ON DOUBLE SINE AND COSINE TRANSFORMS, LIPSCHITZ AND ZYGMUND CLASSES

Vanda Fülöp and Ferenc Móricz
(University of Szeged, Hungary)

Received Dec. 2, 2010
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

We consider complex-valued functions $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$, where $\mathbf{R}_{+}:=[0, \infty)$, and prove sufficient conditions under which the double sine Fourier transform $\hat{f}_{s s}$ and the double cosine Fourier transform $\hat{f}_{c c}$ belong to one of the two-dimensional Lipschitz classes $\operatorname{Lip}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 1$; or to one of the Zygmund classes $\mathrm{Zyg}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 2$. These sufficient conditions are best possible in the sense that they are also necessary for nonnegative-valued functions $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$.

Key words: double sine and cosine Fourier transform, Lipschitz class $\operatorname{Lip}(\alpha, \beta), 0<\alpha$, $\beta \leq 1$, Zygmund class $\operatorname{Zyg}(\alpha, \beta), 0<\alpha, \beta \leq 2$.
AMS (2010) subject classification: 42B10, 26A16, 26B35

1 Known Results: Single Sine and Cosine Transforms

We consider complex-valued functions $f: \mathbf{R}_{+} \rightarrow \mathbf{C}$ that are integrable in Lebesgue sense over $\mathbf{R}_{+}:=[0, \infty)$, in symbol: $f \in L^{1}\left(\mathbf{R}_{+}\right)$. We recall that the sine (Fourier) transform of f is defined by

$$
\hat{f}_{s}(u):=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin u x \mathrm{~d} x,
$$

while the cosine (Fourier) transform of f is defined by

$$
\hat{f}_{c}(u):=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos u x \mathrm{~d} x, \quad u \in \mathbf{R}
$$

Supported partially by the Program TÁMOP-4.2.2/08/1/2008-0008 of the Hungarian National Development Agency.

Both \hat{f}_{s} and \hat{f}_{c} are uniformly continuous on \mathbf{R} and vanish at infinity. For details, we refer to [6, Ch. 1].

In the cases when we do not distinguish between \hat{f}_{s} and \hat{f}_{c}, we simply use the notation \hat{f}. We recall that \hat{f} is said to satisfy the Lipschitz condition of order $\alpha>0$, in symbol: $\hat{f} \in \operatorname{Lip}(\alpha)$, if

$$
|\hat{f}(u+h)-\hat{f}(u)| \leq C h^{\alpha} \quad \text { for all } \quad u \in \mathbf{R} \quad \text { and } \quad h>0
$$

where the constant C does not depend on u and h. Furthermore, \hat{f} is said to satisfy the Zygmund condition of order $\alpha>0$, in symbol: $\hat{f} \in \operatorname{Zyg}(\alpha)$, if

$$
|\hat{f}(u+h)-2 \hat{f}(u)+\hat{f}(u-h)| \leq C h^{\alpha} \quad \text { for all } \quad u \in \mathbf{R} \quad \text { and } \quad h>0,
$$

where the constant C does not depend on u and h.
It is well known (see, e.g., [1, Ch. 2] or [7, Ch. 2, §3] that if $\hat{f} \in \operatorname{Lip}(\alpha)$ for some $\alpha>1$, or if $\hat{f} \in \operatorname{Zyg}(\alpha)$ for some $\alpha>2$, then $\hat{f} \equiv 0$.

The following four theorems were proved in [4] by the second named author of the present paper.

Theorem A. (i) Let $f: \mathbf{R}_{+} \rightarrow \mathbf{C}$ be such that $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}\right)$. If for some $0<\alpha \leq 1$,

$$
\begin{equation*}
\int_{0}^{s} x|f(x)|=O\left(s^{1-\alpha}\right) \quad \text { for all } \quad s>0 \tag{1.1}
\end{equation*}
$$

then $f \in L^{1}\left(\mathbf{R}_{+}\right)$and $\hat{f}_{s} \in \operatorname{Lip}(\alpha)$.
(ii) Let $f: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$be such that $f \in L^{1}\left(\mathbf{R}_{+}\right)$. If $\hat{f}_{s} \in \operatorname{Lip}(\alpha)$ for some $0<\alpha \leq 1$, then (1.1) holds.

Theorem B. In case $0<\alpha<1$, Theorem A remains valid when \hat{f}_{s} is replaced by \hat{f}_{c}.
Theorem C. (i) Let $f: \mathbf{R}_{+} \rightarrow \mathbf{C}$ be such that $f \in L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$. If for some $0<\alpha \leq 2$,

$$
\begin{equation*}
\int_{0}^{s} x^{2}|f(x)|=O\left(s^{2-\alpha}\right) \quad \text { for all } \quad s>0 \tag{1.2}
\end{equation*}
$$

then $f \in L^{1}\left(\mathbf{R}_{+}\right)$and $\hat{f}_{c} \in \operatorname{Zyg}(\alpha)$.
(ii) Let $f: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$be such that $f \in L^{1}\left(\mathbf{R}_{+}\right)$. If $\hat{f}_{c} \in \operatorname{Zyg}(\alpha)$ for some $0<\alpha \leq 2$, then (1.2) holds.

Theorem D. In case $0<\alpha<2$, Theorem C remains valid when \hat{f}_{c} is replaced by \hat{f}_{s}.
Our goal in this paper is to extend these results from single to double sine and cosine transform.

