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Abstract. In this paper, by applying the technique of the sharp maximal function and
the equivalent representation of the norm in the Lebesgue spaces with variable ex-
ponent, the boundedness of the parameterized Littlewood-Paley operators, including
the parameterized Lusin area integrals and the parameterized Littlewood-Paley g∗λ-
functions, is established on the Lebesgue spaces with variable exponent. Furthermore,
the boundedness of their commutators generated respectively by BMO functions and
Lipschitz functions are also obtained.
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1 Introduction and main results

The Littlewood-Paley operators, including Lusin area integrals, Littlewood-Paley g-
functions and g∗λ-functions, play very important roles in harmonic analysis and PDE
(see [1–4]). In [5], Lu and Yang investigated the behavior of Littlewood-Paley oper-
ators in the space CBMOp(Rn). In 2009, Xue and Ding gave weighted estimates for
Littlewood-Paley operators and their commutators (see [6]). In 2013, Wei and Tao proved
Litttleood-Paley operators with rough kernels are bounded on weighted (Lq,Lp)α(Rn)
spaces (see [7]).

In 1960, the parameterized Littlewood-Paley operators were discussed by Hörmander
(see [8]) for the first time. Now, let us review the definitions of the parameterized Lusin
area integral and the parameterized Littlewood-Paley g∗λ-function.

Let Sn−1 denote the unit sphere of R
n equipped with Lebesgue measure dσ(x′) and

ψρ(x)=Ω(x)|x|−n+ρχ{|x|≤1}, where 0<ρ<n and Ω satisfies the following conditions:
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(a) Ω(λx)=Ω(x) for all λ>0;

(b)
∫

Rn Ω(x′)dσ(x′)=0;

(c) Ω∈L1(Sn−1).
Then the parameterized Lusin area integral Sρ and the parameterized Littlewood-

Paley g∗λ-function g
∗,ρ
λ are defined respectively by

Sρ( f )(x)=
(

∫∫

Γa(x)
|ψ

ρ
t ∗ f (y)|2

dydt

tn+1

)1/2

and

g
∗,ρ
λ ( f )(x)=

(

∫∫

R
n+1
+

( t

t+|x−y|

)λn
|ψ

ρ
t ∗ f (y)|2

dydt

tn+1

)1/2
,

where Γ(x)={(t,y)∈R
n+1
+ : |y−x|< t}, λ>1.

In [9], Torchinsky and Wang studied the boundedness of the operators Sρ and g
∗,ρ
λ on

weighted L2(Rn) for ρ= 1 and Ω(x)∈ Lipα(Sn−1) (0< α≤ 1). For general ρ, Sakamoto
and Yabuta considered the Lp boundedness of Sρ and g

∗,ρ
λ in [10]; Wei and Tao given

the boundedness of parameterized Litttlewood-Paley operators with rough kernels on
weighted weak Hardy spaces in [11].

Now let us turn to the introduction of the corresponding m-order commutators of the
parameterized Littlewood-Paley operators above. Let b∈L1

loc(R
n), m∈N, the commuta-

tors [bm,Sρ] and [bm,g
∗,ρ
λ ] are defined respectively by

[bm,Sρ]( f )(x)=
(

∫∫

Γa(x)

∣

∣

∣

1

tρ

∫

|y−x|≤t

Ω(y−z)

|y−z|n−ρ
[b(x)−b(z)]m f (z)dz

∣

∣

∣

2 dydt

tn+1

)
1
2

and

[bm,g
∗,ρ
λ ]( f )(x)

=
(

∫∫

R
n+1
+

( t

t+|x−y|

)λn∣
∣

∣

1

tρ

∫

|y−x|≤t

Ω(y−z)

|y−z|n−ρ
[b(x)−b(z)]m f (z)dz

∣

∣

∣

2 dydt

tn+1

)
1
2
.

