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Abstract. In this paper, we give the exact lower density of Hausdorff measure of a class of

symmetric perfect sets.
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1 Introduction

Let 0≤ s< ∞ andν be a measure onRn. The upper and lowers-densities ofν atx∈ Rn are

defined as

Θ∗s(ν ,x) = limsup
r→0

ν(B(x, r))
(2r)s ,

and

Θs
∗(ν ,x) = lim inf

r→0

ν(B(x, r))
(2r)s ,

respectively, whereB(x, r) denotes the closed ball with diameter 2r and centerx.

Symmetric perfect sets are nowhere dense perfect subsets of[0,1] constructed in the follow-

ing manner.SupposeI = [0,1], let {ck}k≥1 be a real number sequence satisfying 0< ck <
1
2

(k≥

1). For anyk≥ 1, let

Dk = {(i1, · · · , ik) : i j ∈ {1,2}, D =
⋃

k≥0

Dk,

whereD0 = /0. If

σ = (σ1, · · · ,σk) ∈ Dk, τ = (τ1, · · · ,τm) ∈ Dm,
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let

σ ∗ τ = (σ1, · · · ,σk,τ1, · · · ,τm).

Let F = {Iσ : σ ∈ D} be the collection of the closed sub-intervals ofI satisfying

i) I /0 = I ;

ii) For anyk≥ 1 andσ ∈ Dk−1, Iσ∗i (i = 1,2) are sub-intervals ofIσ . Iσ∗1, Iσ∗2 are arranged

from the left to the right,Iσ∗1 andIσ have the same left endpoint,Iσ∗2 andIσ have the same right

endpoint.

iii) For anyk≥ 1 andσ ∈ Dk−1, j = 1,2, we have

|Iσ∗ j |

|Iσ |
= ck,

where|A| denotes the diameter ofA.

Let

Ek =
⋃

σ∈Dk

Iσ , E =
⋂

k≥0

Ek,

we callE the symmetric perfect set and callFk = {Iσ : σ ∈ Dk} thek-order basic intervals of

E. The middle-third Cantor set is a well-known example of the symmetric perfect set.

Let xk be the length of ak-order basic interval,yk the length of the gap between any two

consecutive sub-intervalsIσ∗1 andIσ∗2, whereσ ∈ Dk−1. Assume that

(1) There existsk0 ∈ N such that

ck ≤
1
3

for all k > k0.

(2) lim
k→∞

2kxs
k exists and is positive finite.

In [8], we gave a formula to calculate the uppers-density of Hausdorff measure for a class

of symmetric perfect sets.

Theorem 1. Let E be a symmetric perfect set, if(1) and(2) hold, then

Θ∗s(µE,x) =
2

2s(2
1
s −1)s

f or µE −a. e. x∈ E,

whereµE is the restriction of the Hausdorff measureH
s over the set E and s is the Hausdorff

dimension of the set E.

This paper gives an analogue for the lowers-density of the Hausdorff measure. Our main

result is

Theorem 2. Let E be the symmetric perfect set, if(2) holds, then

Θs
∗(µE,x) =

1

2s(2
1
s −1)s

f or µE −a. e. x∈ E.
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Remark1. From the above theorems we know that there exists non-regular symmetric

perfect sets.

2 Proof of Theorem

For anyσ = (σ1, · · · ,σm) ∈ Dm, when 0< k≤ m, we denote

σ |k = (σ1, · · · ,σk).

By the definition ofxk andyk, we have

xk = c1 · · ·ck, yk = (1−2ck)c1 · · ·ck−1.

Take

B = lim
k→∞

2kxs
k,

the assumption (2) implies 0< B < ∞ and for anyε > 0 there exists a positive integerk0 such

that

B− ε < 2sxs
k < B+ ε , (2.1)

for all k≥ k0, and we have

Lemma 2.1. If the assumption(2) holds, then there exists a positive integer k0 such that

yk+1 < yk for all k ≥ k0, andH
s(E) = lim

k→∞
2kxs

k.

Proof. From (2.1) we have

yk = xk−1−2xk >
2

1
s (B− ε)

1
s −2(B+ ε)

1
s

2sk ,

yk+1 = xk−2xk+1 <
2

1
s (B+ ε)

1
s −2(B− ε)

1
s

2
1
s 2sk

.

Take

ε =
(4

1
s +2)s−2·3s

(4
1
s +2)s+2·3s

B,

we have

2−
1
s (2

1
s (B+ ε)

1
s −2(B− ε)

1
s ) < 2

1
s (B− ε)

1
s −2(B+ ε)

1
s .

