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(University of Szeged, Hungary)

Received Dec. 2, 2010

c© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. We consider complex-valued functions f ∈ L1(R2
+), where R+ := [0,∞), and

prove sufficient conditions under which the double sine Fourier transform f̂ss and the dou-

ble cosine Fourier transform f̂cc belong to one of the two-dimensional Lipschitz classes

Lip(α,β ) for some 0 < α , β ≤ 1; or to one of the Zygmund classes Zyg(α,β ) for some

0 < α , β ≤ 2. These sufficient conditions are best possible in the sense that they are also

necessary for nonnegative-valued functions f ∈ L1(R2
+).
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1 Known Results: Single Sine and Cosine Transforms

We consider complex-valued functions f : R+ → C that are integrable in Lebesgue sense

over R+ := [0,∞), in symbol: f ∈ L1(R+). We recall that the sine (Fourier) transform of f is

defined by

f̂s(u) :=

√
2
π

∫ ∞

0
f (x)sin uxdx,

while the cosine (Fourier) transform of f is defined by

f̂c(u) :=

√
2
π

∫ ∞

0
f (x)cos uxdx, u ∈ R.
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Both f̂s and f̂c are uniformly continuous on R and vanish at infinity. For details, we refer to [6,

Ch. 1].

In the cases when we do not distinguish between f̂s and f̂c, we simply use the notation f̂ .

We recall that f̂ is said to satisfy the Lipschitz condition of order α > 0, in symbol: f̂ ∈ Lip(α),

if

| f̂ (u+ h)− f̂ (u)| ≤Chα for all u ∈ R and h > 0,

where the constant C does not depend on u and h. Furthermore, f̂ is said to satisfy the Zygmund

condition of order α > 0, in symbol: f̂ ∈ Zyg(α), if

| f̂ (u+ h)−2 f̂ (u)+ f̂ (u−h)| ≤Chα for all u ∈ R and h > 0,

where the constant C does not depend on u and h.

It is well known (see, e.g., [1, Ch. 2] or [7, Ch. 2, §3] that if f̂ ∈ Lip(α) for some α > 1, or

if f̂ ∈ Zyg(α) for some α > 2, then f̂ ≡ 0.

The following four theorems were proved in [4] by the second named author of the present

paper.

Theorem A. (i) Let f : R+ → C be such that f ∈ L1
loc(R+). If for some 0 < α ≤ 1,

∫ s

0
x| f (x)| = O(s1−α) f or all s > 0, (1.1)

then f ∈ L1(R+) and f̂s ∈ Lip(α).

(ii) Let f : R+ → R+ be such that f ∈ L1(R+). If f̂s ∈ Lip(α) for some 0 < α ≤ 1, then (1.1)

holds.

Theorem B. In case 0 < α < 1, Theorem A remains valid when f̂s is replaced by f̂c.

Theorem C. (i) Let f : R+ → C be such that f ∈ L1
loc(R+). If for some 0 < α ≤ 2,

∫ s

0
x2| f (x)| = O(s2−α) f or all s > 0, (1.2)

then f ∈ L1(R+) and f̂c ∈ Zyg(α).

(ii) Let f : R+ → R+ be such that f ∈ L1(R+). If f̂c ∈ Zyg(α) for some 0 < α ≤ 2, then

(1.2) holds.

Theorem D. In case 0 < α < 2, Theorem C remains valid when f̂c is replaced by f̂s.

