STANCU POLYNOMIALS BASED ON THE Q-INTEGERS

Xueyan Xiang
(Lishui University, China)

Received Mar. 18, 2011

Abstract

A new generalization of Stancu polynomials based on the q-integers and a nonnegative integer s is firstly introduced in this paper. Moreover, the shape-preserving and convergence properties of these polynomials are also investigated.

Key words: Stancu polynomial, q-integer, q-derivative, shape-preserving property, convergence rate, modulus of continuity
AMS (2010) subject classification: 41 A 10

1 Introduction

In 1981 Stancu proposed a kind of generalized Bernstein polynomials, namely Stancu polynomials, which was defined as:

Definition ${ }^{[1]}$. Let s be an integer and $0 \leq s<\frac{n}{2}$, for $f \in C[0,1]$,

$$
\begin{equation*}
L_{n, s}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) b_{n, k, s}(x) \tag{1.1}
\end{equation*}
$$

where

$$
b_{n, k, s}(x)= \begin{cases}(1-x) p_{n-s, k}(x), & 0 \leq k<s \\ (1-x) p_{n-s, k}(x)+x p_{n-s, k-s}(x), & s \leq k \leq n-s \\ x p_{n-s, k-s}(x), & n-s<k \leq n\end{cases}
$$

and $p_{j, k}(x)$ are the base functions of Bernstein polynomials.
It is not difficult to see that for $s=0,1$ the Stancu polynomials are just the classical Bernstein polynomials. For $s \geq 2$, these polynomials possess many remarkable properties, which have made them an area of intensive research (see $[2,3,4,5]$).

Throughout this paper we employ the following notations of q-Calculus. Let $q>0$. For each nonnegative integer k, the q-integer $[k]$ and the q-factorial $[k]$! are defined by

$$
[k]= \begin{cases}\frac{1-q^{k}}{1-q}, & q \neq 1 \\ k, & q=1\end{cases}
$$

$$
[k]!= \begin{cases}{[k][k-1] \cdots[1],} & k \geq 1 \\ 1, & k=0\end{cases}
$$

For $n, k, n \geq k \geq 0, q$-binomial coefficients are defined naturally as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

Now let's introduce a new generalization of Stancu polynomials as below.
Definition 2. Let s be an integer and $0 \leq s<\frac{n}{2}, q>0, n>0$, for $f \in C[0,1]$,

$$
\begin{equation*}
L_{n, s}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n, k, s}(q ; x) \tag{1.2}
\end{equation*}
$$

where

$$
b_{n, k, s}(q ; x)= \begin{cases}\left(1-q^{n-k-s} x\right) p_{n-s, k}(q ; x), & 0 \leq k<s \\ \left(1-q^{n-k-s} x\right) p_{n-s, k}(q ; x)+q^{n-k} x p_{n-s, k-s}(q ; x), & s \leq k \leq n-s \\ q^{n-k} x p_{n-s, k-s}(q ; x), & n-s<k \leq n\end{cases}
$$

and

$$
p_{n-s, k}(q ; x)=\left[\begin{array}{c}
n-s \\
k
\end{array}\right] x^{k} \prod_{l=0}^{n-s-k-1}\left(1-q^{l} x\right), \quad k=0,1, \cdots, n-s
$$

(agree on $\prod_{l=0}^{0}=1$).
It is worth mentioning that the q-Stancu polynomials defined as (1.2) differ essentially from the q-Stancu polynomials in [6]. To get their q-Stancu polynomials in [6] the authors just generalized the control points of the Stancu polynomials based on the q-integers leaving alone the basis functions. While in our q-Stancu polynomials both the control points and the basis functions are the q-analogue of those in Stancu polynomials. As a result, it is not a strange thing that these two q-Stancu polynomials behave quite differently properties, especially in the approximation problem.

