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Abstract. We consider Hardy spaces with variable exponents defined by grand maxi-
mal function on the Heisenberg group. Then we introduce some equivalent character-
izations of variable Hardy spaces. By using atomic decomposition and molecular de-
composition we get the boundedness of singular integral operators on variable Hardy
spaces. We investigate the Littlewood-Paley characterization by virtue of the bound-
edness of singular integral operators.
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1 Introduction

Hardy spaces have a number of applications in harmonic analysis, as well as in control
theory and in scattering theory. The classical Hardy spaces Hp can be characterized by
maximal functions, atomic decomposition, and Littlewood-Paley decomposition (see [8,
18,22,34,36,43], etc.). We can see from [5,13,14,24,31,33,39,54], etc., that there are many
further studies about different kinds of Hardy spaces.

Variable Hardy spaces have been well studied by [11, 37, 41, 48, 49, 52, 55, 56], etc.. We
refer to [3, 10, 15–17, 46, 47, 50, 51], etc., for some other kinds of variable function spaces
and their applications. We can see that increasing attention has been paid to the study of
function spaces with variable exponent in harmonic analysis.

The Heisenberg group, denoted byHn, plays an important role in several branches of
mathematics, such as representation theory, partial differential equations, several com-
plex variables and number theory.

However, as far as we know there is no work investigating variable Hardy spaces on
the Heisenberg group. Inspired by the studies of Hardy spaces on some kinds of abstract
spaces e.g., [4, 6, 23, 25, 27, 30, 38, 45], we turn to consider characterizing variable Hardy
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spaces on the Heisenberg group. This is based on [37] but since the Heisenberg group
possesses a special geometry structure, it is a kind of non-Abelian groups and the Fourier
transform on it is operator-valued, we need more complicated calculations to extend the
classical theories on it. Furthermore, because of the properties of the left invariant vector
fields on the Heisenberg group, we have to use sub-Laplace operator L instead of the
classical Laplace operator ∆ on Rn and thus the heat kernel is quite different from the
one on the Euclidean spaces.

Firstly, we need to use the structure of dyadic cubes on the doubling metric space
given by Tuomas Hytönen and Anna Kairema (see [29]) to generalize some basic theory
about variable Lebesgue spaces introduced by David V. Cruz-Uribe and Alberto Fiorenza
(see [12]). Then we use a lot of analysis tools on stratified groups introduced by G. B.
Folland and E. M. Stein (see [19]) and some basic properties of Fourier transform on
the Heisenberg group (see the refrences [44] and [35]) to investigate the variable Hardy
spaces on it.

This paper is organized as follows. In Section 2, we recall some basic properties of the
Heisenberg group shown in [44] and [19] and then give the definition of variable Hardy
spaces and atoms on Hn. In Section 3, we first introduce the log-Hölder continuity and
decay condition for the variable exponent p(·). Then under these conditons we prove the
equivalence of Hardy norms given by maximal functions, i.e.,

‖ f‖
H

p(·)
Hn

∼‖M∗
ϕ f‖

L
p(·)
Hn

∼‖Mϕ f‖
L

p(·)
Hn

,

in Theorem 3.2. Then we characterize variable Hardy spaces by heat kernel in Theorem
3.3. In Section 4, we give the equivalent characterization of variable Hardy spaces by
atomic decomposition in Theorem 4.4 and Theorem 4.5 by virtue of the conclusions from
Section 3 and then we give the boundedness of singular integral operators in Theorem
4.7 and Theorem 4.9 as an application of atomic decomposition. Finally, in Section 5, by
the boundedness of singular integral operators we can give the Littlewood-Paley charac-
terization in Theorem 5.2.

2 Preliminary

In this section we first introduce some basic properties of the Heisenberg group (see [44]
and [19]) and then give the definition of variable Hardy spaces on the Heisenberg group.

We denote by Hn the Heisenberg group, which is a Lie group with the underlying
manifold Rn×Rn×R=Cn×R. The multiplication is given by

(x,y,t)(u,v,s)=
(

x+u,y+v,t+s+
1

2
(u·y−x·v)

)
,

where u·y=∑
n
j=1ujyj. H

n is an unimodular group, whose Haar measure coincides with

the Lebesgue measure of R2n+1. Different from Euclidean spaces, the dilations on Hn is
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defined by
δ(x,y,t)=(δx,δy,δ2t), δ>0,

and the homogeneous norm on the Heisenberg group is as follow:

|µ|= |(x,y,t)|=((|x|2+|y|2)2+16t2)
1
4 ,

which satisfies the trigonometric inequality |µν|≤ |µ|+|ν| and |µ−1|= |µ|. Q= 2n+2 is
the homogeneous dimension of Hn and the ball Br(u)= {v∈Hn : |u−1v|< r} has volume
CrQ. The distance of two sets A and B is defined by

dist(A,B)= inf
x∈A, y∈B

|x−1y|.

Note that from this definition, the distance of two points x and y can be written as
dist(x,y)= |x−1y| and the distance of a point x and a set A can be written as

dist(x,A)= inf
y∈A

|x−1y|.

Denote by Xi the left invariant vector fields ofHn, where i=1,2,··· ,2n+1. By the formula

Xj f (y)=
d

dt
f (y·etXj )

∣∣∣
t
=0

(see [19, pp. 20]), we can calculate that

Xj =
∂

∂xj
+

1

2
yj

∂

∂t
, Xj+n =

∂

∂yj
−

1

2
xj

∂

∂t
, X2n+1=

∂

∂t
, where j=1,2,··· ,n.