Our goal in this paper is to extend these results from single to double sine and cosine trans-

form.
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2 New Results: Double Sine and Cosine Transforms

We consider complex-valued functions f : R2
+ → C that are integrable in Lebesgue’s sense

over R2
+, in symbol: f ∈ L1(R2

+). We recall that , the double sine ( Fourier)trans f orm of f is

defined by

f̂ss(u,v) :=
2
π

∫ ∞

0

∫ ∞

0
f (x,y)sin uxsin vydxdy, (2.1)

while the doublecosine(Fourier)trans f orm is defined by

f̂cc(u,v) :=
2
π

∫ ∞

0

∫ ∞

0
f (x,y)cos uxcos vydxdy, (u,v) ∈ R2. (2.2)

Both f̂ss(u,v) and f̂cc(u,v) are uniformly continuous on R2 and vanish as max{u,v} → ∞ (see,

e.g., [5, Ch. 1]). Clearly, f̂ss(u,v) is odd in each variable, while f̂cc(u,v) is even in each variable.

In the cases when we do not distinguish between f̂ss and f̂cc, we simply write f̂ (u,v). We

recall that f̂ (u,v) is said to satisfy the Lipschitz condition of order α > 0 in u, and of order β > 0

in v, in symbol: f̂ ∈ Lip(α ,β ), if

|Δ1,1 f̂ (u,v;h,k)| := | f̂ (u+ h,v+ k)− f̂ (u,v+ k) (2.3)

− f̂ (u+ h,v)+ f̂ (u,v)| ≤Chα kβ for all (u,v) ∈ R2 and h,k > 0;

where the constant C does not depend on u,v,h, and k (see, e.g., [3], where the term “multiplica-

tive Lipschitz class" is used).

Furthermore, we recall that f̂ (u,v) is said to satisfy the Zygmund condition of order α > 0

in u, and of order β > 0 in v, in symbols: f̂ ∈ Zyg(α ,β ), if

|Δ2,2 f̂ (u,v;h,k)|

= | f̂ (u+ h,v+ k)+ f̂ (u−h,v+ k)+ f̂ (u+ h,v− k)+ f̂ (u−h,v− k)

−2 f (u+ h,v)−2 f (u−h,v)−2 f (u,v+ k)−2 f (u,v− k)

+4 f (u,v)| ≤Chα kβ for all (u,v) ∈ R2 and h,k > 0;

(2.4)

where the constant C does not depend on u,v,h, and k (see, e.g., [2], where the class Zyg(1,1)

is introduced and denoted by Λ∗(2)).

Remark 1. We note that

Lip(α ,β ) ⊂ Zyg(α ,β ) for all α ,β > 0,
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due to the following identity: for all (u,v) ∈ R2 and h,k > 0, we have

Δ2,2 f̂ (u,v;h,k) = ( f̂ (u+ h,v+ k)− f̂ (u,v+ k)− f̂ (u+ h,v)+ f̂ (u,v))

+( f̂ (u−h,v+ k)− f̂ (u,v+ k)− f̂ (u−h,v)+ f̂ (u,v))

+( f̂ (u+ h,v− k)− f̂ (u,v− k)− f̂ (u+ h,v)+ f̂ (u,v))

+( f̂ (u−h,v− k)− f̂ (u,v− k)− f̂ (u−h,v)+ f̂ (u,v))

= Δ1,1 f̂ (u,v;h,k)−Δ1,1 f̂ (u−h,v;h,k)

−Δ11 f̂ (u,v− k;h,k)+ Δ1,1 f̂ (u−h,v− k;h,k).

Now, we extend Theorems A-D for double sine and cosine transforms as follows. In The-

orems 1-4 below we give the best possible sufficient condition in terms of f under which the

double sine transform f̂ss and the double cosine transform f̂cc belong to one of the Lipschitz

classes Lip(α ,β ) for some 0 < α ,β ≤ 1; or to one of the Zygmund classes Zyg(α ,β ) for some

0 < α ,β ≤ 2. We will prove in Theorems 1-4 that these sufficient conditions are also necessary

for nonnegative - valued functions f̂ ∈ L1(R2
+).

Theorem 1. (i) Let f : R2
+ → C be such that f ∈ L1

loc(R
2
+). If for some 0 < α ,β ≤ 1,

∫ s

0

∫ t

0
xy| f (x,y)|dxdy = O(s1−αt1−β ) f or all s, t > 0, (2.5)

then f ∈ L1(R2
+) and f̂ss ∈ Lip(α ,β ).

