DOI: 10.4208/ata.2015.v31.n1.7

Some Integral Mean Estimates for Polynomials with Restricted Zeros

Abdullah Mir*, Q. M. Dawood and Bilal Dar

Department of Mathematics, University of Kashmir, Srinagar 190006, India

Received 19 January 2014; Accepted (in revised version) 11 March 2015

Abstract. Let P(z) be a polynomial of degree n having all its zeros in $|z| \le k$. For k = 1, it is known that for each r > 0 and $|\alpha| \ge 1$,

$$n(|\alpha|-1)\Big\{\int_{0}^{2\pi}|P(e^{i\theta})|^{r}d\theta\Big\}^{\frac{1}{r}} \leq \Big\{\int_{0}^{2\pi}|1+e^{i\theta}|^{r}d\theta\Big\}^{\frac{1}{r}} \max_{|z|=1}|D_{\alpha}P(z)|.$$

In this paper, we shall first consider the case when $k \ge 1$ and present certain generalizations of this inequality. Also for $k \le 1$, we shall prove an interesting result for Lacunary type of polynomials from which many results can be easily deduced.

Key Words: Polynomial, zeros, polar derivative.

AMS Subject Classifications: 30A10, 30C10, 30D15

1 Introduction and statement of results

Let P(z) be a polynomial of degree n and P'(z) be its derivative. It was shown by Turan [21] that if P(z) has all its zeros in $|z| \le 1$, then

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{2} \max_{|z|=1} |P(z)|. \tag{1.1}$$

More generally, if the polynomial P(z) has all its zeros in $|z| \le k \le 1$, it was proved by Malik [12] that the inequality (1.1) can be replaced by

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{1+k} \max_{|z|=1} |P(z)|, \tag{1.2}$$

^{*}Corresponding author. *Email addresses:* mabdullah_mir@yahoo.co.in (A. Mir), qdawood@gmail.com (Q. M. Dawood), darbilal85@ymail.com (B. Dar)

while as Govil [6] proved that if all the zeros of P(z) lie in $|z| \le k$ where $k \ge 1$, then

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{1+k^n} \max_{|z|=1} |P(z)|. \tag{1.3}$$

As an improvement of (1.3), Govil [7] proved that if P(z) has all its zeros in $|z| \le k$ where k > 1, then

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{1+k^n} \Big(\max_{|z|=1} |P(z)| + \min_{|z|=k} |P(z)| \Big). \tag{1.4}$$

Let $D_{\alpha}P(z)$ denotes the polar derivative of the polynomial P(z) of degree n with respect to the point α . Then

$$D_{\alpha}P(z) = nP(z) + (\alpha - z)P'(z).$$

The polynomial $D_{\alpha}P(z)$ is of degree at most n-1 and it generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \to \infty} \left\{ \frac{D_{\alpha} P(z)}{\alpha} \right\} = P'(z). \tag{1.5}$$

Shah [18] extended (1.1) to the polar derivative of P(z) and proved that if all the zeros of the polynomial P(z) lie in $|z| \le 1$, then

$$\max_{|z|=1} |D_{\alpha} P(z)| \ge \frac{n}{2} (|\alpha|-1) \max_{|z|=1} |P(z)|, \quad |\alpha| \ge 1.$$
 (1.6)

Aziz and Rather [3] generalised (1.6) which also extends (1.2) to the polar derivative of a polynomial. In fact, they proved that if all the zeros of P(z) lie in $|z| \le k$ where $k \le 1$, then for every real or complex number α with $|\alpha| \ge k$,

$$\max_{|z|=1} |D_{\alpha}P(z)| \ge n \left(\frac{|\alpha|-k}{1+k}\right) \max_{|z|=1} |P(z)|. \tag{1.7}$$

Further as a generalization of (1.3) to the polar derivative of a polynomial, Aziz and Rather [3] proved that if all the zeros of P(z) lie in $|z| \le k$ where $k \ge 1$, then for every real or complex number α with $|\alpha| \ge k$,

$$\max_{|z|=1} |D_{\alpha} P(z)| \ge n \left(\frac{|\alpha| - k}{1 + k^n}\right) \max_{|z|=1} |P(z)|. \tag{1.8}$$