2 New Results: Double Sine and Cosine Transforms

We consider complex-valued functions $f: \mathbf{R}_{+}^{2} \rightarrow \mathbf{C}$ that are integrable in Lebesgue's sense over \mathbf{R}_{+}^{2}, in symbol: $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$. We recall that, the double sine (Fourier)transform of f is defined by

$$
\begin{equation*}
\hat{f}_{s s}(u, v):=\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin u x \sin v y \mathrm{~d} x \mathrm{~d} y \tag{2.1}
\end{equation*}
$$

while the doublecosine(Fourier)transform is defined by

$$
\begin{equation*}
\hat{f}_{c c}(u, v):=\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \cos u x \cos v y \mathrm{~d} x \mathrm{~d} y, \quad(u, v) \in \mathbf{R}^{2} \tag{2.2}
\end{equation*}
$$

Both $\hat{f}_{s s}(u, v)$ and $\hat{f}_{c c}(u, v)$ are uniformly continuous on \mathbf{R}^{2} and vanish as $\max \{u, v\} \rightarrow \infty$ (see, e.g., [5, Ch. 1]). Clearly, $\hat{f}_{s s}(u, v)$ is odd in each variable, while $\hat{f}_{c c}(u, v)$ is even in each variable.

In the cases when we do not distinguish between $\hat{f}_{s s}$ and $\hat{f}_{c c}$, we simply write $\hat{f}(u, v)$. We recall that $\hat{f}(u, v)$ is said to satisfy the Lipschitz condition of order $\alpha>0$ in u, and of order $\beta>0$ in v, in symbol: $\hat{f} \in \operatorname{Lip}(\alpha, \beta)$, if

$$
\begin{gather*}
\left|\Delta_{1,1} \hat{f}(u, v ; h, k)\right|:=\mid \hat{f}(u+h, v+k)-\hat{f}(u, v+k) \tag{2.3}\\
-\hat{f}(u+h, v)+\hat{f}(u, v) \mid \leq C h^{\alpha} k^{\beta} \quad \text { for all } \quad(u, v) \in \mathbf{R}^{2} \quad \text { and } \quad h, k>0
\end{gather*}
$$

where the constant C does not depend on u, v, h, and k (see, e.g., [3], where the term "multiplicative Lipschitz class" is used).

Furthermore, we recall that $\hat{f}(u, v)$ is said to satisfy the Zygmund condition of order $\alpha>0$ in u, and of order $\beta>0$ in v, in symbols: $\hat{f} \in \operatorname{Zyg}(\alpha, \beta)$, if

$$
\begin{align*}
& \left|\Delta_{2,2} \hat{f}(u, v ; h, k)\right| \\
& \quad=\mid \hat{f}(u+h, v+k)+\hat{f}(u-h, v+k)+\hat{f}(u+h, v-k)+\hat{f}(u-h, v-k) \tag{2.4}\\
& \quad-2 f(u+h, v)-2 f(u-h, v)-2 f(u, v+k)-2 f(u, v-k) \\
& \quad+4 f(u, v) \mid \leq C h^{\alpha} k^{\beta} \quad \text { for all } \quad(u, v) \in \mathbf{R}^{2} \quad \text { and } \quad h, k>0 ;
\end{align*}
$$

where the constant C does not depend on u, v, h, and k (see, e.g., [2], where the class $\operatorname{Zyg}(1,1)$ is introduced and denoted by $\Lambda_{*}(2)$).

Remark 1. We note that

$$
\operatorname{Lip}(\alpha, \beta) \subset \operatorname{Zyg}(\alpha, \beta) \quad \text { for all } \quad \alpha, \beta>0
$$

due to the following identity: for all $(u, v) \in \mathbf{R}^{2}$ and $h, k>0$, we have

$$
\begin{aligned}
& \Delta_{2,2} \hat{f}(u, v ; h, k)=(\hat{f}(u+h, v+k)-\hat{f}(u, v+k)-\hat{f}(u+h, v)+\hat{f}(u, v)) \\
&+(\hat{f}(u-h, v+k)-\hat{f}(u, v+k)-\hat{f}(u-h, v)+\hat{f}(u, v)) \\
&+(\hat{f}(u+h, v-k)-\hat{f}(u, v-k)-\hat{f}(u+h, v)+\hat{f}(u, v)) \\
&+(\hat{f}(u-h, v-k)-\hat{f}(u, v-k)-\hat{f}(u-h, v)+\hat{f}(u, v)) \\
& \quad=\Delta_{1,1} \hat{f}(u, v ; h, k)-\Delta_{1,1} \hat{f}(u-h, v ; h, k) \\
& \quad-\Delta_{11} \hat{f}(u, v-k ; h, k)+\Delta_{1,1} \hat{f}(u-h, v-k ; h, k) .
\end{aligned}
$$

Now, we extend Theorems A-D for double sine and cosine transforms as follows. In Theorems 1-4 below we give the best possible sufficient condition in terms of f under which the double sine transform $\hat{f}_{s s}$ and the double cosine transform $\hat{f}_{c c}$ belong to one of the Lipschitz classes $\operatorname{Lip}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 1$; or to one of the $\operatorname{Zygmund}$ classes $\operatorname{Zyg}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 2$. We will prove in Theorems 1-4 that these sufficient conditions are also necessary for nonnegative - valued functions $\hat{f} \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$.

Theorem 1. (i) Let $f: \mathbf{R}_{+}^{2} \rightarrow \mathbf{C}$ be such that $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}^{2}\right)$. If for some $0<\alpha, \beta \leq 1$,

$$
\begin{equation*}
\int_{0}^{s} \int_{0}^{t} x y|f(x, y)| \mathrm{d} x \mathrm{~d} y=O\left(s^{1-\alpha} t^{1-\beta}\right) \quad \text { for all } \quad s, t>0 \tag{2.5}
\end{equation*}
$$

then $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$ and $\hat{f}_{s s} \in \operatorname{Lip}(\alpha, \beta)$.
(ii) Let $f: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}$be such that $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$. If $\hat{f}_{s s} \in \operatorname{Lip}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 1$, then (2.5) holds.