Let X=(X1,X2,··· ,X2n+1). The Schwartz class S onHn is defined by

S=
{

φ∈C∞(Hn) : (1+|x|)α |Xβφ|<∞ for all α∈N∪{0}, β∈ (N∪{0})2n+1, x∈Hn
}

.

Now we topologize S(Hn) by the semi–norms {pN}N∈N which is given by

pN(ϕ)≡ ∑
d(α)≤N

sup
x∈Hn

(1+|x|)N |Xα ϕ(x)|,

where N∈N∪{0} and d(α) stands for the homogeneous degree of α, i.e.,

d(α)=
2n

∑
j=1

αj+2α2n+1. (2.1)

The Schrödinger representation πλ of Hn is defined by

πλ(x,y,t)ϕ(ξ)= eiλteiλ(x.ξ+ 1
2 x.y)ϕ(ξ+y), λ 6=0,



J. X. Fang and J. M. Zhao / Anal. Theory Appl., 32 (2016), pp. 242-271 245

where ϕ∈L2(Rn). For f ∈L1(Hn), the Fourier transform of f can be defined by

f̂ (λ)ϕ=
∫

Hn
f (x,y,t)πλ(x,y,t)ϕdxdydt.

Since the Schrödinger representations are irreducible unitary representations of Hn, we
can conclude that

|(πλ(x,y,t)ϕ,ψ)|≤‖ϕ‖2‖ψ‖2

it follows that

|( f̂ (λ)ϕ, ψ)|≤‖ϕ‖2‖ψ‖2‖ f‖1.

Hence the Fourier transform f̂ (λ) is a bounded operator and ‖ f̂ (λ)‖op≤‖ f‖1.
By Plancheral formula

‖ f‖2
2 =(2π)−n−1

∫

R

‖ f̂ (λ)‖2
HS|λ|

ndλ,

where ||·||HS denotes the Hilbert-Schmidt norm of the operator, we can extend the defi-
nition of the Fourier transform to all f ∈ L2(Hn). For all Schwartz class functions on Hn,
there holds the inversion formula for the group Fourier transform:

f (x,y,z)=(2π)−n−1
∫

R

tr(πλ(x,y,t)∗ f̂ (λ))|λ|ndλ.

As usual, the convolution of measurable functions f and g onHn is defined by

f ∗g(x)=
∫

Hn
f (y)g(y−1x)dy=

∫

Hn
f (xy−1)g(y)dy.

Write

f j(x)≡2(2n+2)j f (2jx).

Then it is easy to calculate that Fourier transform satisfies

1) f̂ ∗g(λ)= f̂ (λ)ĝ(λ),

2) f̂ j(λ)= f̂ (2−2jλ).

The function p(·) :Hn → (0,∞) is called the variable exponent. For a measurable subset
E⊂Hn, we write

p+(E)≡sup
x∈E

p(x), p−(E)≡ inf
x∈E

p(x).

We abbreviate p+(Hn) and p−(Hn) to p+ and p− respectively, and in this paper, if there
is no additional description, we always assume that

0< p−≤ p+<∞. (2.2)
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For a measurable function f , like [12, 37], etc., we define

‖ f‖
L

p(·)
Hn

≡ inf
{

λ>0 :
∫

Hn

( | f (x)|

λ

)p(x)
dx≤1

}
.

The symbol A.B indicates the inequality A≤CB for some constant C and A∼B stand
for A.B.A.

Denote by S′(Hn) the dual space of S(Hn), as usual we call S′(Hn) the space of tem-
pered distributions onHn. Define

FN ≡{ϕ∈S(Hn) : pN(ϕ)≤1}.

The Hardy-Littlewood maximal function is defined by

M f (x)=sup
{ 1

|B|

∫

B
| f |dµ : B is a ball, x∈B

}

and the centered maximal function is defined by

Mc f (x)=sup
{ 1

|Br(x)|

∫

Br(x)
| f |dµ : r>0

}
.

By [9, pp. 625] they are equivalent.
For ϕ∈S(Hn), define the maximal function with respect to ϕ by

Mϕ f (x)≡sup
j∈Z

| f ∗ϕj(x)|.

Like [37], we give the definition of variable Hardy spaces and variable atomic Hardy
spaces as follows.

Definition 2.1. Choose N to be a large integer. The grand maximal function is defined by

M f (x)≡ sup
t>0,ψ∈FN

| f ∗[t−nψ(t−1·)](x)|,

where f ∈S′(Hn).
We call Hp(·)(Hn)≡{ f ∈S′(Hn) : ‖M f‖

L
p(·)
Hn

<∞} the variable Hardy spaces, which is

equipped with the norm ‖ f‖
H

p(·)
Hn

≡‖M f‖
L

p(·)
Hn

.

Definition 2.2 ((p(·),q)−Atom). Suppose p(·) : Hn → (0,∞), 0< p− ≤ p+≤∞ and q≥ 1.
Fix an integer D≥Dp(·)≡min{λ∈N∪{0} : (2n+λ+3)p− >2n+2}. we call the function
a on Hn a (p(·),q)−atom if there exists a ball B such that

(a1) supp(a)⊂B,

(a2) ‖a‖q ≤
|B|

1
q

‖χB‖L
p(·)
Hn

,

(a3)
∫

Hn
a(x)xαdx=0 f or all α s.t. d(α)≤D.

