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Abstract. Let P(z) be a polynomial of degree n having all its zeros in |z| <k. For k=1,
it is known that for each >0 and |a| > 1,

2 iy 2 o)
n(|zx|—l){/0 [P(*) a0} g{/o 1+¢°an) max| D.P(z) .

In this paper, we shall first consider the case when k>1 and present certain generaliza-
tions of this inequality. Also for k<1, we shall prove an interesting result for Lacunary
type of polynomials from which many results can be easily deduced.
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1 Introduction and statement of results

Let P(z) be a polynomial of degree n and P’(z) be its derivative. It was shown by Tu-
ran [21] that if P(z) has all its zeros in |z| <1, then

max|P'(z)| > gmaX|P(z)|. (1.1)

|z[=1 |z[=1

More generally, if the polynomial P(z) has all its zeros in |z| <k <1, it was proved by
Malik [12] that the inequality (1.1) can be replaced by

Pl(z)|> P(z)|, 1.2
max|P'(z)| 2 1 max|P(z)] (1.2)
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while as Govil [6] proved that if all the zeros of P(z) lie in |z| <k where k> 1, then

/ > n .
gﬁlﬂ z)| > 1+kn?}a’f|P( z)|. (1.3)

As an improvement of (1.3), Govil [7] proved that if P(z) has all its zeros in |z| <k where
k>1, then

n
max P (z )2 1 (maxPz )|+ min|P(z 2)]). (1.4)

Let D,P(z) denotes the polar derivative of the polynomial P(z) of degree n with re-
spect to the point a. Then

D,P(z)=nP(z)+(a—z)P'(z).

The polynomial D,P(z) is of degree at most n—1 and it generalizes the ordinary deriva-
tive in the sense that

lim {M} = P'(2). (1.5)

a—»00 o

Shah [18] extended (1.1) to the polar derivative of P(z) and proved that if all the zeros of
the polynomial P(z) lie in |z| <1, then

max|D,P(z)| > E(!zx!— 1)max|P(z)|, |a|>1. (1.6)

|z|=1 2 |z|=1
Aziz and Rather [3] generalised (1.6) which also extends (1.2) to the polar derivative of a
polynomial. In fact, they proved that if all the zeros of P(z) lie in |z| <k where k<1, then
for every real or complex number a with |a| >k,

&=
max|D P(z)|>n ( 1Tk )mz_i>1<|P(z)| (1.7)
Further as a generalization of (1.3) to the polar derivative of a polynomial, Aziz and
Rather [3] proved that if all the zeros of P(z) lie in |z| <k where k> 1, then for every real
or complex number « with |a| >k,

& =k
max| DaP(2)| 2 (1—|—k”)|z| x|P(z)]. (1.8)

Recently Govil and McTume [8] sharpened (1.8) and proved that if all the zeros of P(z)
lie in |z| <k, k>1, then for every real or complex number a with || >1+k+k",

max|D P(z |_ (

max |P(z)|
|z|=1

1+k”)|| 1

(1 kkn
+n(|"‘| (11++k,f )>|r;|ﬁ_nk|P(z)|. (1.9)
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On the other hand, Malik [13] obtained an L" analogue of (1.1) by proving that if P(z) has
all its zeros in |z| <1, then for each r >0,

271 , i 27 . 1
n{/ [P(e)/de} g{/ [1+¢°'de } " max|P'(2)]. (1.10)
0 0

|z[=1

As an extension of (1.3), Aziz [1] proved that if P(z) has all its zeros in |z| <k, k>1, then
foreachr>1,

2 el 7 0ol /
n{/ [P(e)/de} g{/ 1+k7e? "o } " max|P'(2)]. (L.11)
0 0

|zl=1

More recently, Dewan, Singh, Mir and Bhat [5] generalized (1.6) by obtaining an L" ana-
logue of it. More precisely, they proved that if P(z) has all its zeros in |z| <1, then for
every real or complex number a with |«| >1 and for each r >0,

n(’“’_1){/027T|P(€i9)’rd9}} < {/02n’1+ei9|’d9}1mi)f‘D,XP(z)‘. (1.12)

If we let r — co in (1.12) and make use of the well-known fact from analysis (see for
example [17, pp. 73] or [20, pp. 91]) that

SNPPNEPAE: it
{ [ 1P} max [P(e),
we get (1.6).