(ii) Let f : R2
+ → R+ be such that f ∈ L1(R2

+). If f̂ss ∈ Lip(α ,β ) for some 0 < α ,β ≤ 1,

then (2.5) holds.

We note that for double sine series with nonnegative coefficients, an analogous theorem was

proved in [3, Theorems 1-3] by the first named author.

Theorem 2. In case 0 < α ,β < 1, Theorem 1 remains valid when f̂ss is replaced by f̂cc.

Remark 2. It follows from Lemma 1 in Section 3 below that for 0 < α ,β < 1, the condition

(2.5) is equivalent to the following one:
∫ ∞

s

∫ ∞

t
| f (x,y)|dxdy = O(s−αt−β ) for all s, t > 0. (2.6)

Theorem 3. (i) Let f : R2
+ → C be such that f ∈ L1

loc(R
2
+). If for some 0 < α , β ≤ 2,

∫ s

0

∫ t

0
x2y2| f (x,y)|dxdy = O(s2−α t2−β ) f or all s, t > 0, (2.7)

then f ∈ L1(R2
+) and f̂cc ∈ Zyg(α ,β ).
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(ii) Let f : R2
+ → R+ be such that f ∈ L1(R2

+). If f̂cc ∈ Zyg(α ,β ) for some 0 < α ,β ≤ 2,

then (2.7) holds.

Theorem 4. In case 0 < α , β < 2, Theorem 3 remains valid when f̂cc is replaced by f̂ss.

We note that for double cosine series with nonnegative coeffients and the Zygmund class

Zyg (1,1), an analogous theorem was proved in [2, Theorem 1, where the class Zyg (1,1) is

denoted by Λ∗(2)] by the first named author.

Remark 3. It is obvious that if (2.5) is satisfied for some 0 < α , β ≤ 1, then (2.7) is

also satisfied. Furthermore, it follows from Lemma 1 in Section 3 that for 0 < α , β < 2, the

condition (2.7) is equivalent to the condition (2.6). Consequently, the conditions (2.5) and (2.7)

are equivalent for 0 < α , β < 1.

In connection with Theorems 2 and 4, we raise the following two problems.

Problem 1. How to find the best possible sufficient condition in terms of f under which its

double cosine transform f̂cc ∈ Lip(α ,β ), where α ,β > 0 and max{α ,β} = 1.

Problem 2. How to find the best possible sufficient condition in terms of f under which its

double sine transform f̂ss ∈ Zyg(α ,β ), where α ,β > 0 and max{α ,β} = 2.

3 Auxiliary Results

In this Section we consider functions g : R2
+ → R+ which are measurable in Lebesgue sense.

The following two lemmas play key roles in the proof of Theorems 1-4. But they are also of

interest in themselves.

Lemma 1. (i) Let γ > μ ≥ 0 and δ > ν ≥ 0. If∫ s

0

∫ t

0
xγ yδ g(x,y)dxdy = O(sμ tν) f or all s, t > 0, (3.1)

then g ∈ L1((s,∞)× (t,∞)) and∫ ∞

s

∫ ∞

t
g(x,y)dxdy = O(sμ−γtν−δ ) f or all s, t > 0. (3.2)

(ii) Conversely, let γ ≥ μ > 0 and δ ≥ ν > 0. If (3.2) holds, then (3.1) also holds.