It can be easily verified that in case $q=1, L_{n, s}(f, q ; x)$ reduce to the Stancu polynomials and in case $s=0,1, L_{n, s}(f, q ; x)$ coincide with the q-Bernstein polynomials which are defined by Phillips in [7] and have been intensively investigated during these years (see [8-12]).

By some direct calculations, one can get the following two representations: for $f \in C[0,1]$, an integers and $0 \leq s<\frac{n}{2}$,

$$
\begin{equation*}
L_{n, s}(f, q ; x)=\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) f\left(\frac{[k]}{[n]}\right)+q^{n-k-s} x f\left(\frac{[k+s]}{[n]}\right)\right\} p_{n-s, k}(q ; x) \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
L_{n, s}(f, q ; x)=\sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]} f\left(\frac{[s-1+k]}{[n]}\right)\right\} p_{n-s+1, k}(q ; x) . \tag{1.4}
\end{equation*}
$$

Except the above two representations, Stancu polynomials based on q-integers possess the following essential properties.

Proposition 1. For $0<q<1, L_{n, s}(\cdot, q)$ is a positive linear operator, while for $q>1$ it is not true, as the positiveness fails.

Proposition 2. Let $q>0$. For $e_{i}=x^{i}, i=0,1,2$, hold $L_{n, s}\left(e_{0}, q ; x\right) \equiv 1, L_{n, s}\left(e_{1}, q ; x\right)=e_{1}$,

$$
L_{n, s}\left(e_{2}, q ; x\right)=e_{2}+\left(\frac{[1]}{[n]}+\frac{q^{n-s}[s]^{2}-q^{n-s}[s]}{[n]^{2}}\right) x(1-x)
$$

Proposition 3. For any function $f(x)$ and parameter $q>0$, hold $L_{n, s}(f, q ; 0)=f(0), L_{n}(f, q ; 1)=$ $f(1)$.

Proposition 4. Let $0<q<1$. For a concave function $f(x)$ on [0,1], holds $L_{n, s}(f, q ; x)>$ $B_{n-s+1}(f, q ; x)$.

The following are our main results on shape-preserving properties.

2 Shape-Preserving Properties

To begin with, we should recall the conception of q -derivative. Let $q>0$ and $q \neq 1$. For a function $f(x)$, its q -derivative denoted by $D_{q}(f)(x)$, is defined as

$$
D_{q}(f)(x)= \begin{cases}\frac{f(q x)-f(x)}{(q-1) x}, & x \neq 0 \\ \lim _{t \rightarrow 0} D_{q}(f)(t), & x=0\end{cases}
$$

and the higher q-derivatives are defined recursively by

$$
D_{q}^{n} f=D_{q}\left(D_{q}^{n-1} f\right), \quad n=1,2, \cdots, D_{q}^{0} f=f
$$

Under the above definition, one can see for $x \neq 0$ the existence of $D_{q}^{n}(f)(x)$ is sure and if $f(x)$ is continuous the continuity of $D_{q}^{n}(f)(x)$ can also be guaranteed. The usual derivative $f^{\prime}(x)$ is just equal to the limit of $D_{q}(f)(x)$ as q trends to 1 . Moreover, the following lemma holds.

Lemma 1. Let $f(x)$ be a continuous function on $[0,1]$ satisfying $f(0)=f(1)$. Then there exists $\xi \in(0,1)$ such that

$$
D_{q}(f)(\xi)=0
$$

holds for all $q \in(0,1) \cup(1,+\infty)$.
This lemma improves the q-Rolle theorem (see [13, Th.2.1]) with respect to the range of q.

Proof. As $f(x)$ is continuous on $[0,1]$ and $f(0)=f(1)$, there exist either the maximum or the minimum points in the inner of $[0,1]$. In the following we discuss the sign of $D_{q}(f)(1)$ under the condition $q \in(0,1)$.