In 2007, Ding and Xue established the weak LlogL estimates of the commutators
[bm,Sρ] and [bm,g

∗,ρ
λ ] for b ∈ BMO(Rn) (see [12]). In 2009, Chen and Ding investigated

the characterization of the commutators for the parameterized Littlewood-Paley opera-
tors (see [13, 14]).

On the other hand, Lebesgue spaces with variable exponent Lp(·)(Rn) become one
of the important class function spaces due to the seminal paper [15] by Kováčik and
Rákosnı́k. In the past twenty years, the theory of these spaces was made progress rapid-
ly, and the study of which was widely applied in some fields such as fluid dynamics,
elasticity dynamics, calculus of variations and differential equations with non-standard
growth conditions (see [16–20]). In [21], Cruz-Uribe, Fiorenza, Martell and Pérez stud-
ied the extrapolation theorem which leads the boundedness of some classical operators
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including the commutators on Lp(·)(Rn). Meanwhile Karlovich and Lerner also indepen-
dently proved the boundedness for the commutators of singular integrals in [22]. In 2012,
Wang, Fu and Liu stated that higher-order commutators of Marcinkiewicz integrals are
bounded on spaces Lp(·)(Rn) (see [23]).

Inspired by the results mentioned previously, it is natural to ask whether the pa-
rameterized Littlewood-Paley operators Sρ and g

∗,ρ
λ and their commutators [bm,Sρ] and

[bm,g
∗,ρ
λ ] are bounded on Lebesgue spaces with variable exponent or not. The purpose

of this paper is to give an affirmative answer to this question. Before stating our main
results, we need to recall some relevant definitions and notations. Let E be a Lebesgue
measurable set in R

n with |E|>0.

Definition 1.1 (see [15]). Let p(·) : E → [1,∞) be a measureable function. The Lebesgue
space with variable exponent Lp(·)(E) is defined by

Lp(·)(E)=
{

f is measurable :
∫

E

( | f (x)|

η

)p(x)
dx<∞ for some constant η>0

}

.

And the space L
p(·)
loc (E) is defined by

L
p(·)
loc (E)=

{

f is measurable : f ∈Lp(·)(K) for all compact subsets K⊂E
}

.

It is easy to see that the Lebesgue spaces Lp(·)(E) is a Banach space with the following
Luxemburg-Nakano norm

‖ f‖Lp(·)(E)= inf
{

η>0 :
∫

E

( | f (x)|

η

)p(x)
dx≤1

}

.

Remark 1.1. (1) Noting that if the function p(x)=p0 is a constant function, then Lp(·)(Rn)
equals Lp0(Rn). This implies that the Lebesgue spaces with variable exponent generalize
the usual Lebesgue spaces. And they have many properties in common with the usual
Lebesgue spaces.

(2) Denote p− :=essinf{p(x) : x∈E}, p+ :=esssup{p(x) : x∈E}. Then P(E) consists of
all p(·) satisfying p−>1 and p+<∞.

(3) The Hardy-Littlewood maximal operator M is defined by

M( f )(x)=sup
Q∋x

1

|Q|

∫

Q
| f (y)|dy.

Denote B(E) to be the set of all functions p(·)∈P(E) satisfying the condition that M is
bounded on Lp(·)(E).

Definition 1.2 (see [24]). Let Ω∈ Lq(Sn−1) for q≥1. Then the integral modulus ωq(δ) of
Lq continuity of Ω is defined by

ωq(δ)= sup
‖ρ‖<δ

(

∫

Sn−1
|Ω(ρx′)−Ω(x′)|qdσ(x′)

)1/q
, 1≤q<∞,
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and
ω∞(δ)= sup

‖ρ‖<δ

|Ω(ρx′)−Ω(x′)|,

where 0<δ≤1, ρ denotes the rotation on R
n and ‖ρ‖=supx′∈Sn−1 |ρx′−x′|.