We note that for double sine series with nonnegative coefficients, an analogous theorem was proved in [3, Theorems 1-3] by the first named author.

Theorem 2. In case $0<\alpha, \beta<1$, Theorem 1 remains valid when $\hat{f}_{s s}$ is replaced by $\hat{f}_{c c}$.
Remark 2. It follows from Lemma 1 in Section 3 below that for $0<\alpha, \beta<1$, the condition (2.5) is equivalent to the following one:

$$
\begin{equation*}
\int_{s}^{\infty} \int_{t}^{\infty}|f(x, y)| \mathrm{d} x \mathrm{~d} y=O\left(s^{-\alpha} t^{-\beta}\right) \quad \text { for all } \quad s, t>0 \tag{2.6}
\end{equation*}
$$

Theorem 3. (i) Let $f: \mathbf{R}_{+}^{2} \rightarrow \mathbf{C}$ be such that $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}^{2}\right)$. If for some $0<\alpha, \beta \leq 2$,

$$
\begin{equation*}
\int_{0}^{s} \int_{0}^{t} x^{2} y^{2}|f(x, y)| \mathrm{d} x \mathrm{~d} y=O\left(s^{2-\alpha} t^{2-\beta}\right) \quad \text { for all } \quad s, t>0 \tag{2.7}
\end{equation*}
$$

then $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$ and $\hat{f}_{c c} \in \operatorname{Zyg}(\alpha, \beta)$.
(ii) Let $f: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}$be such that $f \in L^{1}\left(\mathbf{R}_{+}^{2}\right)$. If $\hat{f}_{c c} \in \operatorname{Zyg}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 2$, then (2.7) holds.

Theorem 4. In case $0<\alpha, \beta<2$, Theorem 3 remains valid when $\hat{f}_{c c}$ is replaced by $\hat{f}_{s s}$.
We note that for double cosine series with nonnegative coeffients and the Zygmund class Zyg (1,1), an analogous theorem was proved in [2, Theorem 1, where the class Zyg (1,1) is denoted by $\Lambda_{*}(2)$] by the first named author.

Remark 3. It is obvious that if (2.5) is satisfied for some $0<\alpha, \beta \leq 1$, then (2.7) is also satisfied. Furthermore, it follows from Lemma 1 in Section 3 that for $0<\alpha, \beta<2$, the condition (2.7) is equivalent to the condition (2.6). Consequently, the conditions (2.5) and (2.7) are equivalent for $0<\alpha, \beta<1$.

In connection with Theorems 2 and 4 , we raise the following two problems.
Problem 1. How to find the best possible sufficient condition in terms of f under which its double cosine transform $\hat{f}_{c c} \in \operatorname{Lip}(\alpha, \beta)$, where $\alpha, \beta>0$ and $\max \{\alpha, \beta\}=1$.

Problem 2. How to find the best possible sufficient condition in terms of f under which its double sine transform $\hat{f}_{s s} \in \operatorname{Zyg}(\alpha, \beta)$, where $\alpha, \beta>0$ and $\max \{\alpha, \beta\}=2$.

3 Auxiliary Results

In this Section we consider functions $g: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}$which are measurable in Lebesgue sense. The following two lemmas play key roles in the proof of Theorems 1-4. But they are also of interest in themselves.

Lemma 1. (i) Let $\gamma>\mu \geq 0$ and $\delta>v \geq 0$. If

$$
\begin{equation*}
\int_{0}^{s} \int_{0}^{t} x^{\gamma} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y=O\left(s^{\mu} t^{\nu}\right) \quad \text { for all } \quad s, t>0 \tag{3.1}
\end{equation*}
$$

then $g \in L^{1}((s, \infty) \times(t, \infty))$ and

$$
\begin{equation*}
\int_{s}^{\infty} \int_{t}^{\infty} g(x, y) \mathrm{d} x \mathrm{~d} y=O\left(s^{\mu-\gamma_{t} v-\delta}\right) \quad \text { for all } \quad s, t>0 \tag{3.2}
\end{equation*}
$$

(ii) Conversely, let $\gamma \geq \mu>0$ and $\delta \geq v>0$. If (3.2) holds, then (3.1) also holds.

Proof. Part (i). By (3.1), there exists a constant C such that

$$
\begin{equation*}
\int_{0}^{s} \int_{0}^{t} x^{\gamma} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y \leq C s^{\mu} t^{v} \quad \text { for all } \quad s, t>0 \tag{3.3}
\end{equation*}
$$

Let $s, t>0$ be arbitrary. In particular, we have

$$
\begin{aligned}
2^{m \gamma+n \delta} s^{\gamma} t^{\delta} \int_{2^{m} s}^{2^{m+1} s} \int_{2^{n} t}^{2^{n+1} t} g(x, y) \mathrm{d} x \mathrm{~d} y & \leq \int_{0}^{2^{m+1} s} \int_{0}^{2^{n^{n+1}} t} x^{\gamma} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y \\
& \leq C 2^{(m+1) \mu+(n+1) v} s^{\mu} t^{v}, \quad m, n \in \mathbf{Z}
\end{aligned}
$$

whence it follows that

$$
\int_{2^{m} s}^{2^{m+1} s} \int_{2^{n} t}^{2^{n+1} t} g(x, y) \mathrm{d} x \mathrm{~d} y \leq C 2^{\mu+v_{2}} 2^{m(\mu-\gamma)+n(v-\delta)} s^{\mu-\gamma_{t} \nu-\delta} .
$$

