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Abstract. Let P(z) be a polynomial of degree n having all its zeros in |z|≤k. For k=1,
it is known that for each r>0 and |α|≥1,

n(|α|−1)
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
≤
{

∫ 2π

0
|1+eiθ|rdθ

}
1
r
max
|z|=1

∣

∣DαP(z)
∣

∣.

In this paper, we shall first consider the case when k≥1 and present certain generaliza-
tions of this inequality. Also for k≤1, we shall prove an interesting result for Lacunary
type of polynomials from which many results can be easily deduced.
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1 Introduction and statement of results

Let P(z) be a polynomial of degree n and P′(z) be its derivative. It was shown by Tu-
ran [21] that if P(z) has all its zeros in |z|≤1, then

max
|z|=1

|P′(z)|≥
n

2
max
|z|=1

|P(z)|. (1.1)

More generally, if the polynomial P(z) has all its zeros in |z| ≤ k ≤ 1, it was proved by
Malik [12] that the inequality (1.1) can be replaced by

max
|z|=1

|P′(z)|≥
n

1+k
max
|z|=1

|P(z)|, (1.2)
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while as Govil [6] proved that if all the zeros of P(z) lie in |z|≤ k where k≥1, then

max
|z|=1

|P′(z)|≥
n

1+kn
max
|z|=1

|P(z)|. (1.3)

As an improvement of (1.3), Govil [7] proved that if P(z) has all its zeros in |z|≤ k where
k≥1, then

max
|z|=1

|P′(z)|≥
n

1+kn

(

max
|z|=1

|P(z)|+min
|z|=k

|P(z)|
)

. (1.4)

Let DαP(z) denotes the polar derivative of the polynomial P(z) of degree n with re-
spect to the point α. Then

DαP(z)=nP(z)+(α−z)P′(z).

The polynomial DαP(z) is of degree at most n−1 and it generalizes the ordinary deriva-
tive in the sense that

lim
α→∞

{DαP(z)

α

}

=P′(z). (1.5)

Shah [18] extended (1.1) to the polar derivative of P(z) and proved that if all the zeros of
the polynomial P(z) lie in |z|≤1, then

max
|z|=1

∣

∣DαP(z)
∣

∣≥
n

2

(

|α|−1
)

max
|z|=1

|P(z)|, |α|≥1. (1.6)

Aziz and Rather [3] generalised (1.6) which also extends (1.2) to the polar derivative of a
polynomial. In fact, they proved that if all the zeros of P(z) lie in |z|≤k where k≤1, then
for every real or complex number α with |α|≥ k,

max
|z|=1

∣

∣DαP(z)
∣

∣≥n
( |α|−k

1+k

)

max
|z|=1

|P(z)|. (1.7)

Further as a generalization of (1.3) to the polar derivative of a polynomial, Aziz and
Rather [3] proved that if all the zeros of P(z) lie in |z|≤ k where k≥1, then for every real
or complex number α with |α|≥ k,

max
|z|=1

∣

∣DαP(z)
∣

∣≥n
( |α|−k

1+kn

)

max
|z|=1

|P(z)|. (1.8)

Recently Govil and McTume [8] sharpened (1.8) and proved that if all the zeros of P(z)
lie in |z|≤ k, k≥1, then for every real or complex number α with |α|≥1+k+kn ,

max
|z|=1

∣

∣DαP(z)
∣

∣≥n
( |α|−k

1+kn

)

max
|z|=1

|P(z)|

+n
( |α|−(1+k+kn)

1+kn

)

min
|z|=k

|P(z)|. (1.9)
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On the other hand, Malik [13] obtained an Lr analogue of (1.1) by proving that if P(z) has
all its zeros in |z|≤1, then for each r>0,

n
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
≤
{

∫ 2π

0
|1+eiθ |rdθ

}
1
r
max
|z|=1

|P′(z)|. (1.10)