Recently Govil and McTume [8] sharpened (1.8) and proved that if all the zeros of P(z) lie in $|z| \le k$, $k \ge 1$, then for every real or complex number α with $|\alpha| \ge 1 + k + k^n$,

$$\max_{|z|=1} |D_{\alpha}P(z)| \ge n \left(\frac{|\alpha|-k}{1+k^{n}}\right) \max_{|z|=1} |P(z)|
+ n \left(\frac{|\alpha|-(1+k+k^{n})}{1+k^{n}}\right) \min_{|z|=k} |P(z)|.$$
(1.9)

On the other hand, Malik [13] obtained an L^r analogue of (1.1) by proving that if P(z) has all its zeros in $|z| \le 1$, then for each r > 0,

$$n\left\{\int_{0}^{2\pi} |P(e^{i\theta})|^{r} d\theta\right\}^{\frac{1}{r}} \leq \left\{\int_{0}^{2\pi} |1 + e^{i\theta}|^{r} d\theta\right\}^{\frac{1}{r}} \max_{|z|=1} |P'(z)|. \tag{1.10}$$

As an extension of (1.3), Aziz [1] proved that if P(z) has all its zeros in $|z| \le k$, $k \ge 1$, then for each $r \ge 1$,

$$n\left\{\int_{0}^{2\pi} |P(e^{i\theta})|^{r} d\theta\right\}^{\frac{1}{r}} \leq \left\{\int_{0}^{2\pi} |1 + k^{n} e^{i\theta}|^{r} d\theta\right\}^{\frac{1}{r}} \max_{|z|=1} |P'(z)|. \tag{1.11}$$

More recently, Dewan, Singh, Mir and Bhat [5] generalized (1.6) by obtaining an L^r analogue of it. More precisely, they proved that if P(z) has all its zeros in $|z| \le 1$, then for every real or complex number α with $|\alpha| \ge 1$ and for each r > 0,

$$n(|\alpha|-1)\Big\{\int_{0}^{2\pi}|P(e^{i\theta})|^{r}d\theta\Big\}^{\frac{1}{r}} \le \Big\{\int_{0}^{2\pi}|1+e^{i\theta}|^{r}d\theta\Big\}^{\frac{1}{r}} \max_{|z|=1}|D_{\alpha}P(z)|. \tag{1.12}$$

If we let $r \to \infty$ in (1.12) and make use of the well-known fact from analysis (see for example [17, pp. 73] or [20, pp. 91]) that

$$\left\{ \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \right\}^{\frac{1}{r}} \to \max_{0 \le \theta < 2\pi} |P(e^{i\theta})|,$$

we get (1.6).

In this paper, we shall first present certain generalizations of the inequality (1.12) by considering polynomials having all zeros in $|z| \le k$, $k \ge 1$. We shall also prove a result for Lacunary type of polynomials having all zeros in $|z| \le k$, $k \le 1$ from which many results can be easily deduced.

Theorem 1.1. If $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \le k$ where $k \ge 1$, then for every complex number α with $|\alpha| \ge k$ and for each r > 0, p > 1, q > 1 with $p^{-1} + q^{-1} = 1$, we have

$$n(|\alpha|-k)\left\{\int_{0}^{2\pi}|P(e^{i\theta})|^{r}d\theta\right\}^{\frac{1}{r}} \leq C_{r}\left\{\int_{0}^{2\pi}|1+e^{i\theta}|^{qr}d\theta\right\}^{\frac{1}{qr}}\left\{\int_{0}^{2\pi}|D_{\alpha}P(e^{i\theta})|^{pr}d\theta\right\}^{\frac{1}{pr}},\quad(1.13)$$

where

$$C_r = \frac{\left\{ \int_0^{2\pi} |1 + k^n e^{i\theta}|^r d\theta \right\}^{\frac{1}{r}}}{\left\{ \int_0^{2\pi} |1 + e^{i\theta}|^r d\theta \right\}^{\frac{1}{r}}}.$$

Remark 1.1. If we let $r \to \infty$ and $p \to \infty$ (so that $q \to 1$) in (1.13) we get (1.8). If we divide both sides of (1.13) by $|\alpha|$ and let $|\alpha| \to \infty$, we get a result recently proved Mir and Dar [15]. If we take k = 1 in (1.13) and note that $C_r = 1$, we obtain a generalization of (1.12) in the sense that the right hand side of (1.12) is replaced by a factor involving the integral mean of $|D_{\alpha}P(z)|$ on |z| = 1.