Since $\gamma>\mu$ and $\delta>v$, we conclude that

$$
\begin{aligned}
& \int_{s}^{\infty} \int_{t}^{\infty} g(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \int_{2^{m} s}^{2^{m+1} s} \int_{2^{n} t}^{2^{n+1} t} g(x, y) \mathrm{d} x \mathrm{~d} y \\
& \leq C 2^{\mu+v} s^{\mu-\gamma} t^{v-\delta} \\
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} 2^{m(\mu-\gamma)+n(v-\delta)}=O\left(s^{\mu-\gamma_{t} v-\delta}\right)
\end{aligned}
$$

which is (3.2) to be proved.
Part (ii). By (3.2), there exists a constant C such that

$$
\int_{s}^{\infty} \int_{t}^{\infty} g(x, y) \mathrm{d} x \mathrm{~d} y \leq C s^{\mu-\gamma_{t}}{ }^{v-\delta} \quad \text { for all } \quad s, t>0 .
$$

Let $s, t>0$ be arbitrary. In particular, we have

$$
\begin{aligned}
\int_{2^{m-1} s}^{2^{m}} \int_{2^{n-1} t}^{2^{n} t} x^{\gamma} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y & \leq 2^{m \gamma+n \delta} s^{\gamma} t^{\delta} \int_{2^{m-1} s}^{2^{m} s} \int_{2^{n-1} t}^{2^{n} t} g(x, y) \mathrm{d} x \mathrm{~d} y \\
& \leq 2^{m \gamma+n \delta} s^{\gamma} t^{\delta} C 2^{(m-1)(\mu-\gamma)+(n-1)(v-\delta)} s^{\mu-\gamma} t^{v-\delta} \\
& =C 2^{\gamma+\delta} s^{\mu} t^{v} 2^{(m-1) \mu+(n-1) v}, \quad m, n \in \mathbf{Z}
\end{aligned}
$$

Since $\mu>0$ and $v>0$, we conclude that

$$
\begin{aligned}
\int_{0}^{s} \int_{0}^{t} x^{\gamma} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y & =\sum_{m=-\infty}^{0} \sum_{n=-\infty}^{0} \int_{2^{m-1} s}^{2^{m} s} \int_{2^{n-1} t}^{2^{n} t} g(x, y) \mathrm{d} x \mathrm{~d} y \\
& \leq C 2^{\gamma+\delta} s^{\mu} t^{v} \sum_{m=-\infty}^{0} \sum_{n=-\infty}^{0} 2^{(m-1) \mu+(n-1) v}=O\left(s^{\mu} t^{v}\right),
\end{aligned}
$$

which is (3.1) to be proved.
The proof of Lemma 1 is complete.
Lemma 2. Let $\gamma>\mu \geq 0$, and let δ and v be arbitrary. If (3.1) holds, then

$$
\begin{equation*}
\int_{s}^{\infty} \int_{0}^{t} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y=O\left(s^{\mu-\gamma_{t}}\right) \quad \text { for all } \quad s, t>0 . \tag{3.4}
\end{equation*}
$$

Proof. Let $s, t>0$ be arbitrary. By (3.3), we have

$$
2^{m \gamma} S^{\gamma} \int_{2^{m} s}^{2^{m+1} s} \int_{0}^{t} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y \leq \int_{2^{m} s}^{2^{m+1} s} \int_{0}^{t} x^{\gamma} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y \leq C 2^{(m+1) \mu_{s^{\mu}} t^{v}, ~}
$$

whence it follows that

$$
\int_{2^{m} s}^{2^{m+1} s} \int_{0}^{t} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y \leq C 2^{\mu} 2^{m(\mu-\gamma)} s^{\mu-\gamma_{t}} t^{v}, \quad m \in \mathbf{Z}
$$

Since $\mu>\gamma$, we conclude that

$$
\begin{aligned}
\int_{s}^{\infty} \int_{0}^{t} y^{\delta} g(x, y) \mathrm{d} x \mathrm{~d} y & =\sum_{m=0}^{\infty} \int_{2^{m} s}^{2^{m+1} s} \int_{0}^{t} y^{\delta} g(x, y \mathrm{~d} x \mathrm{~d} y \\
& \leq C 2^{\mu} s^{\mu-\gamma} t^{v} \sum_{m=0}^{\infty} 2^{m(\mu-\gamma)}=O\left(s^{\mu-\gamma} t^{\nu}\right)
\end{aligned}
$$

which is (3.4) to be proved.

4 Proof of Theorem 1

Part (i). Assume the condition (2.5) is satisfied for some $0<\alpha, \beta \leq 1$. We will prove $\hat{f}_{s s} \in \operatorname{Lip}(\alpha, \beta)$, where $\hat{f}_{s s}$ is defined in (2.1). To this effect, let $u, v \geq 0$ and $h, k>0$ be arbitrarily given. Keeping (2.1) and (2.3) in mind, we estimate as follows:

$$
\begin{align*}
\left.\left.\frac{\pi}{2} \right\rvert\, \Delta_{1,1} \hat{f}_{s s}(u, v) ; h, k\right) \mid & =\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y)(\sin (u+h) x-\sin u x)(\sin (v+k) y-\sin v y) \mathrm{d} x \mathrm{~d} y\right| \\
& =4\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \cos \left(u+\frac{h}{2}\right) x \sin \frac{h x}{2} \cos \left(v+\frac{k}{2}\right) y \sin \frac{k y}{2} \mathrm{~d} x \mathrm{~d} y\right| \\
& \leq 4 \int_{0}^{\infty} \int_{0}^{\infty}\left|f(x, y) \sin \frac{h x}{2} \sin \frac{k y}{2}\right| \mathrm{d} x \mathrm{~d} y . \tag{4.1}
\end{align*}
$$

