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Abstract. In this article we introduce the paranormed sequence spaces ( f ,Λ,∆m, p),

c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p), associated with the multiplier sequence Λ = (λk), de-

fined by a modulus function f . We study their different properties like solidness, sym-

metricity, completeness etc. and prove some inclusion results.
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1 Introduction

Throughout the article w, c, c0, ℓ∞ denote the spaces of all, convergent, null and bounded

sequences, respectively. The zero sequence is denoted by θ = (0, 0, 0, · · · ). The scope for the

studies on sequence spaces was extended on introducing the notion of an associated multiplier

sequence. S. Goes and G. Goes in [3] defined the differentiated sequence space dE and the

integrated sequence space

∫
E for a given sequence space E , by using the multiplier sequence

(k−1) and (k), respectively. P.K. Kamthan in [4] used (k!) as the multiplier sequence for studying

some sequence spaces. We shall use a general multiplier sequence Λ = (λk) for our study.
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The notion of difference sequence was introduced by H. Kizmaz in [5] as follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},

for Z = c,c0 and ℓ∞, where ∆xk = xk − xk+1, for all k ∈ N.

It was further generalized in [12] as follows:

Z(∆m) = {(xk) ∈ w : (∆mxk) ∈ Z},

for Z = c,c0 and ℓ∞, where ∆mxk = xk − xk+m, for all k ∈ N.

Throughout the article p = (pk) is a sequence of strictly positive real numbers. The notion

of paranormed sequences was studied by [10] at the initial stage. It was further investigated by

[6], [7], [11], [13] and many others.

The notion of modulus function was introduced by Nakano in [8]. It was further investigated

with applications to sequence spaces by [1], [9] and many others.

Remark 1.1. It is well known that ℓ∞(p) = ℓ∞, c(p) = c and c0(p) = c0 if and only if

0 < h = inf pk ≤ H = sup pk < ∞, (one may refer to [6] and [7]).

2 Definitions and Preliminaries

Definition 2.1. A modulus f is a mapping from [0,∞) into [0,∞) such that

(i) f (x) = 0 if and only if x = 0;

(ii) f (x+ y) ≤ f (x)+ f (y);

(iii) f is increasing;

(iv) f is continuous from the right at 0.

Hence f is continuous everywhere in [0,∞).

Definition 2.2. A sequence space E is said to be solid (or normal) if (αkxk) ∈ E , whenever

(xk) ∈ E and for all sequences (αk) of scalars with |αk| ≤ 1, for all k ∈ N.

Definition 2.3. A sequence space E is said to be monotone if it contains the canonical

preimages of all its step spaces.

Remark 2.1. From the above definitions it is clear that " A sequence space E is solid

implies that E is monotone".

Definition 2.4. A sequence space E is said to be symmetric if (xπ(n))∈ E , whenever (xn)∈

E , where π is a permutation of N.

Definition 2.5. A sequence space E is said to be convergence free if (yn) ∈ E , whenever

(xn) ∈ E and xn = 0 implies yn = 0.
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For (ak) and (bk) two sequences of complex terms and p = (pk) ∈ ℓ∞, we have the following

known inequality:

|ak + bk|
pk ≤ D{|ak|

pk + |bk|
pk},

where H = suppk and D = max{1,2H−1}.

Definition 2.6. Let f be a modulus function, then for a given multiplier sequence Λ = (λk),

we introduce the following sequence spaces:

c( f ,Λ,∆m, p) = {(xk) ∈ w : ( f (|λk(∆mxk −L)|))pk → 0, as k → ∞, for some L},

c0( f ,Λ,∆m, p) = {(xk) ∈ w : ( f (|λk(∆mxk)|))
pk → 0, as k → ∞},

ℓ∞( f ,Λ,∆m, p) = {(xk) ∈ w : sup
k

( f (|λk(∆mxk −L)|))pk < ∞}.

When f (x)= x, for all x∈ [0,∞), the above sequence spaces are denoted as c(Λ,∆m, p), c0(Λ,∆m, p)

and ℓ∞(Λ,∆m, p) respectively. When λk = 1 for all k ∈ N, the above sequence spaces are denoted

as c( f ,∆m, p), c0( f ,∆m, p) and ℓ∞( f ,∆m, p) respectively.

Taking f (x) = x, for all x ∈ [0,∞) and λk = 1, for all k ∈ N, the above sequence spaces are

denoted as c(∆m, p),c0(∆m, p) and ℓ∞(∆m, p) respectively. Further taking pk = 1 for all k ∈ N,

the above spaces are denoted as c(∆m),c0(∆m) and ℓ∞(∆m) respectively (please refer to [12]).