The following corollary immediately follows by letting $p \rightarrow \infty$ (so that $q \rightarrow 1$) in Theorem 1.1.

Corollary 1.1. If $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \le k$ where $k \ge 1$, then for every complex number α with $|\alpha| \ge k$ and for each r > 0,

$$n(|\alpha|-k)\Big\{\int_{0}^{2\pi}|P(e^{i\theta})|^{r}d\theta\Big\}^{\frac{1}{r}} \leq \Big\{\int_{0}^{2\pi}|1+k^{n}e^{i\theta}|^{r}d\theta\Big\}^{\frac{1}{r}} \max_{|z|=1}|D_{\alpha}P(z)|. \tag{1.14}$$

Remark 1.2. Dividing both sides of (1.14) by $|\alpha|$ and let $|\alpha| \to \infty$, we get (1.11) and also extends it to the values $r \in (0,1)$. For k=1, Corollary 1.1 reduces to inequality (1.12).

Our next result is a generalization of Theorem 1.1 which in turn provides extensions and generalizations of results of Aziz and Ahemad [2]. We will see that as a special case Theorem 1.2 gives a result of Govil and McTume [8, Theorem 3].

Theorem 1.2. If $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \le k$, where $k \ge 1$, then for every complex numbers α , λ with $|\alpha| \ge k$, $|\lambda| < 1$ and for each r > 0, p > 1, q > 1 with $p^{-1} + q^{-1} = 1$, we have

$$n(|\alpha|-k) \left\{ \int_{0}^{2\pi} |P(e^{i\theta}) + \lambda m|^{r} d\theta \right\}^{\frac{1}{r}} \\ \leq C_{r} \left\{ \int_{0}^{2\pi} |1 + e^{i\theta}|^{qr} d\theta \right\}^{\frac{1}{qr}} \left\{ \int_{0}^{2\pi} |D_{\alpha}P(e^{i\theta}) + \lambda mn|^{pr} d\theta \right\}^{\frac{1}{pr}}, \tag{1.15}$$

where $m = \min_{|z|=k} |P(z)|$ and C_r is same as defined in Theorem 1.1.

Remark 1.3. A variety of interesting results can be easily deduced from Theorem 1.2 in the same way as we have deduced from Theorem 1.1. Here we mention a few of these. Dividing the two sides of (1.15) by $|\alpha|$ and let $|\alpha| \to \infty$, we get a result recently proved Mir and Dar [15]. Moreover, if we take k=1 in (1.15) (noting that $C_r=1$) and then divide both sides of it by $|\alpha|$ and let $|\alpha| \to \infty$, we get a result of Aziz and Ahemad [2, Theorem 2].

If in (1.15), we let $p \rightarrow \infty$ (so that $q \rightarrow 1$), we get

$$n(|\alpha|-k)\Big\{\int_{0}^{2\pi}|P(e^{i\theta})+\lambda m|^{r}d\theta\Big\}^{\frac{1}{r}} \leq \Big\{\int_{0}^{2\pi}|1+k^{n}e^{i\theta}|^{r}d\theta\Big\}^{\frac{1}{r}}\max_{|z|=1}|D_{\alpha}P(z)+\lambda mn|. \quad (1.16)$$

If we divide both sides of (1.16) by $|\alpha|$ and let $|\alpha| \to \infty$, we get a result of Aziz and Ahemad [2, Theorem 4] and also extends it for 0 < r < 1 as well. For $\lambda = 0$, (1.16) reduces to (1.14). Further, if we let $r \to \infty$ in (1.16) and assume $|\alpha| \ge 1 + k + k^n$, we get

$$\max_{|z|=1} \left| D_{\alpha} P(z) + \lambda m n \right| \ge n \left(\frac{|\alpha| - k}{1 + k^n} \right) \max_{|z|=1} |P(z) + \lambda m|. \tag{1.17}$$