We decompose the last double integral in (4.1) as follows:

$$
\begin{align*}
& \frac{\pi}{2}\left|\Delta_{1,1} \hat{f}_{s s}(u, v ; h, k)\right| \\
& \quad \leq 4\left\{\int_{0}^{1 / h} \int_{0}^{1 / k}+\int_{1 / h}^{\infty} \int_{0}^{1 / k}+\int_{0}^{1 / h} \int_{1 / k}^{\infty}+\int_{1 / h}^{\infty} \int_{1 / k}^{\infty}\right\}\left|f(x, y) \sin \frac{h x}{2} \sin \frac{k y}{2}\right| \mathrm{d} x \mathrm{~d} y \tag{4.2}\\
& \quad=: I_{1}+I_{2}+I_{3}+I_{u}
\end{align*}
$$

say. First, we use the obvious inequality

$$
\left|2 \sin \frac{t}{2}\right| \leq \min \{2,|t|\},
$$

and by (2.5) we obtain

$$
\begin{align*}
I_{1} & \leq 4 h k \int_{0}^{1 / h} \int_{0}^{1 / k} x y|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{4.3}\\
& =h k O\left(\left(\frac{1}{h}\right)^{1-\alpha}\left(\frac{1}{k}\right)^{1-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right)
\end{align*}
$$

Second, we apply Part (i) in Lemma 1 in the case of (2.5) to obtain

$$
\begin{align*}
I_{4} & \leq 16 \int_{1 / h}^{\infty} \int_{1 / k}^{\infty}|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{4.4}\\
& =O\left(\left(\frac{1}{h}\right)^{-\alpha}\left(\frac{1}{k}\right)^{-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right) .
\end{align*}
$$

Third, we apply Part (i) in Lemma 2 in the case of (2.5) to obtain

$$
\begin{align*}
I_{2} & \leq 8 k \int_{1 / h}^{\infty} \int_{0}^{1 / k} y|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{4.5}\\
& =k O\left(\left(\frac{1}{h}\right)^{-\alpha}\left(\frac{1}{k}\right)^{1-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right) .
\end{align*}
$$

Fourth, we apply the symmetric counterpart of Lemma 2 in the case of (2.5) to obtain

$$
\begin{align*}
I_{3} & \leq 8 h \int_{0}^{1 / h} \int_{1 / k}^{\infty} x|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{4.6}\\
& =h O\left(\left(\frac{1}{h}\right)^{1-\alpha}\left(\frac{1}{k}\right)^{-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right)
\end{align*}
$$

Combining (4.2) - (4.6) yields

$$
\left|\Delta_{1,1} \hat{f}_{s s}(u, v ; h, k)\right|=O\left(h^{\alpha} k^{\beta}\right) .
$$

Since $u, v \geq 0$ and $h, k>0$ are arbitrary, this proves $\hat{f}_{s s} \in \operatorname{Lip}(\alpha, \beta)$.
Part (ii). Assume $f \geq 0$ and $\hat{f}_{s s} \in \operatorname{Lip}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 1$. In particular, we have

$$
\begin{align*}
& \frac{\pi}{2}\left|\Delta_{1,1} \hat{f}_{s s}(0,0 ; u, v)\right| \\
& \quad=\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin u x \sin v y \mathrm{~d} x \mathrm{~d} y\right| \leq C u^{\alpha} v^{\beta} \quad \text { for all } \quad u, v>0, \tag{4.7}
\end{align*}
$$

where the constant C does not depend on u and v. We will integrate the double integral in (4.7) between the absolute value bars with respect to u over the interval $(0, h)$, where $h>0$ is arbitrary. Due to the fact that the convergence

$$
\lim _{\xi \rightarrow \infty} \int_{0}^{\xi} \int_{0}^{\infty} f(x, y) \sin u x \sin v y \mathrm{~d} x \mathrm{~d} y=\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin u x \sin v y \mathrm{~d} x \mathrm{~d} y
$$

is uniform in $u, v \geq 0$, we may change the order of integration with respect to x and u, and from (4.7) we conclude that

$$
\begin{equation*}
\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \frac{1-\cos h x}{x} \sin v y \mathrm{~d} x \mathrm{~d} y\right| \leq C \frac{h^{\alpha+1}}{\alpha+1} v^{\beta} \quad \text { for all } \quad h, v>0 . \tag{4.8}
\end{equation*}
$$

Next, we will integrate the double integral in (4.8) between the absolute value bars with respect to v over the interval $(0, k)$, where $k>0$ is arbitrary. By the same token as above, we may change the order of integration with respect to y and v, and from (4.8) we conclude that

$$
\begin{align*}
& \left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \frac{1-\cos h x}{x} \frac{1-\cos k y}{y} \mathrm{~d} x \mathrm{~d} y\right| \\
& \quad=4 \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x, y)}{x y} \sin ^{2} \frac{h x}{2} \sin ^{2} \frac{k y}{2} \mathrm{~d} x \mathrm{~d} y \tag{4.9}\\
& \quad \leq C \frac{h^{\alpha+1}}{\alpha+1} \frac{k^{\beta+1}}{\beta+1}, \quad \text { for all } \quad h, k>0,
\end{align*}
$$

where we have taken into account that $f \geq 0$.
Using the familiar inequality

$$
\begin{equation*}
\sin t \geq \frac{2}{\pi} t \quad \text { for } \quad 0 \leq t \leq \frac{\pi}{2} \tag{4.10}
\end{equation*}
$$

it follows from (4.9) that

$$
\frac{4 h^{2} k^{2}}{\pi^{4}} \int_{0}^{1 / h} \int_{0}^{1 / k} x y f(x, y) \mathrm{d} x \mathrm{~d} y \leq C \frac{h^{\alpha+1}}{\alpha+1} \frac{k^{\beta+1}}{\beta+1} \quad \text { for all } \quad h, k>0
$$

or equivalently,

$$
\int_{0}^{1 / h} \int_{0}^{1 / k} x y f(x, y) \mathrm{d} x \mathrm{~d} y \leq \frac{C \pi^{4}}{4(\alpha+1)(\beta+1)} h^{\alpha-1} k^{\beta-1}=O\left(\left(\frac{1}{h}\right)^{1-\alpha}\left(\frac{1}{k}\right)^{1-\beta}\right)
$$

This proves (2.5) with $s=1 / h$ and $t=1 / k, h, k>0$.
The proof of Theorem 1 is complete.