In this paper, we shall first present certain generalizations of the inequality (1.12) by
considering polynomials having all zeros in |z| <k, k> 1. We shall also prove a result for
Lacunary type of polynomials having all zeros in |z| <k, k <1 from which many results
can be easily deduced.

Theorem 1.1. If P(z) =Y)_a,z" is a polynomial of degree n having all its zeros in |z| <k

where k> 1, then for every complex number « with |a| > k and for each r >0, p>1, ¢ > 1 with
p~'+q 1=1, we have

n(|tx|—k){/ |P(ei‘)|’d9}1<c {/ fl—i—eif]‘ﬂdG};r{/ |DaP(eié)‘ yd@};r (1.13)
0 ! 0 0 ’ '
where

{1k ey

Cr 27 ; 1
{ )y 1+elrdo}
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Remark 1.1. If we let r — co and p — oo (so that g — 1) in (1.13) we get (1.8). If we divide
both sides of (1.13) by |a| and let |x| — o0, we get a result recently proved Mir and Dar [15].
If we take k=1 in (1.13) and note that C, =1, we obtain a generalization of (1.12) in the
sense that the right hand side of (1.12) is replaced by a factor involving the integral mean
of |[DyP(z)] on |z| =1.

The following corollary immediately follows by letting p — oo (so that g — 1) in Theo-
rem 1.1.

Corollary 1.1. If P(z)=Y)_,a,z" is a polynomial of degree n having all its zeros in |z| <k
where k> 1, then for every complex number « with |«| >k and for each >0,

n(!rx!—k){/Ozn]P(eie)]rdG}%§{/02n|1+k”ei9]7d9}%mi>1<|DaP(z)‘. (1.14)

|2

Remark 1.2. Dividing both sides of (1.14) by |a| and let |a| — oo, we get (1.11) and also
extends it to the values r € (0,1). For k=1, Corollary 1.1 reduces to inequality (1.12).

Our next result is a generalization of Theorem 1.1 which in turn provides extensions
and generalizations of results of Aziz and Ahemad [2]. We will see that as a special case
Theorem 1.2 gives a result of Govil and McTume [8, Theorem 3].

Theorem 1.2. If P(z)=Y__,a,z" is a polynomial of degree n having all its zeros in |z| <k, where
k>1, then for every complex numbers a, A with |a| >k, |A| <1 and for each r >0, p>1,q>1
with p~1+q~1=1, we have

1
r

27 .
n(|zx|—k){/0 [P(c™)+Am]|"de }
2 , 1. 2 , 1
gcr{/ n|1+e’9]‘7’d9}q’{/ ”\Dap(ele)mmn\?”de}”’, (1.15)
0 0

where m=min|,|_|P(z)| and C, is same as defined in Theorem 1.1.

Remark 1.3. A variety of interesting results can be easily deduced from Theorem 1.2 in
the same way as we have deduced from Theorem 1.1. Here we mention a few of these.
Dividing the two sides of (1.15) by |«| and let |a| — co, we get a result recently proved Mir
and Dar [15]. Moreover, if we take k=1 in (1.15) (noting that C,=1) and then divide both
sides of it by |a| and let |a| — oo, we get a result of Aziz and Ahemad [2, Theorem 2].