Definition 1.3 (see [25]). For 0<β≤1, the Lipschitz spaces Lipβ(R
n) is defined by

Lipβ(R
n)=

{

f :‖ f‖Lipβ
= sup

x,y∈Rn;x 6=y

| f (x)− f (y)|

|x−y|β
<∞

}

.

Our main results in this paper are formulated as follows.

Theorem 1.1. Suppose that p(·)∈B(Rn), ρ>n/2 and Ω∈L2(Sn−1) satisfying

∫ 1

0

ω2(δ)

δ
(1+|logδ|)σdδ<∞, σ>2. (1.1)

Then there exists a constant C>0 independent of f such that

‖Sρ( f )‖Lp(·)(Rn)≤C‖ f‖Lp(·)(Rn).

Theorem 1.2. Suppose that p(·)∈B(Rn), ρ> n/2, λ> 2 and Ω∈ L2(Sn−1) satisfying (1.1).
Then there exists a constant C>0 independent of f such that

‖g
∗,ρ
λ ( f )‖Lp(·)(Rn)≤C‖ f‖Lp(·)(Rn).

Theorem 1.3. Let b∈ BMO(Rn) and m∈N. Suppose that p(·)∈B(Rn), ρ> n/2 and Ω∈
L2(Sn−1) satisfying (1.1). Then there exists a constant C>0 independent of f such that

‖[bm ,Sρ]( f )‖Lp(·)(Rn)≤C‖b‖m
∗ ‖ f‖Lp(·)(Rn).

Theorem 1.4. Let b∈BMO(Rn) and m∈N. Suppose that p(·)∈B(Rn), ρ>n/2, λ>2 and
Ω∈L2(Sn−1) satisfying (1.1). Then there exists a constant C>0 independent of f such that

‖[bm,g
∗,ρ
λ ]( f )‖Lp(·)(Rn)≤C‖b‖m

∗ ‖ f‖Lp(·)(Rn).

Theorem 1.5. Let b ∈ Lipβ(R
n), m ∈ N and Ω ∈ L2(Sn−1). Suppose that ρ > n/2, 0< β <

min{1,n/m} and p(·)∈P(Rn) be such that p+<n/mβ. Define q(·) by

1

p(x)
−

1

q(x)
=

mβ

n
.

If q(·)(n−mβ)/n∈B(Rn), then there exists a constant C>0 independent of f such that

‖[bm,Sρ]( f )‖Lq(·)(Rn)≤C‖b‖m
Lipβ(Rn)‖ f‖Lp(·)(Rn).
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Theorem 1.6. Let b ∈ Lipβ(R
n), m ∈ N and Ω ∈ L2(Sn−1). Suppose that ρ > n/2, λ > 2,

0<β<min{1,n/m} and p(·)∈P(Rn) be such that p+<n/mβ. Define q(·) by

1

p(x)
−

1

q(x)
=

mβ

n
.

If q(·)(n−mβ)/n∈B(Rn), then there exists a constant C>0 independent of f such that

‖[bm,g
∗,ρ
λ ]( f )‖Lq(·)(Rn)≤C‖b‖m

Lipβ(Rn)‖ f‖Lp(·)(Rn).

We end this section by introducing some conventional notations which will be used
later. Throughout this paper, |E| denotes the Lebesgue measure of E⊂R

n. χE denotes
the characterization function of E. p′(·) means the conjugate exponent of p(·), namely
1/p(x)+1/p′(x)=1 holds. C always means a positive constant independent of the main
parameters and may change from one occurrence to another.

2 Preliminary lemmas

In this section, we need some conclusions which will be used in the proofs of our main
results.

Lemma 2.1 (see [15]). Let p(·)∈P(Rn). If endowing the spaces Lp(·)(Rn) with the following
Orlicz type norm:

‖ f‖0
Lp(·)(Rn)

=sup
{

∫

Rn
| f (x)g(x)|dx :‖g‖Lp′ (·)(Rn)≤1

}

,

then the norm ‖·‖0
Lp(·)(Rn)

above is equivalent to the Luxemburg-Nakano norm ‖·‖Lp(·)(Rn) in

Definition 1.1.