Let z_0 be a point on |z|=1 such that $|P(z_0)|=\max_{|z|=1}|P(z)|$, then from (1.17), we get

$$\max_{|z|=1} \left| D_{\alpha} P(z) + \lambda m n \right| \ge n \left(\frac{|\alpha| - k}{1 + k^n} \right) |P(z_0) + \lambda m|. \tag{1.18}$$

If we choose the argument of λ such that

$$|P(z_0) + \lambda m| = |P(z_0)| + |\lambda|m,$$

then from (1.18), we get

$$\max_{|z|=1} |D_{\alpha}P(z)| + |\lambda| mn \ge n \left(\frac{|\alpha|-k}{1+k^n}\right) \left(|P(z_0)| + |\lambda|m\right),$$

which is equivalent to

$$\max_{|z|=1} |D_{\alpha}P(z)| \ge n \left(\frac{|\alpha|-k}{1+k^n}\right) \max_{|z|=1} |P(z)| + n|\lambda| \left(\frac{|\alpha|-(1+k+k^n)}{1+k^n}\right) m. \tag{1.19}$$

If in (1.19) we make $|\lambda| \rightarrow 1$, we get

$$\max_{|z|=1} |D_{\alpha}P(z)| \ge n \left(\frac{|\alpha|-k}{1+k^n}\right) \max_{|z|=1} |P(z)| + n \left(\frac{|\alpha|-(1+k+k^n)}{1+k^n}\right) m, \tag{1.20}$$

which is exactly inequality (1.9).

Remark 1.4. Inequality (1.20) sharpens inequality (1.8). Also it generalise inequality (1.4) and to obtain (1.4) from (1.20) simply divide both sides of (1.20) by $|\alpha|$ and let $|\alpha| \to \infty$.

Finally, we prove the following result from which a variety of interesting results follows as special cases.

Theorem 1.3. If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having all its zeros in $|z| \le k$, $k \le 1$, then for every complex numbers α , β with $|\alpha| \ge k$ and $|\beta| \le 1$, we have

$$\min_{|z|=1} \left| z D_{\alpha} P(z) + n\beta \left(\frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} \right) P(z) \right| \ge \frac{n}{k^n} \left| \alpha + \beta \left(\frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} \right) \left| \min_{|z|=k} |P(z)| \right|. \tag{1.21}$$

The result is best possible and equality holds in (1.21) for $P(z) = \gamma z^n$, $\gamma \in C$.

Remark 1.5. For $\mu = k = 1$, Theorem 1.3 reduces to a result of Liman, Mohapatra and Shah [11, Lemma 3]. If we divide both sides of inequality (1.21) by $|\alpha|$ and let $|\alpha| \to \infty$, we get

$$\min_{|z|=1} \left| zP'(z) + \frac{n\beta}{1+k^{\mu}} P(z) \right| \ge \frac{n}{k^n} \left| 1 + \frac{\beta}{1+k^{\mu}} \left| \min_{|z|=k} |P(z)| \right|. \tag{1.22}$$

For $\mu = k = 1$, inequality (1.22) reduces to a result of Jain [10, Lemma 3] and for $\mu = 1$, inequality (1.22) reduces to a result of Soleiman et al. [19, Lemma 3].

2 Lemmas

For the proof of these theorems we shall make use of the following lemmas.

Lemma 2.1. If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having all its zeros in $|z| \le k \le 1$ and $Q(z) = z^n \overline{P(1/\overline{z})}$, then

$$|Q'(z)| \le k^{\mu} |P'(z)|$$
 for $|z| = 1$. (2.1)

The above lemma is due to Aziz and Shah [4].