Thereforeyk+1 < yk, and from Themma 1 in [7] we have

H
s(E) = lim

k→∞
2kxs

k,

which completes the proof of Lemma 2.1.
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Lemma 2.2.[1] Let E be the symmetric perfect set. If

B = lim
k→∞

2kxs
k

exists and is positive finite, then

lim
k→∞

2k(xk +yk)
s = (2

1
s −1)sB.

Take

Ωk = 2k(xk +yk)
s
,Ω = (2

1
s −1)sB,

then for anyε > 0, there exists a positive integer k0 such that

Ω− ε < Ωk < Ω+ ε , (2.2)

for all k ≥ k0.

Let µ be the restriction of the normalized Hausdorff measure(Hs(E))−1
H

s over the setE,

then for anyA∈ Fk, we have

µ(A) = 2−k
. (2.3)

Let σ ∈ Dk,τ ∈ Dk+l ,(l > 0),τ |k = σ , set

I(σ ,τ) = Iσ∗p1 ∪ Iσ∗σ(2,p2) ∪ ·· ·∪ Iσ∗σ(l ,pl )∪ Iσ∗σ(l−1,pl−1) ∪ Iσ∗σ(l ,1),

where

σ(m, j) = (p1 +1, p2 +1, · · · , pm−1 +1, j),0≤ pi ≤ 1, j = 0,1,

andσ ∗σ(l ,1) = τ , Iσ∗0 = Iσ∗σ(m,0) = /0.

Lemma 2.3. Let σ ∈ Dk,τ ∈ Dk+l ,(k > k0) andτ |k = σ , then

µ([a(σ),b(τ)])

(b(τ)−a(σ))s ≥
1

Ω+ ε
. (2.4)

Proof. By the definition ofI(σ ,τ), we have

µ(I(σ ,τ)) =
p1

2k+1 +
p2

2k+2 + · · ·+
pl

2k+l ,

and

|I(σ ,τ)|s ≤ (p1(xk+1 +yk+1)+ p2(xk+2 +yk+2)+ · · ·+ pl (xk+l +yk+l ))
s

≤ p1(xk+1 +yk+1)
s+ p2(xk+2 +yk+2)

s+ · · ·+ pl (xk+l +yk+l )
s
,
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therefore

µ(I(σ ,τ))

|I(σ ,τ)|s
≥

p1
2k+1 + p2

2k+2 + · · ·+ pl
2k+l

p1(xk+1 +yk+1)s+ p2(xk+2 +yk+2)s+ · · ·+ pl(xk+l +yk+l )s

≥ min{Ωk+1,Ωk+2, · · · ,Ωk+l}.

From (2.2) we have (2.4). Which completes the proof of Lemma 2.3.

Lemma 2.4. Let E be the symmetric perfect set. If(2) holds, then for all x∈ E,

Θs
∗(µ ,x) ≥ 2−sΩ−1

.

Proof. Let x∈ E,0 < r < 1 and setJ = [x− r,x+ r], then there exists a positive integerk,

such thatJ contains at least a(k+ 1)-order basic interval, but it does not contain anyk-order

basic interval, thusJ intersects with at most twok-order basic intervals, andr can be chosen to

be sufficient small such thatk > k0.

Case 1. J intersects with twok-order basic intervals. LetIσ(1), Iσ(2)(σ(1),σ(2) ∈ Dk) be

such two basic intervals and setJ = J1∪ [b(σ(1)),a(σ(2))]∪J2, whereJ1 andJ have the same

left endpoint,J2 andJ have the same right endpoint. Without loss of generality, let x∈ J1, then

a(σ(2))−b(σ(1)) ≤ |J1| < |J1|+ |J2|, therefore

µ(J)

|J|s
=

µ(J1)+ µ(J2)

(|J1|+ |J2|+a(σ(2))−b(σ(1)))s

≥
µ(J1)+ µ(J2)

2s(|J1|s+ |J2|s)

≥
1
2s min{

µ(J1)

|J1|s
,

µ(J2)

|J2|s
}.

Let u = x+ r, i.e. J2 = [a(σ(2)),u]. If u = b(σ(2)), in this case, we obviously have

µ(J2)

|J2|s
≥

1
Ω+ ε

. (2.5)

If

u∈ E =
⋂

k≥1

⋃

σ∈Dk

Iσ ,

but u 6= b(σ(2)), then there existsτ ∈ D, such that

u =
⋂

l≥1

Iτ |l ,

thus

[a(σ(2)),u] = ∩l≥1[a(σ(2)),b(τ |l)],
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and

[a(σ(2)),u] ⊂ ·· · ⊂ [a(σ(2)),b(τ |(l +1))] ⊂ [a(σ(2)),b(τ |l)] ⊂ ·· · .