Lemma 2.2 (Generalized Hölder Inequality, see [15]). Let p(·)∈P(Rn). Then for any f ∈
Lp(·)(Rn) and g∈Lp′(·)(Rn),

∫

Rn
| f (x)g(x)|dx≤Cp‖ f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

where Cp=1+1/p−−1/p+.

Lemma 2.3. Let p(·)∈P(Rn). Then the following conditions are equivalent

(1) p(·)∈B(Rn).

(2) p′(·)∈B(Rn).

(3) p(·)/q∈B(Rn) for some 1<q< p−.

(4) (p(·)/q)′∈B(Rn) for some 1<q< p−.
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Lemma 2.4. Let p(·)∈P(Rn). Then C∞
c (Rn) is dense in Lp(·)(Rn), where C∞

c (Rn) denotes the
infinity times differentiable functions on R

n with compact support set.

Since C∞
c (Rn) is L∞-norm dense in C0(Rn) (see [24]), and C∞

0 (Rn) is dense in Lp(·)(Rn)
(see [15]), it is easy to know Lemma 2.4 holds. Here

C0(R
n)=

{

f is continuous on R
n : lim

|x|→∞
f (x)=0

}

and
C∞

0 (Rn)={ f : f ∈C0(R
n) and f is infinity times differentiable}.

For δ>0, f ∈Lδ
loc(R

n), let

Mδ( f )(x)=sup
Q∋x

( 1

|Q|

∫

Q
| f (y)|δdy

)1/δ

and

f ♯δ (x)=sup
Q∋x

inf
c∈R

( 1

|Q|

∫

Q
| f (y)−c|δdy

)1/δ

.

The non-increasing rearrangement of a measurable function f on R
n is defined by [26]

f ∗(t)= inf{λ>0 : |{x∈R
n : | f (x)|>λ}|≤ t}, (0< t<∞).

Furthermore, for τ ∈ (0,1) and a measurable function f on R
n, the local sharp maximal

operator M♯
τ is defined by [22]

M♯
τ( f )(x)=sup

Q∋x

inf
c∈R

(( f −c)χQ)
∗(τ|Q|).

Lemma 2.5 (see [22]). Let δ>0, τ∈ (0,1) and f ∈Lδ
loc(R

n). Then for any x∈R
n

M♯
τ( f )(x)≤ (1/τ)1/δ f ♯δ (x).

Lemma 2.6 (see [17]). Let g∈L1
loc(R

n), τ∈ (0,1) and a measurable function f satisfying

|{x : | f (x)|>α}|<∞ for all α>0. (2.1)

Then
∫

Rn
| f (x)g(x)|dx≤C

∫

Rn
M♯

τ( f )(x)M(g)(x)dx.

Lemma 2.7 (see [12]). Suppose that ρ> n/2, λ> 2, Ω∈ L2(Sn−1) satisfies (1.1). Then for all
smooth functions f with compact support, there exists a positive constant 0<C=Cδ such that

(1) if 0<δ<1, then

(Sρ( f ))♯δ(x)≤CM( f )(x) and (g
∗,ρ
λ ( f ))♯δ(x)≤CM( f )(x).
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(2) if 0<δ< l<1, m∈N and b∈BMO(Rn), then

([bm,Sρ]( f ))♯δ(x)≤C
m−1

∑
j=0

‖b‖
m−j
∗ Ml([b

j,Sρ]( f ))(x)+C‖b‖m
∗ Mm+1( f )(x),

and

([bm,g
∗,ρ
λ ]( f ))♯δ(x)≤C

m−1

∑
j=0

‖b‖
m−j
∗ Ml([b

j,g
∗,ρ
λ ]( f ))(x)+C‖b‖m

∗ Mm+1( f )(x).

Where Mm denotes m times iteration of M.