Lemma 2.2. If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having all its zeros in $|z| \le k$, $k \le 1$, then for every complex number α with $|\alpha| \ge k$ and |z| = 1, we have

$$|D_{\alpha}P(z)| \ge \frac{n(|\alpha| - k^{\mu})}{1 + k^{\mu}} |P(z)|.$$
 (2.2)

Proof. If $Q(z) = z^n \overline{P(1/\overline{z})}$, then $P(z) = z^n \overline{Q(1/\overline{z})}$ and one can easily verify that for |z| = 1,

$$|Q'(z)| = |nP(z) - zP'(z)| \ge n|P(z)| - |P'(z)|,$$

which implies

$$|P'(z)| + |Q'(z)| \ge n|P(z)|$$
 for $|z| = 1$. (2.3)

By combining (2.1) and (2.3), we obtain

$$|P'(z)| \ge \frac{n}{1+k^{\mu}}|P(z)|$$
 for $|z|=1$. (2.4)

Now for every complex number α with $|\alpha| \ge k$ ($\ge k^{\mu}$),

$$|D_{\alpha}P(z)| = |nP(z) + (\alpha - z)P'(z)| \ge |\alpha||P'(z)| - |nP(z) - zP'(z)|,$$

which implies that for |z| = 1,

$$|D_{\alpha}P(z)| \ge |\alpha||P'(z)| - |Q'(z)|.$$
 (2.5)

Inequality (2.5) when combined with Lemma 2.1 gives

$$|D_{\alpha}P(z)| \ge (|\alpha| - k^{\mu})|P'(z)|$$
 for $|z| = 1$. (2.6)

Inequality (2.6) in conjunction with (2.4) gives

$$|D_{\alpha}P(z)| \ge \frac{n(|\alpha|-k^{\mu})}{1+k^{\mu}}|P(z)|$$
 for $|z|=1$,

which proves Lemma 2.2 completely.

3 Proof of theorems

Proof of Theorem 1.1. Since P(z) has all its zeros in $|z| \le k$, $k \ge 1$, it follows that the polynomial G(z) = P(kz) has all its zeros in $|z| \le 1$. Hence the polynomial $H(z) = z^n \overline{G(1/\overline{z})}$ has all its zeros in $|z| \ge 1$ and |G(z)| = |H(z)| for |z| = 1. Also it is easy to verify that for |z| = 1,

$$|G'(z)| = |nH(z) - zH'(z)|$$
 (3.1)

and

$$|H'(z)| = |nG(z) - zG'(z)|.$$
 (3.2)

Again since G(z) has all its zeros in $|z| \le 1$, we have by Lemma 2.1 (for $k = \mu = 1$),

$$|H'(z)| \le |G'(z)|$$
 for $|z| = 1$. (3.3)

Using (3.1) in (3.3), we get

$$|H'(z)| \le |nH(z) - zH'(z)|$$
 for $|z| = 1$. (3.4)

Now for every complex number α with $|\alpha| \ge k$, we have

$$\left|D_{\frac{\alpha}{k}}G(z)\right| = \left|nG(z) + \left(\frac{\alpha}{k} - z\right)G'(z)\right| \ge \frac{|\alpha|}{k}|G'(z)| - |nG(z) - zG'(z)|,$$

which gives by (3.2) and (3.3) for |z| = 1, that

$$|D_{\frac{\alpha}{k}}G(z)| \ge \left(\frac{|\alpha|}{k} - 1\right)|G'(z)|,$$

or

$$k \left| D_{\frac{\alpha}{k}} G(z) \right| \ge (|\alpha| - k) |G'(z)|. \tag{3.5}$$

Also, by the Guass-Lucas theorem, all the zeros of G'(z) lie in $|z| \le 1$. This implies that the polynomial

$$z^{n-1}\overline{G'(1/\overline{z})} \equiv nH(z) - zH'(z)$$

does not vanish in |z| < 1. Therefore, it follows from (3.4) that the function

$$W(z) = \frac{zH'(z)}{nH(z) - zH'(z)}$$

is analytic for $|z| \le 1$ and $|W(z)| \le 1$ for $|z| \le 1$. Furthermore, W(0) = 0 and so the function 1+W(z) is subordinate to the function 1+z for $|z| \le 1$. Hence by a well-known property of sub ordination [9], we have for each r > 0,

$$\int_{0}^{2\pi} |1 + W(e^{i\theta})|^{r} d\theta \le \int_{0}^{2\pi} |1 + e^{i\theta}|^{r} d\theta. \tag{3.6}$$