Further taking m = 1, we get the spaces c(∆),c0(∆) and ℓ∞(∆) respectively, studied by [5].

Similarly taking different combinations of restrictions, we will get different paranormed

sequence spaces.

The following result will be used for establishing a result of this article.

Lemma 2.1.[7] Let c0(p) denote the set of sequences x = (xk) such that |xk|
pk → 0, as k →

∞. If pk > 0 and qk > 0, then c0(q) ⊂ c0(p) if and only if lim− inf
pk

qk

> 0.

3 Main Results

In this section we prove the results involving the classes of sequences ( f ,Λ,∆m, p), c0( f ,Λ,∆m, p)

and ℓ∞( f ,Λ,∆m, p).

Theorem 3.1. The classes of sequences ( f ,Λ,∆m, p), c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p)

are linear spaces.

Proof. We prove the theorem for the class of sequences c0( f ,Λ,∆m, p). The other cases

can be proved similarly. Let (xk),(yk) ∈ c0( f ,Λ,∆m, p). Then

( f (|λk(∆mxk)|))
pk → 0, as k → ∞, (1)

and

( f (|λk(∆myk)|))
pk → 0, as k → ∞. (2)
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For α ,β ∈C, we have

( f (|λk∆m(αxk + βyk)|))
pk ≤ D([α ]+ 1) f (|λk∆mxk|))

pk + D([β ]+ 1) f (|λk∆myk|))
pk → 0, as k → ∞,

by (1) and (2)

Hence (αxk + βyk) ∈ c0( f ,Λ,∆m, p).

Thus c0( f ,Λ,∆m, p) is a linear space.

Theorem 3.2. Let p = (pk)∈ ℓ∞. Then the spaces ( f ,Λ,∆m, p),c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p),

are paranormed spaces paranormed by g,

g(x) =
sup

k
( f (|λk∆mxk|))

pk
M ,

where M = max(1,suppk).

Proof. Clearly g(x)≥ 0,g(−x) = g(x),g(x+y) ≤ g(x)+g(y). Next we show the continuity

of the product. Let α be fixed and g(x) → 0. Then it is obvious that g(αx) → 0.

Next let α → 0 and x be fixed. Since f is continuous, we have f (|α ||λk∆mxk|)→ 0 as α → 0.

Thus we have

sup
k

[ f (|αλk∆mxk|)]
pk
M → 0, as α → 0.

Hence g(αx) → 0, as α → 0.

Therefore g is a paranorm.

Proposition 3.3. c0( f ,Λ,∆m, p) ⊂ c( f ,Λ,∆m, p) ⊂ ℓ∞( f ,Λ,∆m, p) and the inclusions are

proper.

Proof. The proof is a routine verification and suitable examples can be constructed to show

that the inclusions are proper.

Theorem 3.4. The spaces ( f ,Λ,∆m, p),c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p), are neither solid

nor monotone in general, but the spaces c0( f ,Λ, p) and ℓ∞( f ,Λ, p) are solid and as such are

monotone.

Proof. Let (xk) be a given sequence and (αk) be a sequence of scalars such that |αk| ≤ 1,

for all k ∈ N. Then we have

( f (|λkαkxk)|)
pk ≤ ( f (|λkxk)|)

pk , for all k ∈ N.

The solidness of c0( f ,Λ, p) and ℓ∞( f ,Λ, p) follows from this inequality. The monotonicity

follows by Remark 2.1.

The first part of the proof follows from the following examples.

Example 3.1. Let f (x) = x, for all x ∈ [0,∞),m = 1,λk = 1, for all k ∈ N. Let pk = 1 for

k odd and pk = 2 for k even. Then define (xk) by xk = k, for all k ∈ N, belongs to c(∆, p) and
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ℓ∞(∆, p). For E a sequence space, consider its step space EJ defined by (yk) ∈ EJ implies yk = 0

for k odd and yk = xk for k even. Then (yk) neither belongs to (c(∆, p))J nor to (ℓ∞(∆, p))J .

Hence the spaces are not monotone. Hence are not solid by Remark 2.1.