Given 0<α<n, define the fractional integral operator Iα by

Iα( f )(x)=
∫

Rn

f (y)

|x−y|n−α
dy.

Then we have the following conclusion:

Lemma 2.8 (see [21]). Let p(·),q(·)∈P(Rn) be such that p+<n/α and

1

p(x)
−

1

q(x)
=

mβ

n
.

If q(·)(n−α)/n∈B(Rn), then

‖Iα( f )‖Lq(·)(Rn)≤C‖ f‖Lp(·)(Rn).

3 Proof of main theorems

It is easy to check that

Sρ( f )(x)≤2nλg
∗,ρ
λ ( f )(x), [bm,Sρ]( f )(x)≤2nλ[bm,g

∗,ρ
λ ]( f )(x) for m∈N.

Therefore, it is enough to consider the operators g
∗,ρ
λ and [bm,g

∗,ρ
λ ] in the proofs of our

results. That is to say, we only need to prove Theorems 1.2, 1.4 and 1.6 respectively.

Proof of Theorem 1.2. Let f ∈C∞
c (Rn). Then by Lemma 2.4, we have f ∈ Lp(·)(Rn). For

any g∈ Lp′(·)(Rn)⊂ L1
loc(R

n) to be ‖g‖Lp′(·)(Rn)≤1, since g
∗,ρ
λ is weak (1,1) type (see [28]),

it satisfies (2.1) in Lemma 2.6. Thus, applying Lemma 2.5 and 2.6, we obtain

∫

Rn
|g

∗,ρ
λ ( f )(x)g(x)|dx≤C

∫

Rn
M♯

τ(g
∗,ρ
λ )( f )(x)M(g)(x)dx

≤C
∫

Rn
(1/τ)1/δ(g

∗,ρ
λ ( f ))♯δ(x)M(g)(x)dx,
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where δ,τ∈ (0,1).

Noting that if p(·)∈B(Rn), then p′(·)∈B(Rn) (Lemma 2.3). Together with generalized
Hölder inequality (Lemma 2.2 and (1) in Lemma 2.7, we get

∫

Rn
g
∗,ρ
λ ( f )(x)g(x)dx≤C

∫

Rn
M( f )(x)M(g)(x)dx

≤C‖M( f )‖Lp(·)(Rn)‖M(g)‖Lp′(·)(Rn)

≤C‖ f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn)≤C‖ f‖Lp(·)(Rn).

Therefore, using Lemma 2.1, we have

‖g
∗,ρ
λ ( f )‖Lp(·)(Rn)≤‖g

∗,ρ
λ ( f )‖0

Lp(·)(Rn)
≤C‖ f‖Lp(·)(Rn).

Furthermore, by Lemma 2.4, we know that for any f ∈Lp(·)(Rn)

‖g
∗,ρ
λ ( f )‖Lp(·)(Rn)≤C‖ f‖Lp(·)(Rn).

This finishes the proof of Theorem 1.2. �

Proof of Theorem 1.4. Let b∈ BMO(Rn), f ∈C∞
c (Rn). Then by Lemma 2.4, we have f ∈

Lp(·)(Rn). For any g∈ Lp′(·)(Rn)⊂ L1
loc(R

n) to be ‖g‖Lp′(·)(Rn)≤ 1, noting that [bm,g
∗,ρ
λ ] is

bounded on usual Lebesgue spaces Lp(Rn) (see [12]), so it satisfies (2.1) in Lemma 2.6.
Thus, applying Lemmas 2.5 and 2.6, we obtain

∫

Rn
|[bm,g

∗,ρ
λ ]( f )(x)g(x)|dx≤C

∫

Rn
M♯

τ([b
m,g

∗,ρ
λ ])( f )(x)M(g)(x)dx

≤C
∫

Rn
(1/τ)1/δ([bm,g

∗,ρ
λ ]( f ))♯δ(x)M(g)(x)dx,

where δ,τ∈ (0,1).