Case $1 \quad D_{q}(f)(1)<0$. In this case, we have $f(q)>f(1)$ as $q \in(0,1)$. Then without loss of generality, we can assume that there exists $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=\max _{0 \leq x \leq 1} f(x)$. Evidently, $D_{q}(f)\left(x_{0}\right)>0$. From the continuity of $D_{q}(f)(x), x \in(0,1]$, we can conclude that there exists $\xi \in\left(x_{0}, 1\right) \varsubsetneqq(0,1)$ such that $D_{q}(f)(\xi)=0$.

Case $2 D_{q}(f)(1)>0$. Using the similar method of Case 1, we get that there exists $\xi \in$ $(0,1)$ such that $D_{q}(f)(\xi)=0$.

Case $3 \quad D_{q}(f)(1)=0$. In this case, we have $f(q)=f(1)=f(0)$. Repeat the above discussion for $D_{q}(f)(q)$, then we get: for $D_{q}(f)(q) \neq 0$, there exists $\xi \in(0, q)$ such that $D_{q}(f)(\xi)=0$; otherwise the result of the lemma holds naturally as $\xi=q$.

As a conclusion, the result holds for all $1>q>0$.
For $q \in(1,+\infty)$, discussing $D_{q}(f)\left(\frac{1}{q}\right)$ instead of $D_{q}(f)(1)$, we can prove the result of the lemma by the similar way.

Furthermore, based on Lemma 1, we get a more explicit result of Theorem 2.3 in [13].
Lemma 2. Let x and $x_{0}, x_{1}, \cdots, x_{n}$ be any distinct points in the interval $[0,1]$. Let $f(x)$ be a continuous function on $[0,1]$. Then there exists $\xi_{x} \in(0,1)$ such that for all $q \in(0,1) \cup(1,+\infty)$ holds

$$
f\left[x, x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{D_{q}^{n+1}(f)\left(\xi_{x}\right)}{[n+1]!},
$$

where $f\left[x, x_{0}, x_{1}, \cdots, x_{n}\right]$ denotes the divided difference of $f(x)$ at points $\left\{x, x_{0}, x_{1}, \cdots, x_{n}\right\}$.
Proof. Because of the continuity of $f(x)$ and the definition of $D_{q}^{k}(f), k=0,1, \cdots$, $D_{q}^{n+1}(f)(x)$ exists in $(0,1)$. Using Lemma 1 to replace the q -Rolle theorem in the proof of Theorem 2.3 in [13], we can get the result of Lemma 2.

In this section, we use $\Delta_{q} f$ to denote the q-differences of function $f(x)$. Especially, $\Delta_{q}^{0} f_{i}=f_{i}$ for $i=0,1, \cdots, n$ and

$$
\Delta_{q}^{k+1} f_{i}=\Delta_{q}^{k} f_{i+1}-q^{k} \Delta_{q}^{k} f_{i},
$$

for $k=0,1, \cdots, n-i-1$, where f_{i} denotes $f\left(\frac{[i]}{[n]}\right)$.
Theorem 1. Let $0<q<1$, abd s an integer satisfying $0 \leq s<\frac{n}{2}$, and $f(x)$ be a continuous, increasing function on $[0,1]$, then $L_{n, s}(f, q ; x)$ is increasing on $[0,1]$.

Proof. As for $s=0,1, q$-Stancu polynomials coincide with the q-Berntein polynomials, which possess the shape preserving properties[8], we just focus on the case $2 \leq s<\frac{n}{2}$. By
directly computing, we get

$$
\begin{aligned}
D_{q}\left(L_{n, s}(f, q)\right)(x)= & \sum_{k=0}^{n-s}\left\{[n-s-k] \Delta_{q}^{1} f_{k}+q^{n-s-k}[k+1] \Delta_{q}^{1} f_{s-1+k}\right. \\
& \left.+q^{n-s-k}[1]\left[f\left(\frac{[s-1+k]}{[n]}\right)-f\left(\frac{[k]}{[n]}\right)\right]\right\} \frac{p_{n-s, k}(q ; q x)}{q^{k}}
\end{aligned}
$$

As $f(x)$ is an increasing function, for $k=0,1, \cdots, n-s$, hold $\Delta_{q}^{1} f_{k}>0$ and $\Delta_{q}^{1} f_{s-1+k}>0$, $f\left(\frac{[s-1+k]}{[n]}\right)-f\left(\frac{[k]}{[n]}\right)>0$. Then $D_{q}\left(L_{n, s}(f, q ; x)\right)>0$ in $(0,1]$.