As an extension of (1.3), Aziz [1] proved that if P(z) has all its zeros in |z|≤ k, k≥1, then
for each r≥1,

n
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
≤
{

∫ 2π

0
|1+kneiθ |rdθ

}
1
r
max
|z|=1

|P′(z)|. (1.11)

More recently, Dewan, Singh, Mir and Bhat [5] generalized (1.6) by obtaining an Lr ana-
logue of it. More precisely, they proved that if P(z) has all its zeros in |z| ≤ 1, then for
every real or complex number α with |α|≥1 and for each r>0,

n(|α|−1)
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
≤
{

∫ 2π

0
|1+eiθ |rdθ

}
1
r
max
|z|=1

∣

∣DαP(z)
∣

∣. (1.12)

If we let r → ∞ in (1.12) and make use of the well-known fact from analysis (see for
example [17, pp. 73] or [20, pp. 91]) that

{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
→ max

0≤θ<2π
|P(eiθ)|,

we get (1.6).

In this paper, we shall first present certain generalizations of the inequality (1.12) by
considering polynomials having all zeros in |z|≤ k, k≥1. We shall also prove a result for
Lacunary type of polynomials having all zeros in |z|≤ k, k≤ 1 from which many results
can be easily deduced.

Theorem 1.1. If P(z) = ∑
n
ν=0aνzν is a polynomial of degree n having all its zeros in |z| ≤ k

where k≥ 1, then for every complex number α with |α|≥ k and for each r> 0, p> 1, q> 1 with
p−1+q−1=1, we have

n(|α|−k)
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
≤Cr

{

∫ 2π

0
|1+eiθ |qrdθ

}
1
qr
{

∫ 2π

0

∣

∣DαP(eiθ)
∣

∣

pr
dθ

}
1
pr

, (1.13)

where

Cr =

{∫ 2π

0 |1+kneiθ |rdθ
}

1
r

{∫ 2π

0
|1+eiθ |rdθ

}
1
r

.
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Remark 1.1. If we let r→∞ and p→∞ (so that q→1) in (1.13) we get (1.8). If we divide
both sides of (1.13) by |α| and let |α|→∞, we get a result recently proved Mir and Dar [15].
If we take k= 1 in (1.13) and note that Cr = 1, we obtain a generalization of (1.12) in the
sense that the right hand side of (1.12) is replaced by a factor involving the integral mean
of |DαP(z)| on |z|=1.

The following corollary immediately follows by letting p→∞ (so that q→1) in Theo-
rem 1.1.

Corollary 1.1. If P(z)=∑
n
ν=0 aνzν is a polynomial of degree n having all its zeros in |z|≤k

where k≥1, then for every complex number α with |α|≥ k and for each r>0,

n(|α|−k)
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r
≤
{

∫ 2π

0
|1+kneiθ |rdθ

}
1
r
max
|z|=1

∣

∣DαP(z)
∣

∣. (1.14)

Remark 1.2. Dividing both sides of (1.14) by |α| and let |α|→∞, we get (1.11) and also
extends it to the values r∈ (0,1). For k=1, Corollary 1.1 reduces to inequality (1.12).

Our next result is a generalization of Theorem 1.1 which in turn provides extensions
and generalizations of results of Aziz and Ahemad [2]. We will see that as a special case
Theorem 1.2 gives a result of Govil and McTume [8, Theorem 3].

Theorem 1.2. If P(z)=∑
n
ν=0aνzν is a polynomial of degree n having all its zeros in |z|≤k, where

k≥1, then for every complex numbers α, λ with |α|≥ k, |λ|<1 and for each r>0, p>1, q>1
with p−1+q−1=1, we have

n(|α|−k)
{

∫ 2π

0
|P(eiθ)+λm|rdθ

}
1
r

≤Cr

{

∫ 2π

0
|1+eiθ |qrdθ

}
1
qr
{

∫ 2π

0

∣

∣DαP(eiθ)+λmn
∣

∣

pr
dθ

}
1
pr

, (1.15)

where m=min|z|=k |P(z)| and Cr is same as defined in Theorem 1.1.

