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Abstract. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then it is
recently proved by Rather [Jour. Ineq. Pure and Appl. Math., 9 (2008), Issue 4, Art. 103]
that for every y > 0 and every real or complex number o with |ot| > 1,

2w ) 1y 2w i 1y
{[Tparteyras} <ol e { [iperas}
0 0

1 f2= By —1/y
&= {5 [ I+ePrap)

where Dy P(z) denotes the polar derivative of P(z) with respect to . In this paper we prove
a result which not only provides a refinement of the above inequality but also gives a result
of Aziz and Dawood [J. Approx. Theory, 54 (1988), 306-313] as a special case.

Key words: polar derivative, polynomial, Zygmund inequality, zeros

AMS (2010) subject classification: 30A10, 30C10, 30D15,41A17

1 Introduction and Statement of Results

n
Let P(z) = )_ a,z" be a polynomial of degree atmost n and P'(z) its derivative, then
v=0

max |P'(z)| < nmax|P(z)], (1.1)
|z]=1 |z]=1

and for every y > 1,

21 _ 1y 21 , 1y
{ / |P’(e’9)|7’|rmd9} <n { / |P(e16)|7’d9} . (1.2)
0 0
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The inequality (1.1) is a classical result of Bernstein!!'!) (see also [14]), whereas the inequality
(1.2) is due to Zygmund“S], who proved it for all trigonometric polynomials of degree n and not

only for those of the form P(¢?). Arestov!!]

proved that (1.2) remains true for 0 < y < 1 as well.
If we let ¥ — oo in the inequality (1.2), we get (1.1).

The above two inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to the
class of polynomials having no zeros in |z| < 1. In fact, if P(z) # 0 in |z| < I, then (1.1) and

(1.2) can be respectively replaced by

max |P'(z)| < = max |P(2)] (1.3)
|z|=1 2 |7=1
and
2 . 1/y 2 . 1/y
{ / yP'(elf’)Vde} SnBy{ / yp(elf’)wde} : (1.4)
0 0
where

1 2m aly -1/y
By=14 — 1+%"da .
v {2ﬂ/0 [1+e"| }

The inequality (1.3) is conjectured by Erdos and later verified by Lax¥), whereas the in-
equality (1.4) is proved by De-Bruijn [} for ¥ > 1. Further, Rahman and Schmeisser!!Z have
shown that (1.4) holds for 0 < y < 1 also. If we let Y — oo in the inequality (1.4), we get (1.3).

The inequality (1.3) is further improved by Aziz and Dawood!* by proving that if P(z) # 0
in |z| < 1, then

max [P ()| < g {max |P(z)| — min |P(z)|} . (1.5)

|z|]=1 |z|]=1 |z|=1

Let Dy P(z) denote the polar derivative of the polynomial P(z) with respect to a complex

number ¢. Then
DoP(z) =nP(z) + (ot — 2)P'(z).

The polynomial Dy P(z) is of degree at most n— 1 and it generalizes the ordinary derivative P'(z)

in the sense that

lim D“TP(Z) =P'(z).

Ol —00

Azizl® extended the inequality (1.3) to the polar derivatives and proved that if P(z) is a polyno-
mial of degree n such that P(z) # 0 in |z| < 1, then for every real or complex number o with
o] > 1,

max|DaP(2)| < S (la+ 1) max |P(2)|. (1.6)
Z|= Z|=
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While seeking the desired extension of the inequality (1.6) to the LY norm, recently Govil et al.
[8] have made an incomplete attempt by proving the following generalization of the inequalities
(1.4) and (1.6).

Theorem A. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for
Y > 1 and every real or complex number o with || > 1,

1/y

2T . 1/7 2n .
{/ ]DaP(e‘e)VdB} Sn(!a!—i—l)Fy{/ \P(elﬂ)vde} , (1.7)
0 0

where

1 2@ By -1/y
Fp=4— [ |1+¢8)7d .
= {om [ erap)

Unfortunately, the proof of Theorem A is not correct as is first pointed out by Aziz and
Rather™) who in the same paper have given a correct proof of the inequality (1.7) also. The
inequality (1.7) is then independently proved by Rather!'3) for y > 0.