Denote the set of all such pairs (a,B) by A(p(·),q).
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Definition 2.3. (A({kj}
∞
j=1,{Bj}

∞
j=1) and H

p(·),q
atom (Hn) ) Let p≡min(p−,1). For nonnegative

number sequences {kj}
∞
j=1 and ball sequences {Bj}

∞
j=1, we define

A({kj}
∞
j=1,{Bj}

∞
j=1)≡ inf

{
λ>0 :

∫

Hn

{ ∞

∑
j=1

( kjχBj
(x)

λ‖χBj
‖

L
p(·)
Hn

)p} p(x)
p

dx≤1
}

. (2.3)

We write H
p(·),q
atom (Hn) to denote the set of all functions f ∈ S′(Hn) which can be decom-

posed as

f =
∞

∑
j=1

kjaj in S
′(Hn), (2.4)

where {kj}
∞
j=1 is a sequence of nonnegative numbers, {(aj,Bj)}

∞
j=1 ⊂ A(p(·),q) and

A({kj}
∞
j=1,{Bj}

∞
j=1) is finite. We define

‖ f‖
H

p(·),q
atom (Hn)

≡ infA({kj}
∞
j=1,{Bj}

∞
j=1),

where the infimum is taken over all admissible expressions as in (2.4).

3 Characterization by maximal functions and heat kernel

In this section, we give some basic properties of variable Lebesgue space and prove the
equivalence of variable Hardy spaces characterized by a series of maximal functions on
the Heisenberg group when the function ϕ in the definition of Mϕ is a radial function,
i.e., ϕ(z1,t)= ϕ(z2,t) as long as |z1|= |z2|.

Recall that for a measurable function f ,

‖ f‖
L

p(·)
Hn

≡ inf
{

λ>0 :
∫

Hn

( | f (x)|

λ

)p(x)
dx≤1

}
.

If 0< ι≤ p=min(p−,1), there holds the following properties:

1. (Positivity) ‖ f‖
L

p(·)
Hn

≥0, and ‖ f‖
L

p(·)
Hn

=0⇔ f ≡0.

2. (Homogeneity) ‖c f‖
L

p(·)
Hn

= |c|·‖ f‖
L

p(·)
Hn

for c∈C.

3. (The ι-triangle inequality) ‖ f +g‖ι

L
p(·)
Hn

≤‖ f‖ι

L
p(·)
Hn

+‖g‖ι

L
p(·)
Hn

.

Since this is an analogue of the Rn case, we only note that the ι-triangle inequality
follows from the following identity: For 0< p− < 1, choosing ι such that 0< ι≤ p−, we
have

‖ f ι‖
1
ι

L
p(·)

ι
Hn

= inf
{

λ
1
ι >0 :

∫

Hn

( | f ι(x)|

λ

) p(x)
ι

dx≤1
}
=‖ f‖

L
p(·)
Hn

. (3.1)
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Like [37], throughout this paper, we suppose p(·) have the following conditions:

|p(x)−p(y)|.
1

−log(|x−1y|)
for |x−1y|≤

1

2
(log−Hölder continuity), (3.2a)

|p(x)−p(y)|.
1

log(e+|x|)
for |y|≥ |x| (decay condition). (3.2b)

Note that p∞ ≡ lim
x→∞

p(x) exists in view of (3.2b). The assumptions p+ < ∞ and (3.2) is

followed by

|p(x)−p(y)|.
1

log(e+ 1
|x−1y|

)
for all x,y∈Hn. (3.3)

Observe that (3.2b) is equivalent to the following estimate:

|p(x)−p∞ |.
1

log(e+|x|)
for all x∈Hn, (3.4)

which is equivalent to |log[(e+|x|)(p(x)−p∞)]|.1, i.e.,

(e+|x|)p(x)

(e+|x|)p∞
∼1 for all x∈Hn. (3.5)

Now we show some conclusions from [19].

Theorem 3.1 (Stratified Mean Value Theorem). Let G be a stratified group. Then there exist
C,b>0 such that the following inequality holds for all f ∈C1(G) and all x,y∈G,

| f (xy)− f (x)|≤C|y| sup
|z|≤b|y|, 1≤j≤ν

|Xj f (xz)|.

We note that ν=2n when G is the Heisenberg group.

Corollary 3.1 (see [19]). If f ∈Ck+1 then

| f (xy)−Px(y)|≤C′
k|y|

k+1 sup
|z|≤bk+1|y|, d(I)=k+1

|X I f (xz)|,

where Px is the left Taylor polynomial of f at x of homogeneous degree k, b is as in
Theorem 3.1.

The following lemma is an analogue of [21, pp. 466].

Lemma 3.1. Suppose that a,b∈Hn, M,N>0 and L is a nonnegative integer. φµ and φν are two
functions on the Heisenberg group satisfying the following conditions:

|Xαφµ(x)|.
2µ(2n+2)+µL

(1+2µ|x−1
µ x|)M

for all α with d(α)= L,

|φν(x)|.
2ν(2n+2)

(1+2ν|x−1
ν x|)N

,
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and ∫

Hn
Xβφν(x)dx=0 for all β with d(β)≤ L−1,

where xµ,xν∈Hn and d(·) is the homogeneous degree which we have introduced in (2.1).
Then for N>M+L+2n+2 and ν≥µ, we have

∣∣∣
∫

Hn
φµ(x)φν(x)dx

∣∣∣. 2µ(2n+2)−(ν−µ)L

(1+2µ|x−1
ν xµ|)M

.

Proof. Denote the left Taylor polynomial of φµ at xν of homogeneous degree L−1 by P.
By Corollary 3.1, we get

|φµ(x)−P(x)|. |x−1
ν x|L sup

|x−1
ν y|≤bL|x−1

ν x|, d(I)=L

|X I φµ(y)|.

Then it is followed by

∣∣∣
∫

Hn
φµ(x)φν(x)dx

∣∣∣≤
∫

Hn
|φµ(x)−P(x)||φν(x)|dx

.
∫

Hn

|x−1
ν x|L2µ(2n+2)+µL

(1+2µ|x−1
µ y|)M

·
2ν(2n+2)

(1+2ν|x−1
ν x|)N

dx.