Proof. Part (i). By (3.1), there exists a constant C such that∫ s

0

∫ t

0
xγyδ g(x,y)dxdy ≤Csμ tν for all s, t > 0. (3.3)

Let s, t > 0 be arbitrary. In particular, we have

2mγ+nδ sγ tδ
∫ 2m+1s

2ms

∫ 2n+1t

2nt
g(x,y)dxdy ≤

∫ 2m+1s

0

∫ 2n+1t

0
xγ yδ g(x,y)dxdy

≤ C2(m+1)μ+(n+1)νsμ tν , m,n ∈ Z,
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whence it follows that
∫ 2m+1s

2ms

∫ 2n+1t

2nt
g(x,y)dxdy ≤C2μ+ν2m(μ−γ)+n(ν−δ )sμ−γtν−δ .

Since γ > μ and δ > ν , we conclude that
∫ ∞

s

∫ ∞

t
g(x,y)dxdy =

∞

∑
m=0

∞

∑
n=0

∫ 2m+1s

2ms

∫ 2n+1t

2nt
g(x,y)dxdy

≤ C2μ+νsμ−γtν−δ
∞

∑
m=0

∞

∑
n=0

2m(μ−γ)+n(ν−δ ) = O(sμ−γtν−δ ),

which is (3.2) to be proved.

Part (ii). By (3.2), there exists a constant C such that
∫ ∞

s

∫ ∞

t
g(x,y)dxdy ≤Csμ−γtν−δ for all s, t > 0.

Let s, t > 0 be arbitrary. In particular, we have
∫ 2ms

2m−1s

∫ 2nt

2n−1t
xγ yδ g(x,y)dxdy ≤ 2mγ+nδ sγ tδ

∫ 2ms

2m−1s

∫ 2nt

2n−1t
g(x,y)dxdy

≤ 2mγ+nδ sγ tδC2(m−1)(μ−γ)+(n−1)(ν−δ )sμ−γtν−δ

= C2γ+δ sμ tν 2(m−1)μ+(n−1)ν, m,n ∈ Z.

Since μ > 0 and ν > 0, we conclude that

∫ s

0

∫ t

0
xγyδ g(x,y)dxdy =

0

∑
m=−∞

0

∑
n=−∞

∫ 2ms

2m−1s

∫ 2nt

2n−1t
g(x,y)dxdy

≤ C2γ+δ sμ tν
0

∑
m=−∞

0

∑
n=−∞

2(m−1)μ+(n−1)ν = O(sμ tν),

which is (3.1) to be proved.

The proof of Lemma 1 is complete.

Lemma 2. Let γ > μ ≥ 0, and let δ and ν be arbitrary. If (3.1) holds, then
∫ ∞

s

∫ t

0
yδ g(x,y)dxdy = O(sμ−γtν) f or all s, t > 0. (3.4)

Proof. Let s, t > 0 be arbitrary. By (3.3), we have

2mγsγ
∫ 2m+1s

2ms

∫ t

0
yδ g(x,y)dxdy ≤

∫ 2m+1s

2ms

∫ t

0
xγ yδ g(x,y)dxdy ≤C2(m+1)μsμ tν ,

whence it follows that
∫ 2m+1s

2ms

∫ t

0
yδ g(x,y)dxdy ≤C2μ2m(μ−γ)sμ−γtν , m ∈ Z.
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Since μ > γ , we conclude that
∫ ∞

s

∫ t

0
yδ g(x,y)dxdy =

∞

∑
m=0

∫ 2m+1s

2ms

∫ t

0
yδ g(x,ydxdy

≤ C2μsμ−γ tν
∞

∑
m=0

2m(μ−γ) = O(sμ−γtν),

which is (3.4) to be proved.

4 Proof of Theorem 1

Part (i). Assume the condition (2.5) is satisfied for some 0 < α , β ≤ 1. We will prove

f̂ss ∈ Lip(α ,β ), where f̂ss is defined in (2.1). To this effect, let u,v ≥ 0 and h,k > 0 be arbitrarily

given. Keeping (2.1) and (2.3) in mind, we estimate as follows:

π
2
|Δ1,1 f̂ss(u,v);h,k)| =

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)(sin(u+ h)x− sinux)(sin(v+ k)y− sinvy)dxdy

∣∣∣
= 4

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)cos

(
u+

h
2
)
xsin

hx
2

cos
(
v+

k
2
)
ysin

ky
2

dxdy
∣∣∣

≤ 4
∫ ∞

0

∫ ∞

0
| f (x,y)sin

hx
2

sin
ky
2

∣∣∣dxdy.