Example 3.2. Let f (x) = x, for all x ∈ [0,∞),m = 1,λk = 2 + k−1, for all k ∈ N. Let

pk = 2 for k odd and pk = 3 for k even. Consider the sequence (xk) defined by xk = 1 for all

k ∈ N. Then (xk) ∈ c0(Λ,∆, p). Now consider the step spaces as defined in Example 3.1. Then

(yk) /∈ c0(Λ,∆, p). Hence c0(Λ,∆, p) is not monotone, as such c0(Λ,∆, p) is not solid by Remark

2.1.

Theorem 3.5. The spaces ( f ,Λ,∆m, p),c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p), are not conver-

gence free.

Proof. The result follows from the following example.

Example 3.3. Let f (x) = x, for all x ∈ [0,∞),m = 1,λk = 1, for all k ∈ N. Let pk = 1 for k

odd and pk = 2 for k even. Consider the sequence (xk) defined by xk = k−1, for all k ∈ N, Then

(xk) ∈ Z(∆, p) for Z = c,co, ℓ∞ . Consider the sequence (yk) defined by yk = k2, for all k ∈ N.

Then (yk) neither belongs to c(∆, p) nor to c0(∆, p) nor to ℓ∞(∆, p). Hence the spaces are not

convergence free.

The proof of the following results follows from the Lemma 2.1.

Proposition 3.6. Let (pk) and (qk), be two sequences of real numbers. Then c0( f ,Λ,∆m, p)⊂

c0( f ,Λ,∆m,q) if and only if liminf
pk

qk

> 0.

The following result is a consequence of the above result.

Corollary 3.7. Let (pk) and (qk), be two sequences of real numbers. Then c0( f ,Λ,∆m p) =

c0( f ,Λ,∆m,q) if and only if liminf
pk

qk

> 0 and liminf
qk

pk

> 0.

The proof of the following results is routine verification.

Proposition 3.8. (i) Let 0 < pk < qk < ∞ for each k∈N, then c0( f ,Λ,∆m,q)⊂ c0( f ,Λ,∆m, p).

(ii) Let 0 < infpk < pk < 1 for each k ∈ N, then c0( f ,Λ,∆m) ⊂ c0( f ,Λ,∆m, p).

(iii) Let 1 < pk < suppk < ∞ for each k ∈ N, then c0( f ,Λ,∆m, p) ⊂ c0( f ,Λ,∆m).

Proposition 3.9. The following are equivalent:

(i) h > 0 and H < ∞.

(ii) c0( f ,Λ,∆m, p) ⊂ c0( f ,Λ,∆m).

(iii) c( f ,Λ,∆m, p) ⊂ c( f ,Λ,∆m).

(iv) ℓ∞( f ,Λ,∆m, p) ⊂ ℓ∞( f ,Λ,∆m).

Theorem 3.10. The spaces ( f ,Λ,∆m, p),c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p), are not sym-

metric in general.

Proof. The result follows from the following examples.
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Example 3.4. Let f be any modulus function, m = 0 and λk = k for all k ∈ N. Let pk = 1

for k odd and pk = 4 for k even. Consider the sequence (xk) defined by xk = k−2, for all k ∈ N.

Then (xk) belongs to c( f ,Λ, p) as well as c0( f ,Λ, p). Consider its rearrangement (yk) defined

as follows:

(yn) = (x1, x3, x4, x2, x6, x7, x8, . . . , x24, x5, x26, x27, . . . , x624, x25, x626, . . . ).

Then (yn) neither belongs to c( f ,Λ, p) nor to c0( f ,Λ, p). Hence the spaces c( f ,Λ,∆m, p),

c0( f ,Λ,∆m, p) and ℓ∞( f ,Λ,∆m, p), are not symmetric in general.

Example 3.5. Let f be any modulus function, m = 0 and λk = k, for all k ∈ N. Let pk =

1 + k−1 for all k ∈ N. Consider the sequence (xk) defined by xk = k−1, for all k ∈ N. Then

(xk) belongs to ℓ∞( f ,Λ, p). Consider its rearrangement (yk) as defined in Example 3.4. Then

(yn) /∈ ℓ∞( f ,Λ, p). Hence the space ℓ∞( f ,Λ, p) is not symmetric in general.

Remark 3.1. We have Z( f ,Λ,∆m, p) = ( f ,∆m, p), for Z = c,c0, ℓ∞ if and only if (λk) ∈ ℓ∞.

The following result is a consequence of Remark 1.1 and Remark 2.1.

Proposition 3.11. The spaces c0( f ,Λ,∆, p) and Z( f ,Λ, p), for Z = c,c0, ℓ∞ are solid if and

only if

(i) (λk) ∈ ℓ∞.

(ii) h > 0 and H < ∞.
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