By Lemma 2, we have: for any $x_{1}, x_{2} \in[0,1]$, there exists $\xi \in(0,1)$ such that

$$
L_{n, s}(f, q)\left[x_{1}, x_{2}\right]=D_{q}\left(L_{n, s}(f, q)\right)(\xi)
$$

Thus, for any $x_{1} \leq x_{2} \in[0,1]$, hold $L_{n, s}(f, q)\left[x_{1}, x_{2}\right]>0$. Up to now, the monotonic increasing property of $L_{n, s}(f, q ; x)$ can be got directly.

For the convex function $f(x)$ which is the linear spline joining up the points $(0,0),(0.2,0.6)$, $(0.6,0.8),(0.9,0.7)$ and $(1,0)$, it is illustrated by Figure 1 that $L_{n, s}(f, q ; x)$ is also convex on $[0,1]$ with $q=0.7,0.5$ and $s=3,5$. In fact, we will show that it possesses more than this.

Theorem 2. Let $0<q<1$, and s an integer satisfying $0 \leq s<\frac{n}{2}$, and $f(x)$ be a continuous convex function on $[0,1]$, then $L_{n, s}(f, q ; x)$ is also convex on $[0,1]$ and $L_{n, s}(f, q ; x) \leq f(x)$. Moreover, for any $x \in[0,1], L_{n, s}(f, q ; x)$ is monotonic decreasing in the parameter n.

Proof. Firstly, we have

$$
\begin{aligned}
& D_{q}^{2}\left(L_{n, s}(f, q)\right)(x)=[n-s] \sum_{k=0}^{n-s-1}\left\{[n-s-k-1] \Delta_{q}^{2} f_{k}+q^{n-s-k-1}[k+2] \Delta_{q}^{2} f_{s-1+k}\right. \\
& \left.\quad+\frac{q^{n-s}[2][s-1]}{[n]}\left[f\left[\frac{[s+k]}{[n]}, \frac{[k+1]}{[n]}\right]-f\left[\frac{[s-1+k]}{[n]}, \frac{[k]}{[n]}\right]\right]\right\} \frac{p_{n-s-1, k}\left(q ; q^{2} x\right)}{q^{2}} .
\end{aligned}
$$

As $f(x)$ is convex on $[0,1]$, for any $k=0,1, \cdots, n-s-1$, holds

$$
\Delta_{q}^{2} f_{k}=f\left(\frac{[k+2]}{[n]}\right)-(1+q) f\left(\frac{[k+1]}{[n]}\right)+q f\left(\frac{[k]}{[n]}\right)>0 .
$$

In the same way, we get for $k=0,1, \cdots, n-s-1, \Delta_{q}^{2} f_{s-1+k}>0$. And for $k=0,1, \cdots, n-$ $s-1$, the differences $f\left[\frac{[s+k]}{[n]}, \frac{[k+1]}{[n]}\right]-f\left[\frac{[s-1+k]}{[n]}, \frac{[k]}{[n]}\right]>0$ are also guaranteed by the increasing property of the convex function in the slope of chord. Therefore,

$$
\begin{equation*}
D_{q}^{2}\left(L_{n, s}(f, q)\right)(x)>0, \quad x \in(0,1] . \tag{2.1}
\end{equation*}
$$

Combining (2.1) with Lemma 2, we obtain that $L_{n, s}(f, q ; x)$ is convex on $[0,1]$.