In this paper we prove the following more general result which in particular provides refine-
ments and generalizations of the inequalities (1.6) and (1.7) and also extends the inequality (1.7)
for y € (0,1). Further, it also gives the inequality (1.5) as a special case. Actually, we prove

Theorem 1.1.  If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for
Yy > 0, every real or complex numbers ay,--- 0, k<n—1with |og| > 1, i=1,2,--- k and
real or complex 8 with |8| < 1,

{/zn Dy, ...DakP(e"")ern(n_l)m(n_k;l)(|almak|_1)6 yde}w
’ 21 , 1/y
Sn(n—1)'-'(n—k+1)(!a1!+1)(\062\+1)~'(!ak!+1)Cy{/O \P(e“’)!yde} :
(1.8)
where
1 2« , —1/y
cyz{ﬁ/o |1+elﬁ|ydﬁ}

and

m = min |P(z)|.
lz|=1
In the limiting case, when 'y — oo, the above inequality is sharp and the equality in (1.8) holds
for P(z) = (z+1)", where oy > 1, i=1,2,--+ k are real.
If we let ¥ — oo in (1.8) and choose the argument of d with |§| = 1 suitably, we get the
following refinement and generalization of (1.6).
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Corollary 1.1. If P(z) is a polynomial of degree n such that P(z) # 0 in |z| < 1, then for
every real or complex numbers o, -+ 0, k<n—1with|og| >1, i=1,2,--- k

nn—1)---(n—k+1
max|Dy, - Dy ()] < MR
Z:

{(|Oz1|+ 1) (Jog| + 1)max |P(z)| — (Joy - - - 0| — 1) min |P(Z)|} . (1.9)

|z|]=1 |z|=1

The result is best possible and the equality holds in (1.9) for P(z) = (z+ 1)" with real o; >
1, i=12,-- .k

If we put k =1, in Theorem 1.1, we get the following result which is a refinement of (1.7)
and is an extension for y € (0, 1).

Corollary 1.2. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then
for y> 0, every real or complex number o with |ot| > 1 and real or complex § with |d] < 1,

2 _ Y 1/y
{/ Dap(€i9)+M dG}
0 2
2n . 1)y
<alal+16,{ [ Ipetmae | (1.10)

where Cy, m are defined above. In the limiting case, when 'y — oo, the above inequality is sharp
and the equality in (1.10) holds for P(z) = (z+1)", where a > 1 is real.

If we let ¥ — o in (1.10) and choose the argument of § with || = 1 suitably, we get the
following refinement of (1.6).

Corollary 1.3. If P(z) is a polynomial of degree n such that P(z) # 0 in |z| < 1, then for

every real or complex number o with |a| > 1,

max DuP(e) < 5 { D max )]~ (o~ 1) min (@)} (1)

jel=1

The result is best possible and the equality holds in (1.11) for P(z) = (z+ 1)" with real o0 > 1.
Remark 1.1. If we divide both sides of (1.11) by |a| and let || — oo, we get (1.5).

2 Lemmas

We need the following lemmas for the proof of Theorem 1.1.
Lemma 2.1.  [fall the zeros of an nth degree polynomial P(z) lie in a circular region C and

if none of the points 0,0, - , 0 lie in the region C, then each of the polar derivatives
Dy, ---DgP(z), k=12,--- ,n—1,

has all of its zeros in C.