If in (1.15), we let p — oo (so that g — 1), we get

2 . 1 27 ) 1
n(]oc]—k){/o ]P(619)+Am|’d9} g{/o |1+k”e191’d9} mg!DaP(z)an!. (1.16)
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If we divide both sides of (1.16) by |a| and let |a| — co, we get a result of Aziz and Ahe-
mad [2, Theorem 4] and also extends it for 0 <r <1 as well. For A =0, (1.16) reduces to
(1.14). Further, if we let r — o0 in (1.16) and assume |a| > 1+k+k", we get

o =k
r‘gfl(‘DaP(z)%—)\mn‘ Zn( T >r§13>l<|P(z)+Am|. (1.17)

Let zo be a point on |z =1 such that |P(zo)| =max|;|_1 |P(z)|, then from (1.17), we get

& —k
mi)f|D“P(Z)+Amn|2n<1+kn)|P(ZO)+M”|' (1.18)

If we choose the argument of A such that
|P(z0)+Am|=|P(zo)|+|A|m,

then from (1.18), we get

|| —k
Eﬁ)ﬂDaP(z)‘—Hanzn(l_i_kn ) (|P(zo)|—|—|/\]m),

which is equivalent to

la| —k || — (1+k—+k")
gﬁ)ﬂDaP(z)!2n<1+kn)g1la:>1<]P(z)]+n|A]< Tk )m (1.19)
If in (1.19) we make |A| — 1, we get
a|—k o —(1+k+k"
max‘DaP(z)|2n<’1_Lkn>max]P(z)H—n(’ | (1+kn )>m, (1.20)

|z[=1 |z[=1
which is exactly inequality (1.9).

Remark 1.4. Inequality (1.20) sharpens inequality (1.8). Also it generalise inequality (1.4)
and to obtain (1.4) from (1.20) simply divide both sides of (1.20) by |«| and let |a| — oo.

Finally, we prove the following result from which a variety of interesting results fol-
lows as special cases.

Theorem 1.3. If P(z) =anz"+ Y )—,an—v2""", 1 <p <n, is a polynomial of degree n having all
its zeros in |z| <k, k<1, then for every complex numbers w, p with |a| >k and || <1, we have

()

The result is best possible and equality holds in (1.21) for P(z) =vz", y€C.

| —k*
14k

‘rr‘u_r}{]P(z)] (1.21)

min‘zDaP(z)—Fnﬁ(

|z[=1

ez
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Remark 1.5. For y =k =1, Theorem 1.3 reduces to a result of Liman, Mohapatra and
Shah [11, Lemma 3]. If we divide both sides of inequality (1.21) by |«| and let || — o0, we

get

p
14k

min |zP'(z)+ np P(z)‘ > kﬁn

1
|z]=1 14K+ *

‘rr‘llr}(|P(z) |. (1.22)

For =k =1, inequality (1.22) reduces to a result of Jain [10, Lemma 3] and for y =1,
inequality (1.22) reduces to a result of Soleiman et al. [19, Lemma 3].

2 Lemmas

For the proof of these theorems we shall make use of the following lemmas.

Lemma 2.1. If P(z) =anz" + Yy, an—vz""", 1 <p <n, is a polynomial of degree n having all

its zeros in |z| <k <1and Q(z)=z"P(1/Z), then
Q' ()| <K[P'(z)] for |z|=1. (2.1)
The above lemma is due to Aziz and Shah [4].

Lemma 2.2. If P(z) =a,z" +Zﬂ:yan,vz”_v, 1<u<n,is a polynomial of degree n having all
its zeros in |z| <k, k<1, then for every complex number « with |a| >k and |z| =1, we have

n(laf —K)

L PG| 22)

|DuP(z)|>

Proof. 1f Q(z) =2z"P(1/z), then P(z) =z"Q(1/Z) and one can easily verify that for |z| =1,
|Q(2)|=|nP(z) —zP'(z)| > n|P(2)| - |P'(z)],
which implies
P'(2)|+1Q'(2)| = nlP(2)] for [z]=1. 23)

By combining (2.1) and (2.3), we obtain

n
14K+

|P'(z)| > |P(z)| for |z|=1. (2.4)