Secondly, using the Jessen inequality for the convex function and the proposition 2, we get

$$
\begin{aligned}
L_{n, s}(f, q ; x) & =\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) f\left(\frac{[k]}{[n]}\right)+q^{n-k-s} x f\left(\frac{[k+s]}{[n]}\right)\right\} p_{n-s, k}(q ; x) \\
& \geq \sum_{k=0}^{n-s} f\left(\left(1-q^{n-k-s} x\right) \cdot \frac{[k]}{[n]}+q^{n-k-s} x \cdot \frac{[k+s]}{[n]}\right) p_{n-s, k}(q ; x) \\
& \geq f\left(\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) \frac{[k]}{[n]}+q^{n-k-s} x \frac{[k+s]}{[n]}\right\} p_{n-s, k}(q ; x)\right) \\
& =f(x) .
\end{aligned}
$$

Thirdly, before the proof of the monotonic property of $L_{n, s}(f, q ; x)$ in the parameter n, it is necessary to recommend some notations. We denote

$$
\varphi_{n, k}(x)=\left[\begin{array}{c}
n-s+2 \\
k
\end{array}\right] x^{k} \prod_{l=n-s+2-k}^{n-s+1}\left(1-q^{l} x\right)^{-1}, \quad x_{n, k}=\frac{[k]}{[n]}, k=0,1, \cdots, n .
$$

It follows from the convex inequality of $f(x)$ that for $s \geq 1,0<q<1$ and $x \in[0,1]$,

$$
\begin{aligned}
& \left\{L_{n+1, s}(f, q ; x)-L_{n, s}(f, q ; x)\right\} \prod_{l=0}^{n-s+1}\left(1-q^{l} x\right)^{-1} \\
& \quad=\sum_{k=1}^{n-s+1}\left\{\frac{[n-s+2-k]}{[n-s+2]} f\left(x_{n+1, k}\right)+\frac{q^{n-s+2-k}[k]}{[n-s+2]} f\left(x_{n+1, s-1+k}\right)\right. \\
& \quad-\frac{[n-s+2-k]}{[n-s+2]}\left(\frac{[n-s+1-k]}{[n-s+1]} f\left(x_{n, k}\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]} f\left(x_{n, s-1+k}\right)\right) \\
& \left.\quad-\frac{q^{n-s+2-k}[k]}{[n-s+2]}\left(\frac{[n-s+2-k]}{[n-s+1]} f\left(x_{n, k-1}\right)+\frac{q^{n-s+2-k}[k-1]}{[n-s+1]} f\left(x_{n, s-2+k}\right)\right)\right\} \varphi_{n, k}(x) \\
& \quad \leq \sum_{k=1}^{n-s+1}\left\{\frac{[n-s+2-k]}{[n-s+2]}\left(f\left(x_{n+1, k}\right)-f\left(\eta_{1}\right)\right)+\frac{q^{n-s+2-k}[k]}{[n-s+2]}\left(f\left(x_{n+1, s-1+k}\right)-f\left(\eta_{2}\right)\right)\right. \\
& \left.\quad+\frac{q^{n-s+1-k}[k][n-s+2-k](1-q)}{[n-s+1][n-s+2]}\left(f\left(x_{n, k}\right)-f\left(x_{n, s-2+k}\right)\right)\right\} \varphi_{n, k}(x),
\end{aligned}
$$

where

$$
\begin{gathered}
\eta_{1}=\frac{q^{n-s+2-k}[k]}{[n-s+1]} \cdot \frac{[k-1]}{[n]}+\left(1-\frac{q^{n-s+2-k}[k]}{[n-s+1]}\right) \cdot \frac{[k]}{[n]}, \\
\eta_{2}=\frac{[n-s+2-k]}{[n-s+1] q} \cdot \frac{[s-1+k]}{[n]}+\left(1-\frac{[n-s+2-k]}{q[n-s+1]}\right) \cdot \frac{[s-2+k]}{[n]} .
\end{gathered}
$$