5 Proof of Theorem 2

Part (i). Given $u, v \geq 0$ and $h, k>0$, by (2.2) we have (cf. (4.1))

$$
\begin{align*}
\frac{\pi}{2}\left|\Delta_{1,1} \hat{f}_{c c}(u, v ; h, k)\right| & =\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y)(\cos (u+h) x-\cos u x)(\cos (v+k) y-\cos v y) \mathrm{d} x \mathrm{~d} y\right| \\
& =4\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin \left(u+\frac{h}{2}\right) x \sin \frac{h x}{2} \sin \left(v+\frac{k}{2}\right) y \sin \frac{k y}{2} \mathrm{~d} x \mathrm{~d} y\right| \\
& \leq 4 \int_{0}^{\infty} \int_{0}^{\infty}\left|f(x, y) \sin \frac{h x}{2} \sin \frac{k y}{2}\right| \mathrm{d} x \mathrm{~d} y . \tag{5.1}
\end{align*}
$$

We observe that the right-most side of (5.1) is identical to that of (4.1). Thus, the proof of Part (i) in Theorem 1 in Section 4 can be repeated word by word, and it yields $\hat{f}_{c c} \in \operatorname{Lip}(\alpha, \beta)$ even in the case when $0<\alpha, \beta \leq 1$.

Part (ii). Assume $f \geq 0$ and $\hat{f}_{c c} \in \operatorname{Lip}(\alpha, \beta)$ for some $0<\alpha, \beta<1$. In particular, we have

$$
\begin{aligned}
& \frac{\pi}{2}\left|\Delta_{1,1} \hat{f}_{c c}(0,0 ; h, k)\right|=\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y)(\cos h x-1)(\cos k y-1) \mathrm{d} x \mathrm{~d} y\right| \\
& \quad=4 \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin ^{2} \frac{h x}{2} \sin ^{2} \frac{k y}{2} \mathrm{~d} x \mathrm{~d} y \leq C h^{\alpha} k^{\beta} \quad \text { for all } \quad h, k>0
\end{aligned}
$$

where the constant C does not depend on h and k. Making use of inequality (4.10) gives

$$
\frac{4 h^{2} k^{2}}{\pi^{4}} \int_{0}^{1 / h} \int_{0}^{1 / k} x^{2} y^{2} f(x, y) \mathrm{d} x \mathrm{~d} y \leq C h^{\alpha} k^{\beta}
$$

or equivalently,

$$
\begin{align*}
& \int_{0}^{1 / h} \int_{0}^{1 / k} x^{2} y^{2} f(x, y) \mathrm{d} x \mathrm{~d} y \leq \frac{C \pi^{4}}{4} h^{\alpha-2} k^{\beta-2} \tag{5.2}\\
& \quad=O\left(\left(\frac{1}{h}\right)^{2-\alpha}\left(\frac{1}{k}\right)^{2-\beta}\right) \text { for all } h, k>0 .
\end{align*}
$$

First, applying Part (i) in Lemma 1 with $\gamma=\delta=2$ and $\mu=2-\alpha$ and $\nu=2-\beta$, it follows from (5.2) that

$$
\begin{equation*}
\int_{0}^{1 / h} \int_{0}^{1 / k} f(x, y) \mathrm{d} x \mathrm{~d} y=O\left(\left(\frac{1}{h}\right)^{-\alpha}\left(\frac{1}{k}\right)^{-\beta}\right) . \tag{5.3}
\end{equation*}
$$

Second, applying Part (ii) in Lemma 1 with $\gamma=\delta=1$ and $\mu=1-\alpha$ and $v=1-\beta$ (we must have $\mu, n u>0$, but this is the case since by assumption $0<\alpha, \beta<1$), it follows from (5.3) that

$$
\int_{0}^{1 / h} \int_{0}^{1 / k} x y f(x, y) \mathrm{d} x \mathrm{~d} y=O\left(\left(\frac{1}{h}\right)^{1-\alpha}\left(\frac{1}{k}\right)^{1-\beta}\right) \quad \text { for all } \quad h, k>0 .
$$

This proves (2.1) with $s=1 / h$ and $t=1 / k, h, k>0$.
The proof of Theorem 2 is complete.

6 Proof of Theorem 3

Part (i). Assume the condition (2.7) is satisfied for some $0<\alpha, \beta \leq 2$. We will prove that $\hat{f}_{c c} \in \operatorname{Zyg}(\alpha, \beta)$, where $\hat{f}_{c c}$ is defined in (2.2). To this effect, let $u, v \geq 0$ and $h, k>0$ be arbitrarily given. Keeping (2.2) and (2.4) in mind, we estimate as follows (cf. (4.1)):

$$
\begin{align*}
& \frac{\pi}{2}\left|\Delta_{2,2} \hat{f}_{c c}(u, v ; h, k)\right| \\
& \mid \int_{0}^{\infty} \int_{0}^{\infty} f(x, y)(\cos (u+h) x-\cos u x+\cos (u-h) x) \cdot(\cos (v+k) y \\
& \quad=4\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \cos u x(\cos h x-1) \cos v y(\cos k y-1) \mathrm{d} x \mathrm{~d} y\right| \tag{6.1}\\
& \leq 4 \int_{0}^{\infty} \int_{0}^{\infty}|f(x, y)|(1-\cos h x)(1-\cos k y) \mathrm{d} x \mathrm{~d} y .
\end{align*}
$$