Remark 1.3. A variety of interesting results can be easily deduced from Theorem 1.2 in
the same way as we have deduced from Theorem 1.1. Here we mention a few of these.
Dividing the two sides of (1.15) by |α| and let |α|→∞, we get a result recently proved Mir
and Dar [15]. Moreover, if we take k=1 in (1.15) (noting that Cr=1) and then divide both
sides of it by |α| and let |α|→∞, we get a result of Aziz and Ahemad [2, Theorem 2].

If in (1.15), we let p→∞ (so that q→1), we get

n(|α|−k)
{

∫ 2π

0
|P(eiθ)+λm|rdθ

}
1
r
≤
{

∫ 2π

0
|1+kneiθ |rdθ

}
1
r
max
|z|=1

∣

∣DαP(z)+λmn
∣

∣. (1.16)
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If we divide both sides of (1.16) by |α| and let |α|→∞, we get a result of Aziz and Ahe-
mad [2, Theorem 4] and also extends it for 0< r< 1 as well. For λ= 0, (1.16) reduces to
(1.14). Further, if we let r→∞ in (1.16) and assume |α|≥1+k+kn , we get

max
|z|=1

∣

∣DαP(z)+λmn
∣

∣≥n
( |α|−k

1+kn

)

max
|z|=1

|P(z)+λm|. (1.17)

Let z0 be a point on |z|=1 such that |P(z0)|=max|z|=1 |P(z)|, then from (1.17), we get

max
|z|=1

∣

∣DαP(z)+λmn
∣

∣≥n
( |α|−k

1+kn

)

|P(z0)+λm|. (1.18)

If we choose the argument of λ such that

|P(z0)+λm|= |P(z0)|+|λ|m,

then from (1.18), we get

max
|z|=1

∣

∣DαP(z)
∣

∣+|λ|mn≥n
( |α|−k

1+kn

)(

|P(z0)|+|λ|m
)

,

which is equivalent to

max
|z|=1

∣

∣DαP(z)
∣

∣≥n
( |α|−k

1+kn

)

max
|z|=1

|P(z)|+n|λ|
( |α|−(1+k+kn)

1+kn

)

m. (1.19)

If in (1.19) we make |λ|→1, we get

max
|z|=1

∣

∣DαP(z)
∣

∣≥n
( |α|−k

1+kn

)

max
|z|=1

|P(z)|+n
( |α|−(1+k+kn)

1+kn

)

m, (1.20)

which is exactly inequality (1.9).

Remark 1.4. Inequality (1.20) sharpens inequality (1.8). Also it generalise inequality (1.4)
and to obtain (1.4) from (1.20) simply divide both sides of (1.20) by |α| and let |α|→∞.

Finally, we prove the following result from which a variety of interesting results fol-
lows as special cases.

Theorem 1.3. If P(z)= anzn+∑
n
ν=µ an−νzn−ν, 1≤µ≤n, is a polynomial of degree n having all

its zeros in |z|≤ k, k≤1, then for every complex numbers α, β with |α|≥ k and |β|≤1, we have

min
|z|=1

∣

∣

∣
zDαP(z)+nβ

( |α|−kµ

1+kµ

)

P(z)
∣

∣

∣
≥

n

kn

∣

∣

∣
α+β

( |α|−kµ

1+kµ

)
∣

∣

∣
min
|z|=k

|P(z)|. (1.21)

The result is best possible and equality holds in (1.21) for P(z)=γzn, γ∈C.
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Remark 1.5. For µ = k = 1, Theorem 1.3 reduces to a result of Liman, Mohapatra and
Shah [11, Lemma 3]. If we divide both sides of inequality (1.21) by |α| and let |α|→∞, we
get

min
|z|=1

∣

∣

∣
zP′(z)+

nβ

1+kµ
P(z)

∣

∣

∣
≥

n

kn

∣

∣

∣
1+

β

1+kµ

∣

∣

∣
min
|z|=k

|P(z)|. (1.22)

For µ = k = 1, inequality (1.22) reduces to a result of Jain [10, Lemma 3] and for µ = 1,
inequality (1.22) reduces to a result of Soleiman et al. [19, Lemma 3].