For the sake of convenience, we denote

$$
\lambda_{1}=\frac{q^{n-s+1}[k][n-s+2-k]\left\{q^{n}+[s-1]\right\}}{[n-s+1][n-s+2][n][n+1]},
$$

$$
\lambda_{2}=\frac{q^{n-s+1}[k][n-s+2-k]\left\{q^{s-2}+q^{n}[s-1]\right\}}{[n-s+1][n-s+2][n][n+1]},
$$

then we have

$$
\begin{aligned}
& \left\{L_{n+1, s}(f, q ; x)-L_{n, s}(f, q ; x)\right\} \prod_{l=0}^{n-s+1}\left(1-q^{l} x\right)^{-1} \\
\leq & \sum_{k=1}^{n-s+1}\left\{\lambda_{1}\left(f\left[\eta_{1}, x_{n+1, k}\right]-f\left[x_{n, k}, x_{n, s-2+k}\right]\right)+\lambda_{2}\left(f\left[x_{n, k}, x_{n, s-2+k}\right]-f\left[x_{n+1, s-1+k}, \eta_{2}\right]\right)\right\} \varphi_{n, k}(x) .
\end{aligned}
$$

As

$$
x_{n, k-1}<\eta_{1}<x_{n+1, k}<x_{n, k}<x_{n, s-2+k}<x_{n+1, s-1+k}<\eta_{2}<x_{n, s-1+k}
$$

$\lambda_{i} \geq 0, i=1,2$, and $f(x)$ is convex on $[0,1]$, we have for n sufficiently large that

$$
\begin{equation*}
L_{n+1, s}(f, q ; x)-L_{n, s}(f, q ; x) \leq 0 \tag{2.2}
\end{equation*}
$$

holds for all $x \in[0,1]$. For $s=0,(2.2)$ is clear. The proof of Theorem 2 is complete.

3 Approximation Theorem

For $0<q<1, f \in C[0,1]$, it is not difficult to get for $x \in[0,1]$,

$$
\begin{equation*}
\left|L_{n, s}(f, q ; x)-f(x)\right| \leq 2 \omega\left(f, \sqrt{\left(\frac{[1]}{[n]}+\frac{q^{n-s}[s]^{2}-q^{n-s}[s]}{[n]^{2}}\right) x(1-x)}\right) \tag{3.1}
\end{equation*}
$$

where $\omega(f, t)$ is the usual modulus of continuity of the function $f(x)$.
As for a fixed q satisfying $0<q<1, \lim _{n \rightarrow \infty}[n]^{-1}=0$ does not hold, we can conclude that the generalization of Stancu operator $L_{n, s}(f, q)$ does not converge to the mother function $f(x)$ any more, whatever the parameter s is. While for $q=q(n) \in(0,1]$ and $\lim _{n \rightarrow \infty} q_{n}=1, L_{n, s}\left(f, q_{n} ; x\right)$ converges to the continuous function $f(x)$ uniformly for $x \in[0,1]$. However, the approximation rate can not be better than the Stancu polynomials. Actually, under some necessary condition of integer s, for $f \in C[0,1], L_{n, s}(f, q ; x)$ converges to a limit operator which is defined as:

Definition $3^{[7]}$. For any nonnegative integer $n, f(x) \in C[0,1]$,

$$
B_{\infty}(f, q ; x)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty, k}(q ; x), \quad 0 \leq x<1 \tag{3.2}\\
f(1), \quad x=1
\end{array}\right.
$$

where $p_{\infty, k}(q ; x)=\frac{x^{k}}{(1-q)^{k}[k]!} \prod_{s=0}^{\infty}\left(1-q^{s} x\right)$.
In detail, we have the following theorem.