(4.1)

We decompose the last double integral in (4.1) as follows:

π
2
|Δ1,1 f̂ss(u,v;h,k)|

≤ 4
{∫ 1/h

0

∫ 1/k

0
+

∫ ∞

1/h

∫ 1/k

0
+

∫ 1/h

0

∫ ∞

1/k
+

∫ ∞

1/h

∫ ∞

1/k

}∣∣∣ f (x,y)sin
hx
2

sin
ky
2

∣∣∣dxdy

=: I1 + I2 + I3 + Iu,

(4.2)

say. First, we use the obvious inequality∣∣∣2sin
t
2

∣∣∣ ≤ min{2, |t|},

and by (2.5) we obtain

I1 ≤ 4hk
∫ 1/h

0

∫ 1/k

0
xy| f (x,y)|dxdy

= hkO
((1

h

)1−α(1
k

)1−β
)

= O(hα kβ ).
(4.3)

Second, we apply Part (i) in Lemma 1 in the case of (2.5) to obtain

I4 ≤ 16
∫ ∞

1/h

∫ ∞

1/k
| f (x,y)|dxdy

= O
((1

h

)−α(1
k

)−β
)

= O(hα kβ ).
(4.4)
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Third, we apply Part (i) in Lemma 2 in the case of (2.5) to obtain

I2 ≤ 8k
∫ ∞

1/h

∫ 1/k

0
y| f (x,y)|dxdy

= kO
((1

h

)−α(1
k

)1−β
)

= O(hα kβ ).
(4.5)

Fourth, we apply the symmetric counterpart of Lemma 2 in the case of (2.5) to obtain

I3 ≤ 8h
∫ 1/h

0

∫ ∞

1/k
x| f (x,y)|dxdy

= hO
((1

h

)1−α(1
k

)−β
)

= O(hα kβ ).
(4.6)

Combining (4.2) - (4.6) yields

|Δ1,1 f̂ss(u,v;h,k)| = O(hα kβ ).

Since u,v ≥ 0 and h,k > 0 are arbitrary, this proves f̂ss ∈ Lip(α ,β ).

Part (ii). Assume f ≥ 0 and f̂ss ∈ Lip(α ,β ) for some 0 < α , β ≤ 1. In particular, we have

π
2 |Δ1,1 f̂ss(0,0;u,v)|

=
∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)sin uxsin vydxdy

∣∣∣ ≤Cuα vβ for all u,v > 0,

(4.7)

where the constant C does not depend on u and v. We will integrate the double integral in (4.7)

between the absolute value bars with respect to u over the interval (0,h), where h > 0 is arbitrary.

Due to the fact that the convergence

lim
ξ→∞

∫ ξ

0

∫ ∞

0
f (x,y)sin uxsin vydxdy =

∫ ∞

0

∫ ∞

0
f (x,y)sin uxsin vydxdy

is uniform in u,v ≥ 0, we may change the order of integration with respect to x and u, and from

(4.7) we conclude that
∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)

1− cos hx
x

sinvydxdy
∣∣∣ ≤C

hα+1

α + 1
vβ for all h,v > 0. (4.8)

Next, we will integrate the double integral in (4.8) between the absolute value bars with

respect to v over the interval (0,k), where k > 0 is arbitrary. By the same token as above, we

may change the order of integration with respect to y and v, and from (4.8) we conclude that
∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)

1− cos hx
x

1− cosky
y

dxdy
∣∣∣

= 4
∫ ∞

0
∫ ∞

0
f (x,y)

xy sin2 hx
2 sin2 ky

2 dxdy

≤C
hα+1

α + 1
kβ+1

β + 1
, for all h,k > 0,

(4.9)
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where we have taken into account that f ≥ 0.