2 Lemmas

For the proof of these theorems we shall make use of the following lemmas.

Lemma 2.1. If P(z)= anzn+∑
n
ν=µ an−νzn−ν, 1≤µ≤ n, is a polynomial of degree n having all

its zeros in |z|≤ k≤1 and Q(z)= znP(1/z), then

|Q′(z)|≤ kµ |P′(z)| for |z|=1. (2.1)

The above lemma is due to Aziz and Shah [4].

Lemma 2.2. If P(z)= anzn+∑
n
ν=µ an−νzn−ν, 1≤µ≤ n, is a polynomial of degree n having all

its zeros in |z|≤ k, k≤1, then for every complex number α with |α|≥ k and |z|=1, we have

∣

∣DαP(z)
∣

∣≥
n(|α|−kµ)

1+kµ
|P(z)|. (2.2)

Proof. If Q(z)= znP(1/z), then P(z)= znQ(1/z) and one can easily verify that for |z|=1,

|Q′(z)|= |nP(z)−zP′(z)|≥n|P(z)|−|P′(z)|,

which implies

|P′(z)|+|Q′(z)|≥n|P(z)| for |z|=1. (2.3)

By combining (2.1) and (2.3), we obtain

|P′(z)|≥
n

1+kµ
|P(z)| for |z|=1. (2.4)

Now for every complex number α with |α|≥ k (≥ kµ),
∣

∣DαP(z)
∣

∣= |nP(z)+(α−z)P′(z)|≥ |α||P′(z)|−|nP(z)−zP′(z)|,

which implies that for |z|=1,

∣

∣DαP(z)
∣

∣≥|α||P′(z)|−|Q′(z)|. (2.5)



A. Mir, Q. M. Dawood and B. Dar / Anal. Theory Appl., 31 (2015), pp. 81-91 87

Inequality (2.5) when combined with Lemma 2.1 gives

∣

∣DαP(z)
∣

∣≥ (|α|−kµ)|P′(z)| for |z|=1. (2.6)

Inequality (2.6) in conjunction with (2.4) gives

∣

∣DαP(z)
∣

∣≥
n(|α|−kµ)

1+kµ
|P(z)| for |z|=1,

which proves Lemma 2.2 completely.

3 Proof of theorems

Proof of Theorem 1.1. Since P(z) has all its zeros in |z|≤k, k≥1, it follows that the polyno-

mial G(z)=P(kz) has all its zeros in |z|≤1. Hence the polynomial H(z)= znG(1/z) has
all its zeros in |z|≥1 and |G(z)|= |H(z)| for |z|=1. Also it is easy to verify that for |z|=1,

|G′(z)|= |nH(z)−zH′(z)| (3.1)

and

|H′(z)|= |nG(z)−zG′(z)|. (3.2)

Again since G(z) has all its zeros in |z|≤1, we have by Lemma 2.1 (for k=µ=1),

|H′(z)|≤ |G′(z)| for |z|=1. (3.3)

Using (3.1) in (3.3), we get

|H′(z)|≤ |nH(z)−zH′(z)| for |z|=1. (3.4)

Now for every complex number α with |α|≥ k, we have

∣

∣D α
k
G(z)

∣

∣=
∣

∣

∣
nG(z)+

(α

k
−z

)

G′(z)
∣

∣

∣
≥

|α|

k
|G′(z)|−|nG(z)−zG′(z)|,

which gives by (3.2) and (3.3) for |z|=1, that

∣

∣D α
k
G(z)

∣

∣≥
( |α|

k
−1

)

|G′(z)|,

or

k
∣

∣D α
k
G(z)