The inequality

1

1+2µ|x−1
µ y|

−
1

1+2µ|x−1
ν xµ|

≤
2µ(|x−1

ν xµ|−|x−1
µ y|)

1+2µ|x−1
ν xµ|

≤
2µ|x−1

ν y|

1+2µ|x−1
ν xµ|

≤
2µbL|x−1

ν x|

1+2µ|x−1
ν xµ|

.
2ν|x−1

ν x|

1+2µ|x−1
ν xµ|

implies that
1

1+2µ|x−1
µ y|

.
1+2ν|x−1

ν x|

1+2µ|x−1
ν xµ|

,

which indicates that

∣∣∣
∫

Hn
φµ(x)φν(x)dx

∣∣∣. 2µ(2n+2)−(ν−µ)L2ν(2n+2)

(1+2µ|x−1
ν xµ|)M

·
∫

Hn

2νL|x|L

(1+2ν|x|)N−M
dx.

Denote the surface area of the ball Br(0)= {x∈Hn : |x|< r} by ωH
n

2n+1(r) and write ωH
n

2n+1

short for ωH
n

2n+1(1). Let us calculate ωH
n

2n+1(r):

ωH
n

2n+1(r)=2
∫ r2

0
ω2n−1 ·(r

4−16t2)
2n−1

4 dt=2
∫ π

2

0
ω2n−1 ·(r

4 cos2 x)
2n−1

4 d
( r2sinx

4

)

=
1

2
ω2n−1 ·r

2n+1
∫ π

2

0
cos

2n−1
2 xdsinx,
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where ω2n−1 denotes the surface area of the unit ball on R2n. Thus, we have ωH
n

2n+1(r)∼

r2n+1.

2ν(2n+2)
∫

Hn

2νL|x|L

(1+2ν|x|)N−M
dx=

∫

Hn

|x|L

(1+|x|)N−M
dx=ωH

n

2n+1

∫ ∞

0

rL

(1+r)N−M
r2n+1dx<∞,

since N−M> L+2n+2.

Consequently, we have

∣∣∣
∫

Hn
φµ(x)φν(x)dx

∣∣∣. 2µ(2n+2)−(ν−µ)L

(1+2µ|x−1
ν xµ|)M

.

Thus, we complete the proof.

Lemma 3.2 (Local Reproducing Formula). Choose a radial function ϕ0∈C∞
c (Hn) with nonzero

integral, and let

ϕ(x)= ϕ0(x)−2−(2n+2)ϕ0

(1

2
x
)

.

Then for any given integer Lψ ≥ 0 there exist ψ0,ψ∈C∞
c (Hn) so that

∫
Hn xαψ(x)dx= 0 for all

multi-indices α with d(α)≤ Lψ and

∞

∑
j=0

ψj∗ϕj =
∞

∑
j=0

ϕj∗ψj =δ,

where δ is the dirac delta function.

Since this can be proven in a similar way to [40, Theorem 1.6] with a more compli-
cated calculation, we omit the details. We only note that by [35, Section 4], the Fourier
transform of a radial Schwartz function f on Hn is diagonal on the Hermite basis for
L2(Rn), which means that f ∗g= g∗ f whenever f and g are radial functions onHn.

Lemma 3.3. For a function ϕ on Hn, we define its radial decreasing dominating function by

Φ(x)= sup
|y|≥|x|

|ϕ(y)|.

If Φ(x)∈ L1(Hn), then there exists a constant Cn such that for ∀ f ∈ Lp(Hn) and ∀x ∈Hn we
have

sup
r∈Z

|( f ∗ϕr)(x)|≤Cn‖Φ‖1 M f (x),

where M is the Hardy-Littlewood maximal function.
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Proof. Write Φ0(s)=Φ(|x|)=Φ(x), where (s= |x|). Then

‖Φ‖1=
∫ ∞

0
ωH

n

2n+1Φ0(s)s
2n+1ds=

ωH
n

2n+1

r2n+2

∫ ∞

0
Φ0

( s

r

)
s2n+1ds

=
ωH

n

2n+1

r2n+2

∞

∑
k=−∞

∫ 2k

2k−1
Φ0

( s

r

)
s2n+1ds

≥ωH
n

2n+1

∞

∑
k=−∞

Φ0

(2k

r

)2(2n+2)k−2(2n+2)(k−1)

(2n+2)r2n+2
,

where ωH
n

2n+1 has the same definition as in the proof of Lemma 3.1. It follows that

(| f |∗Φr)(x)=
∞

∑
k=−∞

1

r2n+2

∫

2k<|y|≤2k+1
| f (xy−1)|Φ

( y

r

)
dy

≤
∞

∑
k=−∞

1

r2n+2
Φ0

(2k

r

)∫

2k<|y|≤2k+1
| f (xy−1)|dy

.M f (x)
∞

∑
k=−∞

Φ0

(2k

r

)2(2n+2)k−2(2n+2)(k−1)

(2n+2)r2n+2
.‖Φ‖1 M f (x).

Then by the inequality |( f ∗ϕr)(x)|≤(| f |∗|ϕr |)(x)≤(| f |∗Φr )(x), we get the desired con-
clusion.

Given an integer L≫1 and a radial function ϕ∈S(Hn) such that
∫
Hn ϕ(x)dx 6=0. We

write

M∗
ϕ f (x)=M∗

ϕ,L f (x)≡sup
j∈Z

sup
y∈Hn

| f ∗ϕj(y)|

(1+4j|x−1y|2)L
.