Therefore,

µ(J2) = lim
l→∞

µ([a(σ(2)),b(τ |l)]).

On the other hand, we can chosel to be sufficient large such thatIτ |l ⊂ Iσ(2), that isτ |k = σ(2),

in this case, by Lemma 2.3, we have

µ(J2)

|J2|s
= lim

l→∞

µ([a(σ(2)),b(τ |l)])
|J2|s

≥ lim
l→∞

µ([a(σ(2)),b(τ |l)])
(b(τ |l)−a(σ(2)))s ≥

1
Ω+ ε

.

If u 6∈ E, i.e.

u∈ I −
⋂

k≥1

⋃

σ∈Dk

Iσ =
⋃

k≥1

(I −
⋃

σ∈Dk

Iσ ),

then there exists a positive integerl > k such that

u∈ I −
⋃

σ∈Dl

Iσ ,

in this case, similar to the proof of Lemma 2.3, we also have

µ(J2)

|J2|s
≥

1
Ω+ ε

. (2.6)

For the intervalJ1, similar to the above argument, we have

µ(J1)

|J1|s
≥

1
Ω+ ε

. (2.7)

Therefore
µ(J)

|J|s
≥

1
2s(Ω+ ε)

. (2.8)

Case 2. J intersects with only ak-order basic interval, letIσ (σ ∈ Dk) be such a basic

interval. If the left endpoint ofJ lies in the left ofa(σ), setJ1 = J∩ Iσ . Sincex∈ Iσ , then

a(σ)− (x− r) < |J1|,

thus
µ(J)

|J|s
≥

µ(J1)

2s|J1|s
.

Similar to the proof in Case 1, we have (2.8).

If the right endpoint ofJ lies in the right ofb(σ), or J ⊂ Iσ , we also have (2.8), which

completes the proof of Lemma 2.4, sinceε is arbitary.
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Lemma 2.5. Let E be the symmetric perfect set. If (2) holds, then for almost all x∈ E,

Θs
∗(µ ,x) ≤ 2−sΩ−1

.

Proof. For anyσ ∈ Dk, let τ ∈ Dk and Iτ the firstk-order basic interval to the left ofIσ .

Since 0< ck <
1
2

, we have

a(σ)−b(τ) > 0,

hence there existsl > k such that

r l = xl +yl < a(σ)−b(τ)

and

µ([a(σ)− r l ,a(σ)+ r l ]) =
1
2l .

It follows that

Θs
∗(µ ,a(σ)) ≤ lim inf

k→∞

µ([a(σ)− r l ,a(σ)+ r l ])

(2r l )s =
1

2sΩ
. (2.9)

Now, for k > 0 put

σ(1) = (1, · · · ,1) ∈ Dk,

and

Ak
p =

∞⋃

l=p

⋃

σ∈Dl

Iσ∗σ(1),A
k =

∞⋂

p=1

Ak
p,A =

∞⋂

k=1

Ak
.

Similar to the proof of Lemma 2.6 in [7], we know that the measure µ defined in (2.2) is the

same as the{
1
2
,
1
2
}N Bernoulli measure on the symbolic spaceΣ = {1,2}N. On the other hand,

since the Bernoulli measure is ergodic, we know that the set corresponding toA on the symbolic

space is a set of full measure, soA is a set of full measure.

For anyx∈ A there are infinitely manyn such that there existsσ ∈ Dn with

|x−a(σ)| <
1
2k xn.

Taking

r = rn−
1
2k xn

gives

[x− r,x+ r] ⊂ [a(σ)− rn,a(σ)+ rn],

which implies

Θs
∗(µ ,x) ≤ (1−

1
2k )−s2−sΩ−1

,
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µ−a.e. onE. Takingk→ ∞ we obtain

Θs
∗(µ ,x) ≤ 2−sΩ−1µ−

a.e. onE. This completes the proof of Lemma 2.5.

Proof of Theorem 2. By Lemma 2.4-2.5, we immediately obtain Theorem 2.

Example1. Let E be the middle-third Cantor set, it is well known that dimH(E) = s =
log2
log3

, andH
s(E) = 1, where dimH(E) is the Hausdorff dimension of the setE, andH

s(E) is

the Hausdorff measure of the setE. By Theorem 1 and Theorem 2 we obtain

Θ∗s(µE,x) =
2
4s , Θs

∗(µE,x) =
1
4s f or µE −a. e. x∈ E.
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