Now

$$1+W(z)=\frac{nH(z)}{nH(z)-zH'(z)},$$

which gives with the help of (3.1) that for |z| = 1,

$$n|H(z)| = |1+W(z)||G'(z)|.$$
 (3.7)

From (3.5), (3.6) and (3.7), we deduce for each r > 0,

$$n^{r}(|\alpha|-k)^{r}\int_{0}^{2\pi}|H(e^{i\theta})|^{r}d\theta \leq k^{r}\int_{0}^{2\pi}|1+e^{i\theta}|^{r}|D_{\frac{\alpha}{k}}G(e^{i\theta})|^{r}d\theta. \tag{3.8}$$

If F(z) is a polynomial of degree n which does not vanish in |z| < 1, then according to a result of Rahman and Schemeisser [16], we have for every $R \ge 1$ and r > 0,

$$\int_{0}^{2\pi} |F(Re^{i\theta})|^{r} d\theta \le B_{r} \int_{0}^{2\pi} |F(e^{i\theta})|^{r} d\theta, \tag{3.9}$$

where

$$B_r = \frac{\int_0^{2\pi} |1 + R^n e^{i\theta}|^r d\theta}{\int_0^{2\pi} |1 + e^{i\theta}|^r d\theta}.$$

Since H(z) is a polynomial of degree n and $H(z) \neq 0$ in |z| < 1, we apply (3.9) with $R = k \geq 1$ to H(z) and obtain

$$\int_{0}^{2\pi} |H(ke^{i\theta})|^{r} d\theta \le (C_{r})^{r} \int_{0}^{2\pi} |H(e^{i\theta})|^{r} d\theta.$$
 (3.10)

Also, since $H(z) = z^n \overline{G(1/\overline{z})} = z^n \overline{P(k/\overline{z})}$, therefore, for $0 \le \theta < 2\pi$, we have $|H(ke^{i\theta})| = |k^n e^{in\theta} \overline{P(e^{i\theta})}| = k^n |P(e^{i\theta})|. \tag{3.11}$

Hence, from (3.8), (3.10) and (3.11), it follows for each r > 0,

$$n^{r}(|\alpha|-k)^{r}k^{nr}\int_{0}^{2\pi}|P(e^{i\theta})|^{r}d\theta$$

$$=n^{r}(|\alpha|-k)^{r}\int_{0}^{2\pi}|H(ke^{i\theta})|^{r}d\theta$$

$$\leq n^{r}(|\alpha|-k)^{r}(C_{r})^{r}\int_{0}^{2\pi}|H(e^{i\theta})|^{r}d\theta$$

$$\leq k^{r}(C_{r})^{r}\int_{0}^{2\pi}|1+e^{i\theta}|^{r}|D_{\frac{\alpha}{k}}G(e^{i\theta})|^{r}d\theta,$$

which gives with the help of Holder's inequality for each r>0, p>1, q>1 with $p^{-1}+q^{-1}=1$,

$$n^{r}(|\alpha|-k)^{r}k^{nr}\int_{0}^{2\pi}|P(e^{i\theta})|^{r}d\theta$$

$$\leq k^{r}(C_{r})^{r}\left\{\int_{0}^{2\pi}|1+e^{i\theta}|^{qr}d\theta\right\}^{\frac{1}{q}}\left\{\int_{0}^{2\pi}\left|D_{\frac{\alpha}{k}}G(e^{i\theta})\right|^{pr}d\theta\right\}^{\frac{1}{p}}.$$

Equivalently,

$$n(|\alpha|-k)k^{n-1} \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^{r} d\theta \right\}^{\frac{1}{r}} \\ \leq C_{r} \left\{ \int_{0}^{2\pi} |1+e^{i\theta}|^{qr} d\theta \right\}^{\frac{1}{qr}} \left\{ \int_{0}^{2\pi} \left| D_{\frac{\alpha}{k}} G(e^{i\theta}) \right|^{pr} d\theta \right\}^{\frac{1}{pr}}.$$
(3.12)