By (2) in Lemma 2.7, for 0<δ< l<1

∫

Rn
|[bm,g

∗,ρ
λ ]( f )(x)g(x)|dx≤C

m−1

∑
j=0

‖b‖
m−j
∗

∫

Rn
Ml([b

j,g
∗,ρ
λ ]( f ))(x)M(g)(x)dx

+C‖b‖∗

∫

Rn
Mm+1( f )(x)M(g)(x)dx

,I1+ I2.

Observing that for 0< l<1, j∈N, we have

Ml([b
j,g

∗,ρ
λ ]( f ))(x)≤M([bj ,g

∗,ρ
λ ]( f ))(x) a.e. x∈R

n.
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Meanwhile, as m = 0, by Theorem 1.2, we know that [b0,g
∗,ρ
λ ] = g

∗,ρ
λ is bounded on

Lp(·)(Rn). Thus, if m= 1, by the generalized Hölder inequality (Lemma 2.2) and Lem-
ma 2.3, for p(·)∈B(Rn), we have

I1=C‖b‖∗

∫

Rn
Ml(g

∗,ρ
λ ( f ))(x)M(g)(x)dx

≤C‖b‖∗

∫

Rn
M(g

∗,ρ
λ ( f ))(x)M(g)(x)dx

≤C‖b‖∗‖M(g
∗,ρ
λ ( f ))‖Lp(·)(Rn)‖M(g)‖Lp′(·)(Rn)

≤C‖b‖∗‖g
∗,ρ
λ ( f )‖Lp(·)(Rn)‖g‖Lp′(·)(Rn)

≤C‖b‖∗‖ f‖Lp(·)(Rn).

On the other hand, also using generalized Hölder inequality (Lemma 2.2) and Lemma
2.3, for p(·)∈B(Rn),

I2≤C‖b‖m
∗ ‖Mm+1( f )‖Lp(·)(Rn)‖M(g)‖Lp′(·)(Rn)

≤C‖b‖m
∗ ‖Mm( f )‖Lp(·)(Rn)‖g‖Lp′(·)(Rn)

≤C‖b‖m
∗ ‖Mm−1( f )‖Lp(·)(Rn)

≤C‖b‖m
∗ ‖Mm−2( f )‖Lp(·)(Rn)≤··· ···

≤C‖b‖m
∗ ‖ f‖Lp(·)(Rn).

According to the estimates of I1 and I2 above and Lemma 2.1, we can obtain

∫

Rn
|[b,g

∗,ρ
λ ]( f )(x)g(x)|dx≤ I1+ I2≤C‖b‖∗‖ f‖Lp(·)(Rn)

and
‖[b,g

∗,ρ
λ ]‖Lp(·)(Rn)≤‖[b,g

∗,ρ
λ ]‖0

Lp(·)(Rn)
≤C‖b‖∗‖ f‖Lp(·)(Rn).

Thus, as m= 1, the conclusion of Theorem 1.4 holds. Take the similar steps as [bm,g
∗,ρ
λ ]

with m=1, we shall successively get

‖[bm,g
∗,ρ
λ ]‖Lp(·)(Rn)≤C‖b‖m

∗ ‖ f‖Lp(·)(Rn) for m=2,3,··· .

Hence, by Lemma 2.4, for any f ∈Lp(·)(Rn), we have

‖[bm,g
∗,ρ
λ ]‖Lp(·)(Rn)≤C‖b‖m

∗ ‖ f‖Lp(·)(Rn).