344 A. Mir et al : Some Integral Inequalities for the Polar Derivative of a Polynomial

This follows by repeated application of Laguarre’s theorem (see [1] or [9, p.52]).
Lemma 2.2. If P(z) is a polynomial of degree n having no zeros in |z| < 1 and m =

‘Ir‘liI} |P(2)|, then for any real or complex numbers o,--- 0, k<n—1with |og| > 1, i=
2=
1,2,k
Doy -+ Dy Q(2)| = mn(n—1)--- (n—k+1)|an o -+~ 4",
for |z| > 1, 2.1
where

Proof of Lemma2.2. If m = ‘rr‘m} |P(z)| = 0, then the inequality (2.1) is obvious. Hence-
2=

forth, we assume m # 0, so that all zeros of P(z) lie in |z| > 1. Now if A is any real or complex
number with |A| < 1, then

|[Am| <m <|P(z)|, for |z]=1. (2.2)

Therefore, it follows by Rouche’s theorem that the polynomial F(z) = P(z) — Am has all zeros
in |z| > 1 for every A with |A] < 1.

If G(z) = 2"F (1/Z) = Q(z) — Amz", then all zeros of G(z) lie in |z| < 1. Hence, it follows by
Lemma 2.1 that all zeros of

Dal o 'Dak(Q(Z) - Zmzn)
=Dy, D 0(z) — Amn(n—1)---(n—k+ ayoy - 2" * (2.3)

lie in |z| < 1 for any @y, -, 0, k<n—1with || > 1, i=1,2,--- k and for every A with
|A| < 1. This implies

|Dey -+ D Q(2)| > mn(n—1)---(n—k+1)|oqon--- gz ¥, for |z > 1,
because if this is not true, then there is a point z = zg with |zo| > 1, such that
Do, -+ Doy, Q(2)|i=z0 < mn(n—1) -+ (n—k+ 1) o+~ gz *|.
We take

{Dlxl "'DOCkQ(Z)}Z:ZO
mn(n—1)---(n—k+1)oyon--- ogzp ™’

1:

so that |A| < 1 and from (2.3) with this choice of A, we get [Dg, - - D, (Q(z) — Amz")] =, = 0,
where |z0| > 1, which contradicts the fact that all zeros of Dy, - - D, (Q(z) — Amz") liein |z| < 1
and this completes the proof of lemma 2.2.
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Lemma 2.3. If P(z) is a polynomial of degree n having no zeros in |z| < 1 and m =

‘rr‘lir} |P(2)|,0(z) = Z"P(1/Z), then for any real or complex numbers o,--- , 0, k <n—1 with
Z =

|| > 1, i=1,2,--- k we have
|D061"'Dl1kP(Z)|
<|Dg, D, Q(z)| —mn(n—1)---(n—k+1)(Jowon---ox| — 1), for |z| =1.

Proof of Lemma 2.3.  Since P(z) has all zeros in |z] > 1 and m = |n|1in |P(z)|, then
z|=1

m<|Pz)],  for [z =1.

Therefore, for every real or complex number A with |A| < 1, it follows by Rouche’s theorem
for m > 0 that the polynomial F(z) = P(z) — Am has all zeros in |z] > 1 and hence no zero in
|z| < 1.Thus the polynomial 7' (z) = z"F(1/Z) = Q(z) — Amz" has all zeros in |z| < 1 and

FRI <T@, for || =1.

It follows again by Rouche’s theorem that for every 3, || > 1, the polynomial F(z) — BT (z)
has all zeros in |z| < 1 which implies by Lemma 2.1 that for every real or complex numbers
oy, , 0 with o] > 1, i=1,2,--- k the polynomial Dy, ---Dg, [F(z) — BT (z)] has all zeros
in |z| < 1. This implies

|Dg, Do F(z)| < |Dg, D, T(z)], for |z|>1, (2.4)
The inequality (2.4) is clearly equivalent to
Dy -+ Dy, (P(z) — Am)| < |Dgy - Dy, (Q(z) — Amz")|, for |z > 1.
Equivalently,
|Dg, Do P(z) —Amn(n—1)---(n—k+1)|
< |Dg, D, Q(z) — Amn(n—1)---(n—k+1)ay0p--- 042" "],
which gives
Do, -+ Do P(z)| —mn(n—1)---(n—k+1)|A]
< Do, D, Q(z) — Amn(n—1)---(n—k+1)ay0p--- 042" ", (2.5)