Theorem 3. Let $f(x) \in C[0,1]$, abd s an integer with $0 \leq s<\frac{n}{2}$, and $0<q<1$, then holds

$$
\begin{equation*}
\left\|L_{n, s}(f, q ; x)-B_{\infty}(f, q ; x)\right\|_{C} \leq\left(4-\frac{4 \ln (1-q)}{q(1-q)}\right) \omega\left(f, q^{n-s+1}\right) \tag{3.3}
\end{equation*}
$$

It can be seen from this theorem that for fixed integer s or $s=s(n), n-s(n) \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty}\left\|L_{n, s}(f, q ; x)-B_{\infty}(f, q ; x)\right\|_{C}=0
$$

holds for $0<q<1$. This result has some slightly difference with the corresponding result of Stancu operator in [2]. To Stancu operator, when $s=s(n)$ it should satisfy $s=o(n)$ as $n \rightarrow \infty$ to make sure the convergence of the relevant Stancu polynomial. While to q-Stancu operator it only needs $n-s(n) \rightarrow \infty$. Hereby for $s=s(n)=\frac{n-1}{2}, \frac{n}{3}, \frac{n}{4}, \cdots$, we still have $\lim _{n \rightarrow \infty}\left\|L_{n, s}(f, q ; x)-B_{\infty}(f, q ; x)\right\|_{C}=0$, but for Stancu operator it doesn't hold any longer.

Proof of Theorem 3. Based on the proposition 2 and the linear preserving properties of the limit operator $B_{\infty}(\cdot, q)$ [7], we can assume $f(0)=f(1)=0$ without loss of generality.

Then we have

$$
\begin{aligned}
& \left|L_{n, s}(f, q ; x)-B_{\infty}(f, q ; x)\right| \\
& =\left\lvert\, \sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]} f\left(\frac{[s-1+k]}{[n]}\right)\right\} p_{n-s+1, k}(q ; x)\right. \\
& \quad-\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty}(q ; x) \mid \\
& \leq \left\lvert\, \sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]}\left(f\left(\frac{[k]}{[n]}\right)-f\left(1-q^{k}\right)\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]}\left(f\left(\frac{[s-1+k]}{[n]}\right)\right.\right.\right. \\
& \left.\left.\quad-f\left(1-q^{k}\right)\right)\right\} p_{n-s+1, k}(q ; x)\left|+\left|\sum_{k=0}^{n-s+1}\left(f\left(1-q^{k}\right)-f(1)\right)\left(p_{n-s+1, k}(q ; x)-p_{\infty, k}(q ; x)\right)\right|\right. \\
& \quad+\left|\sum_{k=n-s+2}^{\infty}\left(f\left(1-q^{k}\right)-f(1)\right) p_{\infty, k}(q ; x)\right|:=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

From the proof of Theorem 1 in [11], we know

$$
I_{2} \leq \frac{-4 \ln (1-q)}{q(1-q)} \omega\left(f, q^{n-s+1}\right), \quad \quad I_{3} \leq \omega\left(f, q^{n-s+1}\right)
$$

Since for $0<\delta \leq \eta \leq 1$, holds $\frac{\omega(f, \eta)}{\eta} \leq 2 \frac{\omega(f, \delta)}{\delta}$, then we have