∣

∣≥ (|α|−k)|G′(z)|. (3.5)
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Also, by the Guass-Lucas theorem, all the zeros of G′(z) lie in |z| ≤ 1. This implies that
the polynomial

zn−1G′(1/z)≡nH(z)−zH′(z)

does not vanish in |z|<1. Therefore, it follows from (3.4) that the function

W(z)=
zH′(z)

nH(z)−zH′(z)

is analytic for |z|≤1 and |W(z)|≤1 for |z|≤1. Furthermore, W(0)=0 and so the function
1+W(z) is subordinate to the function 1+z for |z|≤1. Hence by a well-known property
of sub ordination [9], we have for each r>0,

∫ 2π

0
|1+W(eiθ)|rdθ≤

∫ 2π

0
|1+eiθ |rdθ. (3.6)

Now

1+W(z)=
nH(z)

nH(z)−zH′(z)
,

which gives with the help of (3.1) that for |z|=1,

n|H(z)|= |1+W(z)||G′(z)|. (3.7)

From (3.5), (3.6) and (3.7), we deduce for each r>0,

nr(|α|−k)r
∫ 2π

0
|H(eiθ)|rdθ≤ kr

∫ 2π

0
|1+eiθ |r

∣

∣D α
k
G(eiθ)

∣

∣

r
dθ. (3.8)

If F(z) is a polynomial of degree n which does not vanish in |z|< 1, then according to a
result of Rahman and Schemeisser [16], we have for every R≥1 and r>0,

∫ 2π

0
|F(Reiθ)|rdθ≤Br

∫ 2π

0
|F(eiθ)|rdθ, (3.9)

where

Br =

∫ 2π

0 |1+Rneiθ |rdθ
∫ 2π

0 |1+eiθ |rdθ
.

Since H(z) is a polynomial of degree n and H(z) 6=0 in |z|<1, we apply (3.9) with R=k≥1
to H(z) and obtain

∫ 2π

0
|H(keiθ)|rdθ≤ (Cr)

r
∫ 2π

0
|H(eiθ)|rdθ. (3.10)
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Also, since H(z)= znG(1/z)= znP(k/z), therefore, for 0≤ θ<2π, we have

|H(keiθ)|= |kneinθ P(eiθ)|= kn|P(eiθ)|. (3.11)

Hence, from (3.8), (3.10) and (3.11), it follows for each r>0,

nr(|α|−k)rknr
∫ 2π

0
|P(eiθ)|rdθ

=nr(|α|−k)r
∫ 2π

0
|H(keiθ)|rdθ

≤nr(|α|−k)r(Cr)
r
∫ 2π

0
|H(eiθ)|rdθ

≤kr(Cr)
r
∫ 2π

0
|1+eiθ |r

∣

∣D α
k
G(eiθ)

∣

∣

r
dθ,

which gives with the help of Holder’s inequality for each r>0, p>1, q>1 with p−1+q−1=
1,

nr(|α|−k)rknr
∫ 2π

0
|P(eiθ)|rdθ

≤kr(Cr)
r
{

∫ 2π

0
|1+eiθ |qrdθ

}
1
q
{

∫ 2π

0

∣

∣

∣
D α

k
G(eiθ)

∣

∣

pr
dθ

}
1
p
.

Equivalently,

n(|α|−k)kn−1
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r

≤Cr

{

∫ 2π

0
|1+eiθ |qrdθ

}
1
qr
{

∫ 2π

0

∣

∣

∣
D α

k
G(eiθ)

∣

∣

pr
dθ

}
1
pr

. (3.12)

Since

D α
k
G(z)=nG(z)+

(α

k
−z

)

G′(z)=nP(kz)+
( α

k
−z

)

kP′(kz)

=nP(kz)+(α−kz)P′(kz)=DαP(kz)

is a polynomial of degree n−1, therefore for each t>0 and R≥1, we have by an inequality
(see [16]) that

{

∫ 2π

0
|DαP(Reiθ)|tdθ

}
1
t
≤Rn−1

{

∫ 2π

0
|DαP(eiθ)|tdθ

}
1
t
.