Using the familiar inequality

(4.10) sin t ≥ 2
π

t for 0 ≤ t ≤ π
2

,

it follows from (4.9) that

4h2k2

π4

∫ 1/h

0

∫ 1/k

0
xy f (x,y)dxdy ≤C

hα+1

α + 1
kβ+1

β + 1
for all h,k > 0,

or equivalently,

∫ 1/h

0

∫ 1/k

0
xy f (x,y)dxdy ≤ Cπ4

4(α + 1)(β + 1)
hα−1kβ−1 = O

((1
h

)1−α(1
k

)1−β
)
.

This proves (2.5) with s = 1/h and t = 1/k, h,k > 0.

The proof of Theorem 1 is complete.

5 Proof of Theorem 2

Part (i). Given u,v ≥ 0 and h,k > 0, by (2.2) we have (cf. (4.1))

π
2
|Δ1,1 f̂cc(u,v;h,k)| =

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)(cos(u+ h)x− cosux)(cos(v+ k)y− cosvy)dxdy

∣∣∣
= 4

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)sin

(
u+

h
2
)
xsin

hx
2

sin
(
v+

k
2
)ysin

ky
2

dxdy
∣∣∣

≤ 4
∫ ∞

0

∫ ∞

0
| f (x,y)sin

hx
2

sin
ky
2

∣∣∣dxdy.

(5.1)

We observe that the right-most side of (5.1) is identical to that of (4.1). Thus, the proof of Part

(i) in Theorem 1 in Section 4 can be repeated word by word, and it yields f̂cc ∈ Lip(α ,β ) even

in the case when 0 < α ,β ≤ 1.

Part (ii). Assume f ≥ 0 and f̂cc ∈ Lip(α ,β ) for some 0 < α , β < 1. In particular, we have

π
2
|Δ1,1 f̂cc(0,0;h,k)| =

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)(cos hx−1)(cos ky−1)dxdy

∣∣∣
= 4

∫ ∞

0

∫ ∞

0
f (x,y)sin2 hx

2
sin2 ky

2
dxdy ≤Chα kβ for all h,k > 0,

where the constant C does not depend on h and k. Making use of inequality (4.10) gives

4h2k2

π4

∫ 1/h

0

∫ 1/k

0
x2y2 f (x,y)dxdy ≤Chα kβ ,
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or equivalently, ∫ 1/h

0

∫ 1/k

0
x2y2 f (x,y)dxdy ≤ Cπ4

4
hα−2kβ−2

= O
((1

h

)2−α( 1
k

)2−β)
for all h,k > 0.

(5.2)

First, applying Part (i) in Lemma 1 with γ = δ = 2 and μ = 2−α and ν = 2−β , it follows

from (5.2) that ∫ 1/h

0

∫ 1/k

0
f (x,y)dxdy = O

((1
h

)−α(1
k

)−β)
. (5.3)

Second, applying Part (ii) in Lemma 1 with γ = δ = 1 and μ = 1−α and ν = 1−β (we must

have μ ,nu > 0, but this is the case since by assumption 0 < α ,β < 1), it follows from (5.3) that
∫ 1/h

0

∫ 1/k

0
xy f (x,y)dxdy = O

((1
h

)1−α(1
k

)1−β
)

for all h,k > 0.

This proves (2.1) with s = 1/h and t = 1/k, h,k > 0.

The proof of Theorem 2 is complete.