Lemma 3.4. If f ∈S′(Hn), 0< θ<1 and ϕ is a radial function in S(Hn) with nonzero integral,
then there exists Lθ such that for all L≥ Lθ, we have

M∗
ϕ,L f (x).M

[
sup
k∈Z

| f ∗ϕk|
θ
]
(x)

1
θ =M

[
(Mϕ f )θ

]
(x)

1
θ .

Proof. Let L≫1. By local reproducing formula (Lemma 3.2), there exist ψ0,ψ∈S(Hn) such
that

ϕ∗ψ0+
∞

∑
k=1

(ϕk−ϕk−1)∗ψk =δ,

and ∫

Hn
xαψ(x)dx=0 for all α with d(α)≤2n+3L+4.

Then, by dilation, we have ϕj∗ψ0j
+∑

∞
k=j+1(ϕk−ϕk−1)∗ψk = δ. Combining this formula

with the triangle inequality, we get

|( f ∗ϕj)(y)|

(1+4j|x−1y|2)L
≤

| f ∗ϕj∗ψ0j
∗ϕj(y)|

(1+4j|x−1y|2)L
+

∞

∑
k=j+1

| f ∗(ϕk−ϕk−1)∗ψk∗ϕj(y)|

(1+4j|x−1y|2)L
. (3.6)
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We estimate each term of the right hand side; when k≥ j+1, we have

| f ∗(ϕk−ϕk−1)∗ψk∗ϕj(y)|

(1+4j|x−1y|2)L
≤
∫

Hn

|[ f ∗(ϕk−ϕk−1)(z)][ψk∗ϕj(z
−1y)]|

(1+4j|x−1y|2)L
dz.

By applying Lemma 3.1, we have

|ψk∗ϕj(z
−1y)|≤2(2n+2)j−3(k−j)L(1+4j|z−1y|2)−L.

Then it implies that

| f ∗(ϕk−ϕk−1)∗ψk∗ϕj(y)|

(1+4j|x−1y|2)L

.
∫

Hn

2(2n+2)j−3(k−j)L| f ∗(ϕk−ϕk−1)(z)|

(1+4j|z−1y|2)L(1+4j|x−1y|2)L
dz

≤
∫

Hn

2(2n+2)j−3(k−j)L| f ∗(ϕk−ϕk−1)(z)|

(1+4j|x−1z|2)L
dz

.M∗
ϕ,L f (x)1−θ

∫

Hn

2(2n+2)j−3(k−j)θL

(1+4j|x−1z|2)θL
(| f ∗ϕk(z)|

θ+| f ∗ϕk−1(z)|
θ)dz

and by a similar discussion we have

| f ∗ϕj∗ψ0j
∗ϕj(y)|

(1+4j|x−1y|2)L
.M∗

ϕ,L f (x)1−θ
∫

Hn

2(2n+2)j

(1+4j|x−1z|2)θL
| f ∗ϕj(z)|

θdz.

Now we substitute the above inequality into (3.6), we can deduce that

| f ∗ϕj(y)|

(1+4j|x−1y|2)L
.M∗

ϕ,L f (x)1−θ
∞

∑
k=j

2−3(k−j)θL
∫

Hn

2(2n+2)j| f ∗ϕk(z)|
θ

(1+4j|x−1z|2)θL
dz,

which indicates that

M∗
ϕ,L f (x).M∗

ϕ,L f (x)1−θsup
j∈Z

∞

∑
k=j

2−3(k−j)θL
∫

Hn

2(2n+2)j| f ∗ϕk(z)|
θ

(1+4j|x−1z|2)θL
dz.

Hence we get

M∗
ϕ,L f (x)θ .sup

j∈Z

∞

∑
k=j

2−3(k−j)θL
∫

Hn

2(2n+2)j| f ∗ϕk(z)|
θ

(1+4j|x−1z|2)θL
dz.

Since the function 2(2n+2)j

(1+4j|x|2)θL defined onHn can be regarded as the radial decreasing dom-

inating function of itself, by Lemma 3.3 it follows that

∫

Hn

2(2n+2)j| f ∗ϕk(z)|
θ

(1+4j|x−1z|2)θL
dz≤

∥∥∥ 2(2n+2)j

(1+4j|·|2)θL

∥∥∥
1
M[( f ∗ϕk)

θ](x)

=
∥∥∥ 1

(1+|·|2)θL

∥∥∥
1
M[( f ∗ϕk)

θ](x).M[( f ∗ϕk)
θ](x).
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Thus, we have M∗
ϕ,L f (x)θ .M[sup

k∈Z

( f ∗ϕk)
θ ](x).

Now we turn to show the equivalence of Hardy norms given by different kinds of
maximal functions in the following theorem.

Theorem 3.2. For an radial function ϕ∈S(Hn) with nonzero integral, we have

‖ f‖
H

p(·)
Hn

∼‖M∗
ϕ f‖

L
p(·)
Hn

∼‖Mϕ f‖
L

p(·)
Hn

for all f ∈S′(Hn), where we choose N in the definition of M f and L in the definition of M∗
ϕ to be

large enough.

Proof. We know that M is a strong (p, p) operator when p>1. Since from (3.1) we have

‖ f ι‖
1
ι

L
p(·)

ι
Hn

=‖ f‖
L

p(·)
Hn

,

combining with Lemma 3.4, if the number θ is chosen small enough we have

∥∥∥M∗
ϕ f
∥∥∥

L
p(·)
Hn

.
∥∥∥M

[
(Mϕ f )θ

]
(·)

1
θ

∥∥∥
L

p(·)
Hn

=
∥∥∥M

[
(Mϕ f )θ

]∥∥∥
1
θ

L
p(·)

θ
Hn

.
∥∥∥(Mϕ f )θ

∥∥∥
1
θ

L
p(·)

θ
Hn

=
∥∥Mϕ f

∥∥
L

p(·)
Hn

.