Applying this in (3.12) with R replaced by k and t by pr, we obtain for each r>0,

n(|α|−k)
{

∫ 2π

0
|P(eiθ)|rdθ

}
1
r

≤Cr

{

∫ 2π

0
|1+eiθ |qrdθ

}
1
qr
{

∫ 2π

0

∣

∣DαP(eiθ)
∣

∣

pr
dθ

}
1
pr

,
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which proves Theorem 1.1. �

Proof of Theorem 1.2. We assume with out loss of generality that P(z) has all its zeros
in |z| < k, k ≥ 1, for if P(z) has a zero on |z|= k, then m = 0 and in view of Theorem
1.1, the theorem holds trivially. Since P(z) has all its zeros in |z|< k where k≥1, so that
min|z|=k |P(z)|=m>0 and for every λ∈C with |λ|<1, we have |λm|<m≤|P(z)|, for |z|=k.
By Rouche’s theorem the polynomial P(z)+λm also has all its zeros in |z|<k where k≥1.
Applying Theorem 1.1 to the polynomial P(z)+λm and noting that Dα(P(z)+λm) =
DαP(z)+λmn, Theorem 1.2 follows. �

Proof of Theorem 1.3. If P(z) has a zero on |z|= k, then the theorem is trivial. So, we
assume that P(z) has all its zeros in |z|<k, therefore min|z|=k |P(z)|=m>0 and hence for

every complex number γ with |γ|<1, we have
∣

∣γmzn/kn
∣

∣< |P(z)|, for |z|= k. It follows
by Rouche’s theorem that the polynomial P(z)−γmzn/kn of degree n has all its zeros in
|z|< k, k ≤ 1. On applying Lemma 2.2 to P(z)−γmzn/kn, we have for every complex
number α with |α|≥ k,

∣

∣

∣
Dα

(

P(z)−
γmzn

kn

)
∣

∣

∣
≥

n

1+kµ

(

|α|−kµ
)

∣

∣

∣
P(z)−

γmzn

kn

∣

∣

∣
for |z|=1.

Equivalently,

∣

∣

∣
zDαP(z)−

αγmnzn

kn

∣

∣

∣
≥

n
(

|α|−kµ
)

1+kµ

∣

∣

∣
P(z)−

γmzn

kn

∣

∣

∣
for |z|=1. (3.13)

Since by Laguerre’s theorem (see [14, pp. 52]), the polynomial

Dα

(

P(z)−
γmzn

kn

)

=DαP(z)−
αγmnzn−1

kn

has all zeros in |z|<k for every complex number α with |α|≥k, therefore, for any complex
β with |β|<1, the polynomial

T(z)=zDαP(z)−
γmnαzn

kn
+nβ

|α|−kµ

1+kµ

{

P(z)−
γmzn

kn

}

=
{

zDαP(z)+nβ
|α|−kµ

1+kµ
P(z)

}

−
γmnzn

kn

{

α+β
|α|−kµ

1+kµ

}

6=0 for |z|≥ k. (3.14)

Since k≤1, we have T(z) 6=0 for |z|≥1 also.
Now choosing the argument of γ in (3.14) suitably and letting |γ|→1, we get for |z|=1

and |β|<1,
∣

∣

∣
zDαP(z)+nβ

|α|−kµ

1+kµ
P(z)

∣

∣

∣
≥
∣

∣

∣

mnzn

kn

{

α+β
|α|−kµ

1+kµ

}
∣

∣

∣
,

or
∣

∣

∣
zDαP(z)+nβ

|α|−kµ

1+kµ
P(z)

∣

∣

∣
≥

mn

kn

∣

∣

∣
α+β

|α|−kµ

1+kµ

∣

∣

∣
for |z|=1.

For β, with |β|=1, above inequality holds by continuity. �
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