for |z| > 1 and for every A with [A| < 1.
Now choosing the argument of A4 suitably, so that on |z| = 1,
Dy -+ D O(z) — Amn(n—1)--- (n—k+ 1oy ap - - 042"
= Doy -+ D Q(2)[ —mn(n—1) - (n—k+1)[ar 0 - o 2],
(2.6)
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we get from (2.5) that on |z =1,

‘D(Xl "'DakQ(Z)‘
> |DO¢1 ~'~DakP(Z)|+ |7L|mn(n— 1)~'(I’l—k+ 1)(|(X10€2~~O€k| — 1).
Q2.7)

The fact that the right hand side of (2.6) is non-negative follows from Lemma 2.2. Lemma 2.3
now follows by making |A| — 1 in (2.7).
Lemma 24. [f P(z) is a polynomial of degree n then for every complex number o and

Y>0,
2 . 1/y
{/ yDaP(e‘G)V} de
0

< (ol 1] /02"|P<ef6>v}1/yde.

Lemma 2.5. [f P(z) is a polynomial of degree n which does not vanish in |z| < t,t > 1 and
0(z) = 7"P(1/Z), then for every real or complex number a., real B with 0 < B < 2m and y > 0,

2 21 . . .
| [ 1DaP(e) + €Dy 0 a6 ap
o Jo
27 .
< zmﬂ(\am)y/ P()[7d6.
0
The above two lemmas are due to Rather!!2].

Lemma 2.6. If A,B and C are non-negative real numbers such that B+ C < A, then for

every real number o,
[(A—C)e'* + (B+C)| < |Ae'* +B|.

This lemma is due to Aziz and Rather®!.

3 Proof of Theorems

Proof of Theorem 1.1.  Since P(z) is a polynomial of degree at most n and Q(z) = Z"P(1/%2),
therefore for each B, 0 < B < 27, F(z) = P(z) +¢PQ(z) is a polynomial of degree at most n
so that Dy, -+~ Do, F(z) = D, - Dy P(z) +€P Dy, - - - D, O(2) is a polynomail of degree at most
n—k, k=1,2,--- ,n—1. By repeated application of Lemma 2.4, we have for each y > 0,

/27‘[
0

Y

o 2r .
D -+ D F(e®) deg(n—k+1)7(|ak|+l)7/ Dy, - D, F(e)| dO.
0

3.1
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Equivalently,
21 . . . 4
/0 Dal "'DakP(ele)—i—elﬁDal "'DakQ(ele) de
21 X X . Y
g(n—k+1)7’(|ock|+l)7/0 Da, Doy \P(€®) +¢PDy, ---Dg, ,0(¢%)| d6
<(n—k+1)"(n—k+2)"(Jou| +1)"(Jog—1|+1)"
27T 0 . 0 Y
x /O Dy, Dy ,P(¢"®) +eP Dy, Dy, ,0(e)| d6 (3.2)
<(n—k+1)7 - (n—=1)(og| + 1) (|| + 1)
27 ) ) ) Y
x / Doy P(€) + ¢ Do, ()] d6. (3.3)
0

Integrating both sides of (3.1) with respect to S from 0 to 27, we get with the help of Lemma
2.5 (for t = 1) that for each y > 0,

/27‘[ 2r
0 /0

< (n—k+ )T (1= 1) (o] + D)+ (o] +1>’/0M/02n

Dal .. .DakP(ele) + elﬁDO(l o 'DakQ(ele) dedﬁ

Dy, P(e®) + P Dy, ()| dodp

2 Y
<2mn’(n—1)7- (n—k+1)7(|og| + 1) (Jou| + 1)7/0 P(e®)| de. (3.4)

Now by Lemma 2.3, for each 0, 0 < 6 < 27 and any complex numbers Q;,---,04, kK <n—1
with |og| > 1, i=1,2,--- ,k we have

Dal "'DOCkP(eiG)

< ‘Dal---DakQ(e"e) —mn(n—1)---(n—k+1)(Jon--- 0| = 1), for [z] =1.