By the definition of these maximal functions, we can conclude that M f ≥Mϕ f and M∗
ϕ f ≥

Mϕ f . Hence, we have ∥∥∥M∗
ϕ f
∥∥∥

L
p(·)
Hn

∼
∥∥Mϕ f

∥∥
L

p(·)
Hn

.‖ f‖
H

p(·)
Hn

.

Then we only need to show that ‖ f‖
H

p(·)
Hn

.
∥∥∥M∗

ϕ f
∥∥∥

L
p(·)
Hn

. Again, we apply Lemma 3.2.

Choose ψ0,ψ∈S(Hn) to be as in the previous lemma and let τ∈S(Hn) satisfy pN(τ)≤1.
Then

f ∗τj = f ∗ϕj∗ψ0j
∗τj+

∞

∑
k=j+1

f ∗(ϕk−ϕk−1)∗ψk∗τj for all j∈Z.

When k≥ j, we have

| f ∗ϕk∗ψk∗τj|≤M∗
ϕ f (x)

∫

Hn
|ψk∗τj(y

−1x)|(1+4k|x−1y|2)Ldy

≤M∗
ϕ f (x)

∫

Hn
|ψk∗τj(y

−1x)|(4k−j+4k|x−1y|2)Ldy

≤22(k−j)L M∗
ϕ f (x)

∫

Hn
|ψk∗τj(y

−1x)|(1+4j|x−1y|2)Ldy.
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By applying Lemma 3.1, we have

|ψk∗τj(y
−1x)|.

2(2n+2)j−3(k−j)L

(1+2j|y−1x|)2n+3L+3
for all k≥ j+1,

and

|ψ0j
∗τj(y

−1x)|.
2(2n+2)j

(1+2j|y−1x|)2n+3L+3
.

Since |y−1x|= |x−1y|, it follows that

| f ∗τj(x)|.
∞

∑
k=j

2(2n+2)j−(k−j)LM∗
ϕ f (x)

∫

Hn
(1+2j|x−1y|)−2n−L−3dy.M∗

ϕ f (x).

Hence by the arbitrariness of τ and j we obtain M f .M∗
ϕ f (x).

From Theorem 3.2, we can easily conclude the following corollary.

Corollary 3.2. Suppose ϕ∈S(Hn) is a radial function with nonzero integral. Write

Mϕ f (x)≡sup
s>0

∣∣∣s−2n−2 f ∗ϕ(s−1·)
∣∣∣.

We define

‖ f‖
H

p(·)
ϕ,∗

≡‖Mϕ f‖
L

p(·)
Hn

, f ∈S
′(Hn).

Then ‖ f‖
H

p(·)
ϕ,∗

∼‖ f‖
H

p(·)
Hn

, since Mϕ f ≤Mϕ f ≤M f and ‖ f‖
H

p(·)
Hn

∼
∥∥Mϕ f

∥∥
L

p(·)
Hn

, when N in the

definition of M f is sufficiently large.

Now we turn to consider the characterization of variable Hardy spaces by heat kernel.
Write ϕj(x)=2(2n+2)jϕ(2jx) as before. The sub–Laplacian operator L of Hn is defined by

L=−∑
2n
j=1 X2

j , where Xj denote the left invariant vector fields on the Heisenberg group

introduced in Section 2.
The heat kernel onHn is such a function that satisfies the heat equation:

∂hs(x,y,t)

∂s
=−Lhs(x,y,t), s>0, (x,y,t)∈Hn,

h0(x,y,t)=δ.

Theorem 3.3. Suppose p(·) satisfies (2.2), (3.2) and (3.2b). Let f ∈S′(Hn). Then

∥∥∥∥sup
s>0

∣∣∣e−sL f
∣∣∣
∥∥∥∥

L
p(·)
Hn

∼‖ f‖
H

p(·)
Hn

.
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Proof. By [53, Theorem 3.2] or [42, pp. 399] we know that the heat kernel of Hn can be
written as

hs(z,t)=
1

(2π)(4π)n

∫

R

( |λ|

sinh|λ|s

)n
exp

{
−
|λ||z|2

4
coth|λ|s−iλ·t

}
dλ, where s>0.

Write h short for h1. From this expression of heat kernel, we can see that hs is a radial
function onHn. By [19, Proposition 1.68(iv)] we know that hs is the dilation of h, i.e.,

hs(x)=
1

s2n+2
h
(1

s
x
)

,

where s> 0, and by [19, Proposition 1.74] we know that h is a Schwartz function. Now
the heat semigroup {e−sL}s>0 for Hn can be given by e−sL f (x)= [ f ∗hs ](x). By Corollary
3.2, we have ∥∥∥∥sup

s>0

∣∣∣e−sL f
∣∣∣
∥∥∥∥

L
p(·)
Hn

∼‖ f‖
H

p(·)
Hn

.

Thus, we complete the proof.

4 Atomic decompositions and some applications

Before considering atomic decompositions, we need to give some further properties of
variable Lebesgue space onHn.

Since the proofs of the following Hölder inequality and its corollary are similar to the
corresponding ones on Euclidean spaces [12], we omit their proof.