6 Proof of Theorem 3

Part (i). Assume the condition (2.7) is satisfied for some 0 < α , β ≤ 2. We will prove that

f̂cc ∈Zyg(α ,β ), where f̂cc is defined in (2.2). To this effect, let u,v≥ 0 and h,k > 0 be arbitrarily

given. Keeping (2.2) and (2.4) in mind, we estimate as follows (cf. (4.1)):

π
2

∣∣∣Δ2,2 f̂cc(u,v;h,k)
∣∣∣∣∣∣

∫ ∞

0

∫ ∞

0
f (x,y)(cos(u+ h)x− cosux+ cos(u−h)x) · (cos(v+ k)y

−2cos vy+ cos(v− k)y)dxdy
∣∣∣

= 4
∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)cos ux(cos hx−1)cos vy(cos ky−1)dxdy

∣∣∣
≤ 4

∫ ∞

0

∫ ∞

0
| f (x,y)|(1− cos hx)(1− cos ky)dxdy.

(6.1)

We decompose the last double integral in (6.1) as follows:

π
2
|Δ2,2 f̂cc(u,v;h,k) ≤ 4

{∫ 1/h

0

∫ 1/k

0
+

∫ ∞

1/h

∫ 1/k

0
+

∫ 1/h

0

∫ ∞

1/k

+
∫ ∞

1/h

∫ ∞

1/k

}
| f (x,y)|(1− cos hx)(1− cos ky)dxdy = J1 + J2 + J3 + J4,

(6.2)

say. First, we use the inequality

2(1− cos t) = 4sin2 t
2
≤ min{4, t2},
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and by (2.7) we obtain

J1 ≤ h2k2
∫ 1/h

0

∫ 1/k

0
x2y2| f (x,y)|dxdy

= h2k2O
((1

h

)2−α(1
k

)2−β )
= O(hα kβ ).

(6.3)

Second, we apply Part (i) in Lemma 1 in the case of (2.7) to obtain

J4 ≤ 16
∫ ∞

1/h
∫ ∞

1/k | f (x,y)|dxdy

= O
((1

h

)−α( 1
k

)−β
)

= O(hαkβ ).
(6.4)

Third, we apply Part (i) in Lemma 2 in the case of (2.7) to obtain

J2 ≤ 8k2
∫ ∞

1/h

∫ 1/k

0
y2| f (x,y)|dxdy

= k2O
((1

h

)−α( 1
k

)2−β
)

= O(hα kβ ).
(6.5)

Fourth, we apply the symmetric counterpart of Lemma 2 in the case of (2.7) to obtain

J3 ≤ 8h2
∫ 1/h

0

∫ ∞

1/k
x2| f (x,y)|dxdy

= h2O
(( 1

h

)2−α(1
k

)−β )
= O(hα kβ ).

(6.6)

Combining (6.2) - (6.6) yields

|Δ2,2 f̂cc(u,v;h,k)| = O(hα kβ ).

Since u,v ≥ 0 and h,k > 0 are arbitrary, this proves f̂cc ∈ Zyg(α ,β ).

Part (ii). Assume f ≥ 0 and f̂cc ∈ Zyg(α ,β ) for some 0 < α , β ≤ 2. In particular, we have

(cf. (6.1))

π
2 |Δ2,2 f̂cc(0,0;h,k)| = 4

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)(cos hx−1)(cos ky−1)dxdy

∣∣∣
= 16

∫ ∞

0

∫ ∞

0
f (x,y)sin2 hx

2
sin2 ky

2
dxdy ≤Chα kβ for all h,k > 0,

(6.7)

where the constant C does not depend on h and k.

Making use of the inequality (4.10), from (6.7) we conclude that

4h2k2

π4

∫ 1/h

0

∫ 1/k

0
x2y2 f (x,y)dxdy ≤Chα kβ ,
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or equivalently
∫ 1/h

0

∫ 1/k

0
x2y2 f (x,y)dxdy ≤ Cπ4

4
hα−2kβ−2 for all h,k > 0.

This proves (2.7) with s = 1/h and t = 1/k, h,k > 0.

The proof of Theorem 3 is complete.