Now for every complex number a with |a| >k (> k),
|DuP(2)| =[nP(2) + (x=2)P'(2)| = |a]|[P'(2)| = [nP(z) —zP'(2)],
which implies that for |z| =1,

| DuP(z)| > |a][P'(2)|—1Q'(2)]. (2.5)
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Inequality (2.5) when combined with Lemma 2.1 gives
|DoP(z)| > (o] —k")|P'(z)| for |z]=1. (2.6)

Inequality (2.6) in conjunction with (2.4) gives

D,P(z)| > MUx =KD

Z |P(z)| for |z|=1,

which proves Lemma 2.2 completely. O

3 Proof of theorems

Proof of Theorem 1.1. Since P(z) has all its zeros in |z| <k, k>1, it follows that the polyno-

mial G(z) = P(kz) has all its zeros in |z| <1. Hence the polynomial H(z) =z"G(1/Z) has
all its zeros in |z| >1 and |G(z)|=|H(z)| for |z] =1. Also it is easy to verify that for |z| =1,

|G'(2)|=nH(z)—zH'(z)] 3.1
and
|H'(2)|=[nG(2) —2G'(2)]. (32)
Again since G(z) has all its zeros in |z| <1, we have by Lemma 2.1 (for k=u=1),
|H'(2)|<|G'(z)| for |z|=1. (3.3)
Using (3.1) in (3.3), we get
|H'(z)| < |nH(z)—zH'(z)| for |z|=1. (3.4)
Now for every complex number a with |a| >k, we have

]

D;G ()| = [nG(2) + (5 -2) G (2)] 2 &

p G'(2)|=[nG(2) —2G'(2)],

which gives by (3.2) and (3.3) for |z| =1, that
] /
ID:G(z)| > (?—1) G'(2)],

or

K|D;G(2)| > (|a|~K)[G (2)]. (35)
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Also, by the Guass-Lucas theorem, all the zeros of G’(z) lie in |z| <1. This implies that
the polynomial

2" 1G/(1/2)=nH(z) —zH'(2)
does not vanish in |z| < 1. Therefore, it follows from (3.4) that the function

zH'(z)

Wiz)= nH(z)—zH'(z)

is analytic for |z| <1 and |W(z)|<1 for |z| <1. Furthermore, W(0) =0 and so the function
1+W(z) is subordinate to the function 1+z for |z| <1. Hence by a well-known property
of sub ordination [9], we have for each r >0,

27 . 27 .
/ |1+W(e19)|’d9§/ I14¢|7de. (3.6)
0 0

Now

nH(z)
nH(z)—zH'(z)’

1+W(z)=
which gives with the help of (3.1) that for |z| =1,
n|H(z)|=[1+W(2)[|G' ()] (37)
From (3.5), (3.6) and (3.7), we deduce for each » >0,
27 . 27 . , ’
(o] —k)’/ H(®)[7do gk’/ [14¢?|"| D4 G (&) | do. (3.8)
0 0

If F(z) is a polynomial of degree n which does not vanish in |z| <1, then according to a
result of Rahman and Schemeisser [16], we have for every R>1 and r >0,

27 . 27 .
/0 F(Re®)|"d6 < B, /0 F(e®)|de, (3.9)

where
02” |1+R”ei9 |"d6

P e prde

Since H(z) is a polynomial of degree n and H(z)#0 in |z| <1, we apply (3.9) with R=k>1
to H(z) and obtain

27 . 27 .
/ |H(ke®)|7d0 < (C,)’ / [H ()" d6. (3.10)
0 0
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Also, since H(z) =z"G(1/z) =z"P(k/z), therefore, for 0 <6 <27, we have
|H(ke®)| = |k"e™ P(ei®)| =k"|P(e?)]. (3.11)
Hence, from (3.8), (3.10) and (3.11), it follows for each » >0,
27 .
' (] —k)k” [ P(e)rdo
0
27T .
:n’(|zx|—k)r/ |H (ke'®)|"do
0
27 .
<n'(a| k) (C,) [~ [H(e)a
0
27 . oy
<K(C) [ 1+ |DyGe) ' de,
0

which gives with the help of Holder’s inequality for each >0, p>1, ¢>1 with p~ 1447 1=
1,