Theorem 4.1 (Hölder Inequality). Let p′(·) be the conjugate exponent of p(·), i.e., there holds
1

p(x)
+ 1

p′(x)
=1 for all x∈Hn and p(·), p′(·)≥1. Then for all f ∈L

p(·)
Hn and g∈L

p′(·)
Hn , we have

∫

Hn
| f (x)g(x)|dx.‖ f‖

L
p(·)
Hn

‖g‖
L

p′(·)
Hn

.

Corollary 4.1. Suppose 1
p(x)

= 1
q(x)

+ 1
r(x)

, for all x ∈Hn, where p(·), q(·) and r(·) satisfy

p(·),q(·),r(·)≥1. Then for all f ∈L
p(·)
Hn and g∈L

q(·)
Hn , there holds the following inequality

‖ f g‖
L

p(·)
Hn

.‖ f‖
L

q(·)
Hn

‖g‖
L

r(·)
Hn

.

Lemma 4.1. Assume that the function p(·) satisfying (2.2), (3.2) and (3.2b).
1. For all balls B=Br(z)∈Hn with |B|≤1, we have

|B|
1

p−(B) ∼|B|
1

p+(B) ∼|B|
1

p(z) ∼‖χB‖L
p(·)
Hn

. (4.1)

2. For all balls B=Br(z)∈Hn with |B|≥1, we have

‖χB‖L
p(·)
Hn

∼|B|
1

p∞ . (4.2)
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Proof. Following [12, Lemma 3.24] with a more complicated calculation we know that
given any ball B and x∈B,

|B|p(x). |B|p+(B), |B|p−(B). |B|p(x).

If |B|≤1, then the inverse inequalities hold, which means that

|B|p(x)∼|B|p+(B)∼|B|p−(B)∼|B|p(z).

Then it follows that

∫

Hn

(
χB(x)

|B|
1

p(z)

)p(x)

dx=
∫

B
|B|

− p(x)
p(z) dx∼

∫

B
|B|−1dx=1.

Following from [12, Proposition 2.21], we have

∫

Hn


 | f (x)|

‖ f‖
L

p(·)
Hn




p(x)

dx=1

whenever f∈Lp(·)(Hn) and ‖ f‖
L

p(·)
Hn

>0. Then we obtain the equivalence relationship (4.1).

When |B|≥1, by the dyadic cubes given by [29, Theorem 2.2], Vitali covering Lemma
and Zorn’s Lemma, we can easily get

‖χB‖L
p(·)
Hn

∼‖χB‖p(·),(3Bj)
∼|B|

1
p∞

for the case p(·) :Hn → (1,∞) satisfying (3.4) with a similar discussion to [26, Theorem
2.4]. Then we can get the same conclusion by (3.1) for p(·) satisfying (2.2) and (3.4).

By Definition 2.1, Corollary 4.1 and Lemma 4.1 we know that ‖a‖
L

p(·)
Hn

. 1 whenever

(a,B)∈A(p(·),q). This conclusion can be extended as follows:

Proposition 4.1. If q> 1 and p(·) is a function satisfying (2.2), (3.2) and (3.2b), then, for
all (a,B)∈A(p(·),q), we have

‖a‖
H

p(·)
Hn

.1.

Proof. Suppose ϕ∈S(Hn)\{0} is a nonnegative radial function with the properties that
the value of ϕ(x) only depends on |x| and ϕ(x)≤ ϕ(y) whenever |x|≥ |y| and supp ϕ⊂
B1(0). Write B=Br(z). Define another variable exponent q̃(·) by

1

p(x)
=

1

q
+

1

q̃(x)
(x∈Hn).
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Then a direct deduction follows from [12, Proposition 2.3(5)] is that q̃(·) also satisfies (3.2)
and (3.2b).

By Lemma 3.3 we have Mϕa(x). ‖ϕ‖1 Ma(x). Since M is a strong (p, p) operator
when p>1, it follows that

∥∥∥(Mϕa)χB2r(z)

∥∥∥
L

p(·)
Hn

.‖Ma‖q

∥∥∥χB2r(z)

∥∥∥
L

q̃(·)
Hn

.‖a‖q

∥∥∥χB2r(z)

∥∥∥
L

q̃(·)
Hn

≤

|Br(z)|
1
q

∥∥∥χB2r(z)

∥∥∥
L

q̃(·)
Hn∥∥∥χBr(z)

∥∥∥
L

p(·)
Hn

.

By applying Lemma 4.1, we have

∥∥∥(Mϕa)χB2r(z)

∥∥∥
L

p(·)
Hn

.1.

Now we show that ‖(Mϕa)χHn\B2r(z)‖L
p(·)
Hn

.1. Let x /∈B2r(z). Since supp(ϕj( · x−1))⊂

B2−j(x), if supp(a)∩B2−j (x)=∅, then |ϕj∗a(x)|=0. If supp(a)∩B2−j(x) 6=∅, then |z−1x|≤

2−j+r and r<2−j. Let P(·) be the left Taylor polynomial of ϕj(x−1 · ) at z of homogeneous
degree D, where D is picked in the same way as in Definition 2.2. Suppose y∈Br(z), then

|ϕj(x−1y)−P(y)|.|z−1y|D+1 sup
d(I)=D+1,|z−1u|≤bD+1|z−1y|

|X I ϕj(x−1z−1u)|

.2j(2n+D+3)|z−1y|D+1.
rD+1

|z−1x|2n+D+3
.

By applying conditions (a2) and (a3) in Definition 2.2 as well as the Hölder inequality,
we have

|a∗ϕj(x)|=

∣∣∣∣
∫

Br(z)
a(y)

[
ϕj(x−1y)−P(y)

]
dy

∣∣∣∣.
rD+1

|z−1x|2n+D+3
‖a‖1

≤
rD+1

|z−1x|2n+D+3

∥∥∥χBr(z)

∥∥∥
q′
‖a‖q=

rD+1

|z−1x|2n+D+3
|Br(z)|

1− 1
q ‖a‖q

.
r2n+D+3

|z−1x|2n+D+3

∥∥∥χBr(z)

∥∥∥
−1

L
p(·)
Hn

.