Since

$$D_{\frac{\alpha}{k}}G(z) = nG(z) + \left(\frac{\alpha}{k} - z\right)G'(z) = nP(kz) + \left(\frac{\alpha}{k} - z\right)kP'(kz)$$
$$= nP(kz) + (\alpha - kz)P'(kz) = D_{\alpha}P(kz)$$

is a polynomial of degree n-1, therefore for each t>0 and $R\ge 1$, we have by an inequality (see [16]) that

$$\left\{ \int_{0}^{2\pi} |D_{\alpha} P(Re^{i\theta})|^{t} d\theta \right\}^{\frac{1}{t}} \leq R^{n-1} \left\{ \int_{0}^{2\pi} |D_{\alpha} P(e^{i\theta})|^{t} d\theta \right\}^{\frac{1}{t}}.$$

Applying this in (3.12) with R replaced by k and t by pr, we obtain for each r > 0,

$$n(|\alpha|-k) \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^{r} d\theta \right\}^{\frac{1}{r}} \\ \leq C_{r} \left\{ \int_{0}^{2\pi} |1+e^{i\theta}|^{qr} d\theta \right\}^{\frac{1}{qr}} \left\{ \int_{0}^{2\pi} |D_{\alpha}P(e^{i\theta})|^{pr} d\theta \right\}^{\frac{1}{pr}},$$

which proves Theorem 1.1.

Proof of Theorem 1.2. We assume with out loss of generality that P(z) has all its zeros in |z| < k, $k \ge 1$, for if P(z) has a zero on |z| = k, then m = 0 and in view of Theorem 1.1, the theorem holds trivially. Since P(z) has all its zeros in |z| < k where $k \ge 1$, so that $\min_{|z|=k} |P(z)| = m > 0$ and for every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$, we have $|\lambda m| < m \le |P(z)|$, for |z| = k. By Rouche's theorem the polynomial $P(z) + \lambda m$ also has all its zeros in |z| < k where $k \ge 1$. Applying Theorem 1.1 to the polynomial $P(z) + \lambda m$ and noting that $D_{\alpha}(P(z) + \lambda m) = D_{\alpha}P(z) + \lambda mn$, Theorem 1.2 follows.

Proof of Theorem 1.3. If P(z) has a zero on |z|=k, then the theorem is trivial. So, we assume that P(z) has all its zeros in |z| < k, therefore $\min_{|z|=k} |P(z)| = m > 0$ and hence for every complex number γ with $|\gamma| < 1$, we have $|\gamma m z^n / k^n| < |P(z)|$, for |z| = k. It follows by Rouche's theorem that the polynomial $P(z) - \gamma m z^n / k^n$ of degree n has all its zeros in |z| < k, $k \le 1$. On applying Lemma 2.2 to $P(z) - \gamma m z^n / k^n$, we have for every complex number α with $|\alpha| \ge k$,

$$\left| D_{\alpha} \left(P(z) - \frac{\gamma m z^n}{k^n} \right) \right| \ge \frac{n}{1 + k^{\mu}} \left(|\alpha| - k^{\mu} \right) \left| P(z) - \frac{\gamma m z^n}{k^n} \right| \quad \text{for } |z| = 1.$$

Equivalently,

$$\left| z D_{\alpha} P(z) - \frac{\alpha \gamma m n z^n}{k^n} \right| \ge \frac{n \left(|\alpha| - k^{\mu} \right)}{1 + k^{\mu}} \left| P(z) - \frac{\gamma m z^n}{k^n} \right| \quad \text{for } |z| = 1. \tag{3.13}$$