27 .
nf(|a|—k)fk’”/ IP(e)[7do
0

ceicr{ s} | [ocie )

Equivalently,
27 . %
n(lal—kR 1 [ PG a0}
0
27 1 27 1
i |qr qr . 0\ | Pr pr
Scr{/o 1+ de} {/0 ‘D%G(e )| de} . (3.12)
Since
_ L 1o — L /
D%G(z)—nG(z)+<k 2)G'(2) nP(kz)+<k 2) kP (kz)

=nP(kz)+ (a—kz)P'(kz) = D,P(kz)

is a polynomial of degree n—1, therefore for each t >0 and R>1, we have by an inequality
(see [16]) that

27 . % 27 . %
{/ DP(Re®)[d0} " < R”’l{/ IDP(e?)| o}
0 0
Applying this in (3.12) with R replaced by k and t by pr, we obtain for each r >0,
27 ) %
n(lal =k { [~ 1P(e")]'de}
0

2 a % 27 - %
<C{ [ n+emao}"{ [ |Dup(e”)| a0},
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which proves Theorem 1.1. O

Proof of Theorem 1.2. We assume with out loss of generality that P(z) has all its zeros
in |z| <k, k>1, for if P(z) has a zero on |z| =k, then m =0 and in view of Theorem
1.1, the theorem holds trivially. Since P(z) has all its zeros in |z| <k where k> 1, so that
min,|_¢|P(z)|=m>0 and for every A€ C with [A[<1, we have |Am|<m<|P(z)], for |z|=

By Rouche’s theorem the polynomial P(z)+Am also has all its zeros in |z| <k where k> 1.
Applying Theorem 1.1 to the polynomial P(z)+Am and noting that D, (P(z)+Am) =
D,P(z)+Amn, Theorem 1.2 follows. O

Proof of Theorem 1.3. If P(z) has a zero on |z| =k, then the theorem is trivial. So, we
assume that P(z) has all its zeros in |z| <k, therefore min|,|_¢|P(z)|=m >0 and hence for
every complex number -y with |y| <1, we have |ymz"/k"| <|P(z)|, for |z| =k. It follows
by Rouche’s theorem that the polynomial P(z) —ymz"/k"™ of degree n has all its zeros in
z| <k, k<1. On applying Lemma 2.2 to P(z)—ymz"/k", we have for every complex
number a with |a| >k,

'ymz L _ ymz" _
‘Da(P() >‘—1+k?‘(w k )‘P(z) o] for fzl=1.
Equivalently,
wymnz" | _ n(|a|—k") ymz"
— > — =1 .
‘zDaP(z) |2 (P(z) e ‘ for |z|=1 (3.13)
Since by Laguerre’s theorem (see [14, pp. 52]), the polynomial
n n—1
ymz Kymnz
D, (P(z)— i ):DaP(z)—T

has all zeros in |z| <k for every complex number a with |a| >k, therefore, for any complex
B with |B| <1, the polynomial

B _ ymnaz" || —kH _ ymz"
T(z)=zDaP(z) 17 +n,B . {p(z) T }
_ o — ymnz" || —k*
_{‘ZD"‘P( )P e 1+kV PGz )}_ k” {‘Hﬁ Tk }
#0 for |z|>k. (3.14)

Since k<1, we have T(z) #0 for |z| >1 also.
Now choosing the argument of vy in (3.14) suitably and letting |y| —1, we get for |z|=
and [B| <1,

mnz" || —kH
‘ZD"‘P( )+npls 1+ku ‘— i {etp 1+kF H
or
Kt mn Kt
‘ZD& (z )+”,3’1’+k;, P(z)| = o +'B’1’+k?’ ‘ for |z|=1.

For B, with |B| =1, above inequality holds by continuity. O]
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