7 Proof of Theorem 4

Part (i). Given u,v ≥ 0 and h,k > 0, by (2.1) we have (cf. (6.1))

π
2
|Δ2,2 f̂ss(u,v;h,k)| =

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)(sin(u+ h)x−2sinux+ sin(u−h)x)·

·(sin(v+ k)y−2sinvy+ sin(v− k)y)dxdy
∣∣∣

= 4
∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)sin ux(cos hx−1)sin vy(cos ky−1)dxdy

∣∣∣
≤ 4

∫ ∞

0

∫ ∞

0
| f (x,y)|(1− cos hx)(1− cos ky)dxdy.

(7.1)

We observe that the right-most side of (7.1) is identical to that of (6.1). Thus, the proof of Part

(i) of Theorem 3 in Section 6 can be repeated word by word, and it yields f̂ss ∈ Lip(α ,β ) even

in the case when 0 < α , β ≤ 2.

Part (ii). Assume f ≥ 0 and f̂ss ∈ Zyg(α ,β ) for some 0 < α , β < 2. Let u,v ≥ 0 and h,k > 0

be arbitrary. By (7.1), we have

π
8
|Δ2,2 f̂ss(u,v;h,k)| =

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)sin ux(cos hx−1)sin vy(cos ky−1)dxdy| ≤Chα kβ ,

(7.2)

where the constant C does not depend on u,v,h, and k.

We will integrate the double integral in (7.2) between the absolute value bars with respect to

u over the interval (0,h). Due to the fact that the convergence

lim
ξ→∞

∫ ξ

0

∫ ∞

0
f (x,y)sin ux(cos hx−1)sin vy(cos ky−1)dxdy

=
∫ ∞

0

∫ ∞

0
f (x,y)sin ux(cos hx−1)sin vy(cos ky−1)dxdy

is uniform in u,v ≥ 0, we may change the order of integration with respect to x and u, and from

(7.2) we conclude that
∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)

(1− cos hx)2

x
sinvy(cos ky−1)dxdy

∣∣∣
≤Chα+1kβ , for all v ≥ 0 and h,k > 0.

(7.3)
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Next, we will integrate the double integral in (7.3) between the absolute value bars with

respect to v over the interval (0,k). By the same token as above, we may change the order of

integration with respect to y and v, and from (7.3) we conclude that

∣∣∣
∫ ∞

0

∫ ∞

0
f (x,y)

(1− cos hx)2

x
(1− cosky)2

y
dxdy

≤Chα+1kβ+1 for all h,k > 0,

whence it follows that
∫ ∞

0

∫ ∞

0

f (x,y)
xy

(
sin

hx
2

)4(sin
ky
2

)4dxdy ≤ C
16

hα+1kβ+1 for all h,k > 0,

where we have taken into account that f ≥ 0. Making use of inequality (4.10), we even have

h4k4

π8

∫ 1/h

0

∫ 1/k

0
x3y3 f (x,y)dxdy ≤ C

16
hα+1kβ+1,

or equivalently, ∫ 1/h

0

∫ 1/k

0
x3y3 f (x,y)dxdy ≤ Cπ8

16
hα−3kβ−3. (7.4)

First, applying Part (i) in Lemma 1 with γ = δ = 3 and μ = 3−α , ν = 3− β , it follows

from (7.4) that ∫ ∞

1/h

∫ ∞

1/k
f (x,y)dxdy = O

((1
h

)−α(1
k

)−β
)
. (7.5)

Second, applying Part (ii) in Lemma 1 with γ = δ = 2 and μ = 2−α , ν = 2−β (we must have

μ > 0, ν > 0, but this is the case since 0 < α , β < 2), it follows from (7.5) that

∫ 1/h

0

∫ 1/k

0
x2y2 f (x,y)dxdy = O

((1
h

)2−α(1
k

)2−β
)
.

This proves (2.7) with s = 1/h and t = 1/k, h,k > 0.

The proof of Theorem 4 is complete.
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