We decompose the last double integral in (6.1) as follows:

$$
\begin{align*}
& \left.\frac{\pi}{2} \right\rvert\, \Delta_{2,2} \hat{f}_{c c}(u, v ; h, k) \leq 4\left\{\int_{0}^{1 / h} \int_{0}^{1 / k}+\int_{1 / h}^{\infty} \int_{0}^{1 / k}+\int_{0}^{1 / h} \int_{1 / k}^{\infty}\right. \tag{6.2}\\
& \left.\quad+\int_{1 / h}^{\infty} \int_{1 / k}^{\infty}\right\}|f(x, y)|(1-\cos h x)(1-\cos k y) \mathrm{d} x \mathrm{~d} y=J_{1}+J_{2}+J_{3}+J_{4},
\end{align*}
$$

say. First, we use the inequality

$$
2(1-\cos t)=4 \sin ^{2} \frac{t}{2} \leq \min \left\{4, t^{2}\right\}
$$

and by (2.7) we obtain

$$
\begin{align*}
J_{1} & \leq h^{2} k^{2} \int_{0}^{1 / h} \int_{0}^{1 / k} x^{2} y^{2}|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{6.3}\\
& =h^{2} k^{2} O\left(\left(\frac{1}{h}\right)^{2-\alpha}\left(\frac{1}{k}\right)^{2-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right)
\end{align*}
$$

Second, we apply Part (i) in Lemma 1 in the case of (2.7) to obtain

$$
\begin{align*}
J_{4} & \leq 16 \int_{1 / h}^{\infty} \int_{1 / k}^{\infty}|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{6.4}\\
& =O\left(\left(\frac{1}{h}\right)^{-\alpha}\left(\frac{1}{k}\right)^{-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right)
\end{align*}
$$

Third, we apply Part (i) in Lemma 2 in the case of (2.7) to obtain

$$
\begin{align*}
J_{2} & \leq 8 k^{2} \int_{1 / h}^{\infty} \int_{0}^{1 / k} y^{2}|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{6.5}\\
& =k^{2} O\left(\left(\frac{1}{h}\right)^{-\alpha}\left(\frac{1}{k}\right)^{2-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right) .
\end{align*}
$$

Fourth, we apply the symmetric counterpart of Lemma 2 in the case of (2.7) to obtain

$$
\begin{align*}
J_{3} & \leq 8 h^{2} \int_{0}^{1 / h} \int_{1 / k}^{\infty} x^{2}|f(x, y)| \mathrm{d} x \mathrm{~d} y \tag{6.6}\\
& =h^{2} O\left(\left(\frac{1}{h}\right)^{2-\alpha}\left(\frac{1}{k}\right)^{-\beta}\right)=O\left(h^{\alpha} k^{\beta}\right) .
\end{align*}
$$

Combining (6.2) - (6.6) yields

$$
\left|\Delta_{2,2} \hat{f}_{c c}(u, v ; h, k)\right|=O\left(h^{\alpha} k^{\beta}\right) .
$$

Since $u, v \geq 0$ and $h, k>0$ are arbitrary, this proves $\hat{f}_{c c} \in \operatorname{Zyg}(\alpha, \beta)$.
Part (ii). Assume $f \geq 0$ and $\hat{f}_{c c} \in \operatorname{Zyg}(\alpha, \beta)$ for some $0<\alpha, \beta \leq 2$. In particular, we have (cf. (6.1))

$$
\begin{align*}
\frac{\pi}{2}\left|\Delta_{2,2} \hat{f}_{c c}(0,0 ; h, k)\right| & =4\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y)(\cos h x-1)(\cos k y-1) \mathrm{d} x \mathrm{~d} y\right| \\
& =16 \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin ^{2} \frac{h x}{2} \sin ^{2} \frac{k y}{2} \mathrm{~d} x \mathrm{~d} y \leq C h^{\alpha} k^{\beta} \quad \text { for all } \quad h, k>0 \tag{6.7}
\end{align*}
$$

where the constant C does not depend on h and k.
Making use of the inequality (4.10), from (6.7) we conclude that

$$
\frac{4 h^{2} k^{2}}{\pi^{4}} \int_{0}^{1 / h} \int_{0}^{1 / k} x^{2} y^{2} f(x, y) \mathrm{d} x \mathrm{~d} y \leq C h^{\alpha} k^{\beta}
$$

or equivalently

$$
\int_{0}^{1 / h} \int_{0}^{1 / k} x^{2} y^{2} f(x, y) \mathrm{d} x \mathrm{~d} y \leq \frac{C \pi^{4}}{4} h^{\alpha-2} k^{\beta-2} \quad \text { for all } \quad h, k>0 .
$$

This proves (2.7) with $s=1 / h$ and $t=1 / k, h, k>0$.
The proof of Theorem 3 is complete.

7 Proof of Theorem 4

Part (i). Given $u, v \geq 0$ and $h, k>0$, by (2.1) we have (cf. (6.1))

$$
\begin{align*}
\frac{\pi}{2}\left|\Delta_{2,2} \hat{f}_{s s}(u, v ; h, k)\right|= & \mid \int_{0}^{\infty} \int_{0}^{\infty} f(x, y)(\sin (u+h) x-2 \sin u x+\sin (u-h) x) . \\
& \cdot(\sin (v+k) y-2 \sin v y+\sin (v-k) y) \mathrm{d} x \mathrm{~d} y \mid \tag{7.1}\\
= & 4\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin u x(\cos h x-1) \sin v y(\cos k y-1) \mathrm{d} x \mathrm{~d} y\right| \\
\leq & 4 \int_{0}^{\infty} \int_{0}^{\infty}|f(x, y)|(1-\cos h x)(1-\cos k y) \mathrm{d} x \mathrm{~d} y .
\end{align*}
$$

We observe that the right-most side of (7.1) is identical to that of (6.1). Thus, the proof of Part (i) of Theorem 3 in Section 6 can be repeated word by word, and it yields $\hat{f}_{s s} \in \operatorname{Lip}(\alpha, \beta)$ even in the case when $0<\alpha, \beta \leq 2$.

