ′′i−1]

+(R1 −2) f ′′(ηi)+ (R2 −4) f ′′(δi−1)− (2m2 −1)p f ′′i+1

= 6A0[ f ′′(δi−1)− f ′′(ηi−1)]+q(2m2 −1)[ f ′′(ηi)− f ′′i ]

+r(2m2 −1)[ f ′′(δi−1)− f ′′i−1]+ R1[ f ′′(ηi)− f ′′i+1]

+R2[ f ′′(δi−1)− f ′′i+1]−4 f ′′(δi−1)−2 f ′′(ηi),

where R1 = 6A0 − (2m2 −1)q+ 2 and R2 = 6A0 − (2m2 −1)r + 4.

Hence

|Ui| ≤ [−6A0 +(1−2m2)q+ |r(2m2 −1)|]ω( f ′′;h)+ (R1 + |R2|)ω( f ′′;2h)+ 6|| f ′′||,
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since,

|A0| = −A0, |q(2m2 −1)| = (1−2m2)q

and

|R1| = R1, ω( f ,2h) ≤ 2ω( f ,h).

Thus, we have

max |e′′i | = e = ||A−1||[−6A0 +(1−2m2)q+ |r(2m2 −1)|2R1 + 2|R2|]ω( f ′′;h)+ 6|| f ′′||.

From (1) and (6), we obtain

e
′′
(x) = h−2[

A1

A0

(xi − x)(x− xi−1)−2(xi − x)(x− xi−1)+ (xi − x)2]e
′′
i−1

+h−2[
A2

A0

(xi − x)(x− xi−1)−2(xi − x)(x− xi−1)+ (x− xi−1)
2]e

′′
i

+h−2[
A1

A0

(xi − x)(x− xi−1)−2(xi − x)(x− xi−1)+ (xi − x)2] f
′′
i−1

+h−2[
A2

A0

(xi − x)(x− xi−1)−2(xi − x)(x− xi−1)+ (x− xi−1)
2] f

′′
i − f

′′
(x).

Observing that for xi−1 ≤ x ≤ xi,

(xi − x)(x− xi−1) ≤
h2

4
, −2(xi − x)(x− xi−1)+ (xi − x)2 ≤ h2

,

and

−2(xi − x)(x− xi−1)+ (x− xi−1)
2 ≤ hi,

we get

|e′′
(x)| ≤ (

3

2
|A1

A0

|+ 1)
(

|e′′
i−1|+ | f ′′

i−1|
)

+

(

3

2
|A2

A0

|+ 1

)

(

|e′′
i |+ | f ′′

i |
)

+ | f ′′
(x)|

≤ (
3

2
(|A1

A0

|+ |A2

A0

|+ 2))e+ || f ′′||((3

2
(|A1

A0

|+ |A2

A0

|+ 2))+ 1).

Since e(xi−1) = e(xi) = 0, we get by Rolle
′
s theorem a point x

′
i−1 say, where xi−1 ≤ x

′
i−1 ≤ xi

such that e
′
(x′i−1) = 0. Hence

|e′
(x)| ≤

∫ x

x
′
i−1

|e′′
(x)|dx.

Similarly,

|e(x)| ≤
∫ x

xi−1

|e′
(x)|dx.

Hence,

||e|| ≤ h2 max ||e′′(x)|| ≤ h2[(
3

2
(|A1

A0

|+ |A2

A0

|+ 2))([−6A0

+(1−2m2)q+ 2R1 + 2|R2||r(2m2 −1)|]ω( f ′′;h))

+|| f ′′||(6+(
3

2
(|A1

A0

|+ |A2

A0

|+ 2)+ 1))].

(16)
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Thus we have proved the following :

Theorem 2. The spline function of Theorem 1 approximates f ∈C2[0,1] by the error given

by relation (16).

Remarks. We consider particular cases for illustrations : Let m1 = 0.1,m2 = 0.9 and α =

0.25. The system of equation (10) becomes

( fi+1 −2 fi + fi−1)h
−2 =

11

39
Mi −

2

39
Mi+1.

In general from the equation (10) it follows that the coefficient of Mi−1 is zero for

m2 =
(α −1)2

α2 +(α −1)2

and the coefficient of Mi+1 is zero for

m2 =
α2

α2 +(α −1)2
.

Thus the equation (10) can be reduced so that the coefficient matrix A of M′
is becomes two

band matrix.

Now we consider the case in more detail when the coefficient of Mi−1 is zero then the system

of equation (10) takes the form

−6( fi+1 −2 fi + fi−1)h
−2(α2 −α + 1) = q0Mi + p0Mi+1,

where q0 = 2α2 −2α −1 and p0 = 4α2 −4α + 1.

We see that, by the lemma |Cn| = |A| = qn
0. And the inverse of matrix A is

âi j =











































(−1)i− j
{

(−1)n p
n−(i− j)
0 q

i− j−1
0

}

qn
0 +(−1)n+1 pn

0

, j < i;

(−1) j−i
{

p
j−i
0 q

n−( j−i)−1
0

}

qn
0 +(−1)n+1 pn

0

, j > i;

qn−1
0

qn
0 +(−1)n+1 pn

0

, j = i.

From the above we find that

n

∑
j=1

|âi j| ≤
p0(pn−1

0 −qn−1
0 )

(p0 −q0)(q
n
0 +(−1)n+1 pn

0)
,

i.e.,

||A−1|| ≤ p0(pn−1
0 −qn−1

0 )

(p0 −q0)(q
n
0 +(−1)n+1 pn

0)
.

For the general case ||A−1|| can be obtained from (15) or (15′).
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