This completes the proof of Theorem 1.4. �

Proof of Theorem 1.6. Let b∈Lipβ(R
n), 0<β<1. Then by Definition 1.3, we shall get

|b(x)−b(y)|≤ |x−y|β‖b‖Lipβ(Rn).
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Thus, for any f ∈Lp(·)(Rn)

[bm,g
∗,ρ
λ ]( f )(x)

=
(

∫ ∞

0

∫

Rn

( t

t+|x−y|

)λn∣
∣

∣

1

tρ

∫

|y−z|≤t

Ω(y−z)

|y−z|n−ρ
[b(x)−b(z)]m f (z)dz

∣

∣

∣

2 dydt

tn+1

)1/2

≤C‖b‖m
Lipβ(Rn)

(

∫ ∞

0

∫

Rn

( t

t+|x−y|

)λn
×
∣

∣

∣

1

tρ

∫

|y−z|≤t

Ω(y−z)

|y−z|n−ρ
|x−z|mβ f (z)dz

∣

∣

∣

2 dydt

tn+1

)1/2
.

Using the Minkowski’s inequality, we have

[bm,g
∗,ρ
λ ]( f )(x)

≤C‖b‖m
Lipβ(Rn)

∫

Rn

| f (z)|

|x−z|−mβ
×
(

∫ ∞

0

∫

|y−z|≤t

( t

t+|x−y|

)λn |Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ+n+1

)1/2
dz

≤C‖b‖m
Lipβ(Rn)

∫

Rn

| f (z)|

|x−z|−mβ
×
(

∫ |x−z|

0

∫

|y−z|≤t

( t

t+|x−y|

)λn |Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ+n+1

)1/2
dz

+C‖b‖m
Lipβ(Rn)

∫

Rn

| f (z)|

|x−z|−mβ
×
(

∫ ∞

|x−z|

∫

|y−z|≤t

( t

t+|x−y|

)λn |Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ+n+1

)1/2
dz.

Since z∈R
n, |y−z|≤ t, then |y−z|∼|y|. Thus, for Ω∈L2(Sn−1) and ρ>n/2, the following

inequality holds:

∫

|y−z|≤t

|Ω(y−z)|2

|y−z|2n−2ρ
dy≤

∫

|y|≤t

|Ω(y)|2

|y|2n−2ρ
dy

≤
∫ t

0
r2ρ−n−1dt

∫

Sn−1
|Ω(y′)|2dσ(y′)≤ t2ρ−n‖Ω‖2

L2(Sn−1).

Noticing that |x−z| ≤ |x−y|+|y−z| ≤ |x−y|+t and Ω∈ L2(Sn−1), therefore, by the in-
equality above, for λ>2, there exists ε : 0< ε< (λ−2)n, such that

∫ |x−z|

0

∫

|y−z|≤t

( t

t+|x−y|

)λn |Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ+n+1

≤
∫ |x−z|

0

∫

|y−z|≤t

( t

t+|x−y|

)λn−2n−ε 1

|x−z|2n+ε

|Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ−n−ε+1

≤
1

|x−z|2n+ε

∫ |x−z|

0

∫

|y−z|≤t

|Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ−n−ε+1

≤
‖Ω‖2

L2(Sn−1)

|x−z|2n+ε

∫ |x−z|

0
tε−1dt≤C|x−z|−2n
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and

∫ ∞

|x−z|

∫

|y−z|≤t

( t

t+|x−y|

)λn |Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ+n+1

≤
∫ ∞

|x−z|

∫

|y−z|≤t

|Ω(y−z)|2

|y−z|2n−2ρ

dydt

t2ρ+n+1

≤‖Ω‖2
L2(Sn−1)

∫ ∞

|x−z|
t−2n−1dt≤C|x−z|−2n .

Combined with the above estimates, we obtain

[bm,g
∗,ρ
λ ]( f )(x)≤C‖b‖m

Lipβ(Rn)

∫

Rn

| f (z)|

|x−z|n−mβ
dz≤C‖b‖m

Lipβ(Rn) Imβ(| f |)(x).

Applying Lemma 2.8, take α=mβ<n, we get

‖[bm,g
∗,ρ
λ ]( f )‖Lq(·)(Rn)≤C‖b‖m

Lipβ(Rn)‖Imβ(| f |)‖Lq(·)(Rn)≤C‖b‖m
Lipβ(Rn)‖ f‖Lp(·)(Rn).

The proof of Theorem 1.6 is finished. �
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