$$
\begin{aligned}
I_{1} & \leq \sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]} \omega\left(f, \frac{[k]}{[n]} q^{n}\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]} \omega\left(f, \frac{[s-1]}{[n]} q^{k}+\frac{[k]}{[n]} q^{n}\right)\right\} p_{n-s+1, k}(q ; x) \\
& \leq \sum_{k=0}^{n-s+1} \omega\left(f, \frac{[k]}{[n]} q^{n}\right) p_{n-s+1, k}(q ; x)+\sum_{k=0}^{n-s+1} \frac{q^{n-s+1}[k]}{[n-s+1]} \frac{[s-1]}{[n]} \frac{\omega\left(f, \frac{[s-1]}{[n]} q^{k}\right)}{\frac{[s-1]}{[n]} q^{k}} p_{n-s+1, k}(q ; x) \\
& \leq \omega\left(f, q^{n}\right)+\sum_{k=0}^{n-s+1} \frac{q^{n-s+1}[k]}{[n-s+1]} \frac{[s-1]}{[n]} \frac{2 \omega\left(f, \frac{[s-1]}{[n]} q^{n-s+1}\right)}{\frac{[s-1]}{[n]} q^{n-s+1}} p_{n-s+1, k}(q ; x) \\
& \leq \omega\left(f, q^{n}\right)+2 \omega\left(f, \frac{[s-1]}{[n]} q^{n-s+1}\right) \sum_{k=0}^{n-s+1} \frac{[k]}{[n-s+1]} p_{n-s+1, k}(q ; x) \\
& \leq \omega\left(f, q^{n}\right)+2 x \omega\left(f, \frac{[s-1]}{[n]} q^{n-s+1}\right) .
\end{aligned}
$$

Combining the results of I_{1}, I_{2}, I_{3} we complete the proof of Theorem 3 .
Figure 1 The function $f(x)$ is the segment by segment linear function combining $(0,0),(0.2,0.6)$, $(0.6,0.8),(0.9,0.7)$ and $(1,0)$. The others are $L_{15,3}(f, 0.7 ; x), L_{11,5}(f, 0.7 ; x), L_{7,3}(f, 0.7 ; x)$ and $L_{20,3}(f, 0.5 ; x)$ from up to down.

References

[1] Stancu, D. D., Oberwolfach (ed by Hämmerlin G.), Pro. Conf. Math. Res. Inst., 1981, 241-251.
[2] Cao, F. L., The Approximation Theorems for Stancu Polynomials, Journal of Qufu Normal University 24:3(1998), 25-30.
[3] Cao, F. L. and Xu, Z. B., Stancu Polynomials Defined on a Simplex and Best Polynomial Approximation, Acta Mathematic Sinica, 46:1(2003), 189-196.
[4] Cao, F. L. and Yang, R. Y., Optimal Approximation Order and its Characterization for Multivariate Stancu Polynomials, Acta Mathematicae Applicatae Sinica, 27:2(2004), 218-229.
[5] Cao, F. L., Multivariate Stancu Polynomials and Modulus of Continuity, Acta Mathematic Sinica, 48:1(2005), 51-62.
[6] Li, F. J., Xu, Z. B. and Zhen, K. J., Optimal Approximation Order for q-Stancu Operators Defined on a Simplex, Acta Mathematica Sinica, 51(2008), 135-144.
[7] Phillips, G. M., Bernstein Polynomials Based on the q-integers, Ann. Numer Math., 4(1997), 511-518.
[8] Goodman, T. N. T., Oruc, H. and Phillips, G. M., Convexity and Generalized Bernstein Polynomials, Pro. Edinburgh Math. Soc., 42:1(1999), 179-190.
[9] Videnskii, V. S., On Some Classes of q-parametric Positive Linear Operators, Oper. Theory Adv. Appl., 158(2005), 213-222.
[10] Il'inskii, A. and Ostrovska, S., Convergence of Generalized Bernstein Polynomials, J. Approx. Theory , 116(2002), 100-112.
[11] Wang, H. P., The Rate of Convergence of q-Bernstein Polynomials for $0<q<1$, J. Approx. Theory, 136(2005), 151-158.
[12] Wang, H. P., Saturation of Cconvergence for q-Bernstein Polynomials in the Case $q \geq 1$, J. Math. Anal. Appl., 337(2008), 744-750.
[13] Aral, A. and Gupta, V., The q-derivative and Application to q-Szász Mirakyan Operators, CALCOLO, 43(2006), 151-170.

Department of Mathematics and Physics
Lishui University
lishui, 323000
P. R. China

E-mail: xxy_81917@126.com