This implies

+

{‘Dal "'Dakp(eie)

.

mn(n—1)--'(n—k—|—l)(]a1-~ock]—1)}
2
_mn(n—1)-~(n—k-|—1)(|061m06k|—l)}'

Dal"'DleQ(eie) D)

(3.5)
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Take A = |Dg, -+ D, Q(e)|, B=|Dg, - -- Do, P(€')],
mn(n—1)---(n—k+1)(log - og| — 1)
C= 5

in lemma 2.6, we get
B+C<A-C<A.

Hence for every real 3, with the help of Lemma 2.6, we get

H _mn(n—1)...(n—k+1)(|a1...ak|—1)}eiﬁ

Dal"'DleQ(eie) D)

—i—{D ...D P(eie) _|_Wln(n—1)...(n—k—|—1)(|(x1...ak|_1)}'
ay 072 5
< ' Dy, "'D(ku(eie) eiﬁ_|_ Dy, ...Dakp(eie) ‘

This implies for each y > 0,

/O - F(6)+¢PG(6) a6 < /O - Dy, Do, P(e?)| +¢P|Dy, -+ D, O(e™) yde,
(3.6)
where
F(6) = ‘Dal"'DakP(eie) +mn(”_l)"'(”_k2+1)(‘o‘l"'ak!—l)
and

Dy, "’D(ku(eie) _ mn(n — 1)"'(1’1—k+1)(‘061 "'Otk‘ — 1)'

G(0) = -

Integrating both sides of (3.6) with respect to 8 from 0 to 27, we get with the help of (3.4), that
for each y > 0,

2n 21w

bk
2n  r2m
S
0 0

21

<2mnY(n— 1) (n—k+1)"(|ow| + 1)7 - (Jou | + 1)7/0 |P(e)|7d6.

F(0)+ePG(6) ydedB

Dal B 'Dakp(ele) _|_elﬁ DO‘1 .. .DakQ(ele) deB

3.7)
Now for every real § and r > 1, we have
t+eP| > |1+P),

which implies for every y > 0,

27 ) 2r .
/ |t+e’ﬁ|yd[32/ 11+ P [7dB.
0 0
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If F(0) #0, we take t = ‘gég;

Y

Y
dp

[T 1F@)+ e
F(0)
— te
2 Y
= o [ || e

21
_ |F(9)|Y/O 14 90)
F(0)
21 Y
|F(9)|7’/0 1+eP| ap

Y

Dal "'Dakp(eie) +

dp

dp

and since t > 1 by (3.5)

mn(n—1)---(n—k+1)(Joy -+ | — 1)

el
= |F(9)|y/02n G1O) 4 ep
G(6)

2
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Y r2m .
}/ |1+ ¢P|7dB.
0

For F(6) = 0, this inequality is trivially true. Using this in (3.7), we conclude that for each

y> 0, B real and any real or complex numbers o, -+, 0, k<n—1with|oz| >1, i=1,2,--- k,

2 . 21 0
[ nerrap 7D parie?)

_l’_

2

mn(n—1)--(n—k+1)(Joy---og| — 1) }Yde

27 .
< 2 (n— 1) (n—k+ D (|og| + 1) (Jou | + 1)7/ P()[7d6.
0

(3.8)

Now using the fact that for every real or complex number § with |6] < 1,

mn(n—1)---(n—k+1)(Joy---og| — 1)

0

‘Dal D P(¢) +

< Dal "'Dakp(eie)

the desired result follows from (3.8).

+

2

mnn—1)---(n—k+1)(Joy---og| — 1)
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