Since by Laguerre's theorem (see [14, pp. 52]), the polynomial

$$D_{\alpha}\left(P(z) - \frac{\gamma m z^{n}}{k^{n}}\right) = D_{\alpha}P(z) - \frac{\alpha \gamma m n z^{n-1}}{k^{n}}$$

has all zeros in |z| < k for every complex number α with $|\alpha| \ge k$, therefore, for any complex β with $|\beta| < 1$, the polynomial

$$T(z) = zD_{\alpha}P(z) - \frac{\gamma mn\alpha z^{n}}{k^{n}} + n\beta \frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} \left\{ P(z) - \frac{\gamma mz^{n}}{k^{n}} \right\}$$

$$= \left\{ zD_{\alpha}P(z) + n\beta \frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} P(z) \right\} - \frac{\gamma mnz^{n}}{k^{n}} \left\{ \alpha + \beta \frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} \right\}$$

$$\neq 0 \quad \text{for } |z| \ge k. \tag{3.14}$$

Since $k \le 1$, we have $T(z) \ne 0$ for $|z| \ge 1$ also.

Now choosing the argument of γ in (3.14) suitably and letting $|\gamma| \to 1$, we get for |z| = 1 and $|\beta| < 1$,

$$\left| z D_{\alpha} P(z) + n \beta \frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} P(z) \right| \ge \left| \frac{mnz^n}{k^n} \left\{ \alpha + \beta \frac{|\alpha| - k^{\mu}}{1 + k^{\mu}} \right\} \right|,$$

or

$$\left|zD_{\alpha}P(z)+n\beta\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}P(z)\right|\geq \frac{mn}{k^{n}}\left|\alpha+\beta\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right| \quad \text{for } |z|=1.$$

For β , with $|\beta| = 1$, above inequality holds by continuity.

Acknowledgements

The work of the first author is supported by UGC under major research project scheme vide No. MRP-MAJOR-MATH-2013-29143.

References

- [1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55 (1988), 232–239.
- [2] A. Aziz and N. Ahemad, Integral mean estimates for polynomials whose zeros are with in a circle, Glas. Mate., 31 (1996), 229–237.
- [3] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Ineq. Appl., 1 (1998), 231–238.
- [4] A. Aziz and W. M. Shah, An integral mean estimate for polynomials, Indian J. Pure Appl. Math., 28 (1997), 1413–1419.
- [5] K. K. Dewan, N. Singh, A. Mir and A. Bhat, Some inequalities for the polar derivative of a polynomial, Southeast Asian Bull. Math., 34 (2010), 69–77.
- [6] N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543–546.
- [7] N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66 (1991), 29–35.
- [8] N. K. Govil and G. N. McTume, Some generalizations involving the polar derivative for an inequality of Paul Turan, Acta Math. Hungar., 104 (2004), 115–126.
- [9] E. Hille, Ananlytic Function Theory, Vol II, Ginn and Company, New York, Toranto, 1962.
- [10] V. K. Jain, Inequalities for a polynomial and its derivative, Proc. Indian Acad. Sci., 110 (2000), 137–146.
- [11] A. Liman, R. N. Mohapatra and W. M. Shah, Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, 6 (2012), 1199–1209.
- [12] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57–60.
- [13] M. A. Malik, An integral mean estimates for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281–284.
- [14] M. Marden, Geometry of Polynomials, 2nd Edition, Math. Surveys, No. 3, Amer. Math. Soc., 1966.
- [15] A. Mir and B. Dar, An integral mean estimate for polynomials, Int. J. Funct. Anal. Operat. Theory Appl., 6 (2014), 1–13.
- [16] Q. I. Rahman and G. Schmeisser, L^p -inequalities for polynomials, J. Approx. Theory, 53 (1988), 26–32.
- [17] W. Rudin, Real and Complex analysis, Tata McGraw Hill Publishing Company (reprinted in India), 1977.
- [18] W. M. Shah, A generalization of a theorem of Paul Turan, J. Ramanujan Math. Soc., 1 (1996), 67–72.
- [19] H. A. Soleiman MeZerji, M. A. Baseri, M. Bidkham and A. Zireh, Generalization of certain inequalities for a polynomial and its derivative, Lobacheveski J. Math., 33 (2012), 68–74.
- [20] A. E. Taylor, Introduction to Functional Analysis, John Wiley and Sons Inc., New York, 1958.
- [21] P. Turan, Über die ableitung von polynomen, Compositio Math., 7 (1939), 89–95.