Part (ii). Assume $f \geq 0$ and $\hat{f}_{s s} \in \operatorname{Zyg}(\alpha, \beta)$ for some $0<\alpha, \beta<2$. Let $u, v \geq 0$ and $h, k>0$ be arbitrary. By (7.1), we have

$$
\begin{equation*}
\frac{\pi}{8}\left|\Delta_{2,2} \hat{f}_{s s}(u, v ; h, k)\right|=\left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin u x(\cos h x-1) \sin v y(\cos k y-1) \mathrm{d} x \mathrm{~d} y\right| \leq C h^{\alpha} k^{\beta} \tag{7.2}
\end{equation*}
$$

where the constant C does not depend on u, v, h, and k.
We will integrate the double integral in (7.2) between the absolute value bars with respect to u over the interval $(0, h)$. Due to the fact that the convergence

$$
\begin{aligned}
& \lim _{\xi \rightarrow \infty} \int_{0}^{\xi} \int_{0}^{\infty} f(x, y) \sin u x(\cos h x-1) \sin v y(\cos k y-1) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \sin u x(\cos h x-1) \sin v y(\cos k y-1) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

is uniform in $u, v \geq 0$, we may change the order of integration with respect to x and u, and from (7.2) we conclude that

$$
\begin{align*}
& \left|\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \frac{(1-\cos h x)^{2}}{x} \sin v y(\cos k y-1) \mathrm{d} x \mathrm{~d} y\right| \tag{7.3}\\
& \quad \leq C h^{\alpha+1} k^{\beta}, \quad \text { for all } \quad v \geq 0 \text { and } \quad h, k>0 .
\end{align*}
$$

Next, we will integrate the double integral in (7.3) between the absolute value bars with respect to v over the interval $(0, k)$. By the same token as above, we may change the order of integration with respect to y and v, and from (7.3) we conclude that

$$
\begin{gathered}
\left\lvert\, \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \frac{(1-\cos h x)^{2}}{x} \frac{(1-\cos k y)^{2}}{y} \mathrm{~d} x \mathrm{~d} y\right. \\
\leq C h^{\alpha+1} k^{\beta+1} \text { for all } h, k>0
\end{gathered}
$$

whence it follows that

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x, y)}{x y}\left(\sin \frac{h x}{2}\right)^{4}\left(\sin \frac{k y}{2}\right)^{4} \mathrm{~d} x \mathrm{~d} y \leq \frac{C}{16} h^{\alpha+1} k^{\beta+1} \quad \text { for all } \quad h, k>0
$$

where we have taken into account that $f \geq 0$. Making use of inequality (4.10), we even have

$$
\frac{h^{4} k^{4}}{\pi^{8}} \int_{0}^{1 / h} \int_{0}^{1 / k} x^{3} y^{3} f(x, y) \mathrm{d} x \mathrm{~d} y \leq \frac{C}{16} h^{\alpha+1} k^{\beta+1}
$$

or equivalently,

$$
\begin{equation*}
\int_{0}^{1 / h} \int_{0}^{1 / k} x^{3} y^{3} f(x, y) \mathrm{d} x \mathrm{~d} y \leq \frac{C \pi^{8}}{16} h^{\alpha-3} k^{\beta-3} \tag{7.4}
\end{equation*}
$$

First, applying Part (i) in Lemma 1 with $\gamma=\delta=3$ and $\mu=3-\alpha, v=3-\beta$, it follows from (7.4) that

$$
\begin{equation*}
\int_{1 / h}^{\infty} \int_{1 / k}^{\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=O\left(\left(\frac{1}{h}\right)^{-\alpha}\left(\frac{1}{k}\right)^{-\beta}\right) \tag{7.5}
\end{equation*}
$$

Second, applying Part (ii) in Lemma 1 with $\gamma=\delta=2$ and $\mu=2-\alpha, v=2-\beta$ (we must have $\mu>0, v>0$, but this is the case since $0<\alpha, \beta<2$), it follows from (7.5) that

$$
\int_{0}^{1 / h} \int_{0}^{1 / k} x^{2} y^{2} f(x, y) \mathrm{d} x \mathrm{~d} y=O\left(\left(\frac{1}{h}\right)^{2-\alpha}\left(\frac{1}{k}\right)^{2-\beta}\right)
$$

This proves (2.7) with $s=1 / h$ and $t=1 / k, h, k>0$.
The proof of Theorem 4 is complete.

References

[1] DeVore, R. and Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
[2] Fülöp, V., Double Cosine Series with Nonnegative Coefficients, Acta Sci. Math. (Szeged), 70 (2004), 91-100.
[3] Fülöp, V., Double Sine Series with Nonnegative Coefficients and Lipschitz Classes, Colloq. Math., 105(2006), 25-34.
[4] Móricz, F., On the Continuity and Smoothness of Sine and Cosine Fourier Transforms of Lebesgue Integrable Functions, Acta. Math. Hungar. (to appear).

364 Vanda Fülöp et al : Double Sine and Cosine Transforms, Lipschitz and Zygmund Classes
[5] Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
[6] Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, 1937.
[7] Zygmund, A., Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

Bolyai Institute
University of Szeged
Aradi vértanúk tere 1
6720 Szeged, Hungary

Vanda Fülöp
E-mail: fulop@math.u-szeged.hu

Ferenc Móricaz
E-mail: moricz@math.u-szeged.hu