We write

θ=
2n+D+3

2n+2
>

1

p−
.

Since

MχB2r(z)(x)∼McχB2r(z)(x)≥
1

|B|z−1x|+2r(z)|

∫

Hn
χB2r(z)(y)dy=

|2r|2n+2

(|z−1x|+2r)2n+2
,
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we obtain

r−(2n+D+3)(MχB2r(z)(x))θ &
1

(|z−1x|+2r)2n+D+3
&

1

|z−1x|2n+D+3
.

Hence we have
∥∥∥|z−1 ·|−(2n+D+3)χHn\B2r(z)

∥∥∥
L

p(·)
Hn

.r−(2n+D+3)
∥∥∥(MχB2r(z))

θ
∥∥∥

L
p(·)
Hn

= r−(2n+D+3)
∥∥∥MχB2r(z)

∥∥∥
θ

L
θp(·)
Hn

.r−(2n+D+3)
∥∥∥χB2r(z)

∥∥∥
θ

L
θp(·)
Hn

= r−(2n+D+3)
∥∥∥χB2r(z)

∥∥∥
L

p(·)
Hn

.

Thus we can conclude that

∥∥∥(Mϕa)χHn\B2r(z)

∥∥∥
L

p(·)
Hn

.

∥∥∥∥
r2n+D+3

|z−1 ·|2n+D+3

∥∥∥χBr(z)

∥∥∥
−1

L
p(·)
Hn

χHn\B2r(z)

∥∥∥∥
L

p(·)
Hn

=r2n+D+3
∥∥∥χBr(z)

∥∥∥
−1

L
p(·)
Hn

∥∥∥|z−1 ·|−(2n+D+3)χHn\B2r(z)

∥∥∥
L

p(·)
Hn

.1.

Hence we get the desired conclusion.

Theorem 4.2. Suppose that p(·) is a function onHn satisfying (3.2), (3.2b) and 1<p−≤p+<∞.
Then for every r, 1< r<∞, and sequence of measurable functions { fk}

∞
k=1 we have

∥∥∥∥∥∥

(
∞

∑
k=1

(M fk)
r

) 1
r

∥∥∥∥∥∥
L

p(·)
Hn

.

∥∥∥∥∥∥

(
∞

∑
k=1

| fk|
r

) 1
r

∥∥∥∥∥∥
L

p(·)
Hn

.

Proof. Denote by Ap the Muckenhoupt Ap weights as in [29, pp. 19]. By [29, Proposition
7.13], for each p0 > 1 and for all w ∈ Ap0 , the Hardy-Littlewood maximal function is a
bounded operator on weighted Lebesgue spaces on the Heisenberg group, i.e.,

∫

Hn
M f (x)p0 w(x)dx.

∫

Hn
f (x)p0 w(x)dx.

Then by virtue of the dyadic cubes given by [29, Theorem 2.2], combining the bound-
edness of Hardy-Littlewood maximal functions on Lp(·)(Hn) when p− > 1 introduced
by [1, Theorem 1.7] with a similar discussion to [12, Corollary 5.34], we get the desired
conclusion.

We have defined in Definition 2.3 the function spaces H
p(·),q
atom (Hn). Now we turn to

define the function spaces H
p(·),q
atom,∗(H

n).
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Definition 4.1. (H
p(·),q
atom,∗(H

n)) Let p(·) :Hn→(0,∞), 0<p−≤p+<q≤∞ and q≥1. Then f ∈

S′(Hn) is in H
p(·),q
atom,∗(H

n) if and only if there exist nonnegative number sequences
{

kj

}∞

j=1

and {(aj,Bj)}
∞
j=1⊂A(p(·),q) such that

f =
∞

∑
j=1

kjaj in S
′(Hn) and that

∞

∑
j=1

∫

Bj




kj∥∥∥χBj

∥∥∥
L

p(·)
Hn




p(x)

dx<∞.

Define

A
∗(
{

kj

}∞

j=1
,
{

Bj

}∞

j=1
)≡ inf





λ>0 :
∞

∑
j=1

∫

Bj




kj

λ
∥∥∥χBj

∥∥∥
L

p(·)
Hn




p(x)

dx≤1





. (4.3)

For sequences of nonnegative numbers
{

kj

}∞

j=1
, measurable subsets

{
Ej

}∞

j=1
and balls

{
Bj

}∞

j=1
, define

A(
{

kj

}∞

j=1
,
{

Ej

}∞

j=1
,
{

Bj

}∞

j=1
)≡ inf





λ>0 :
∫

Hn





∞

∑
j=1




kjχEj
(x)

λ
∥∥∥χBj

∥∥∥
L

p(·)
Hn




p


p(·)
p

dx≤1





. (4.4)

Remark 4.1. 1. It follows from the embedding ℓ
p →֒ ℓ1 that

A
∗(
{

kj

}∞

j=1
,
{

Bj

}∞

j=1
)≤A(

{
kj

}∞

j=1
,
{

Bj

}∞

j=1
). (4.5)

2. Let (a,B)∈A(p(·),q). Then by (4.5), we have

‖a‖
H

p(·),q
atom,∗(H

n)
≤‖a‖

H
p(·),q
atom (Hn)

≤1. (4.6)

3. Suppose f ∈Lq(Hn) is supported on a ball B and satisfies
∫

Hn
xα f (x)dx=0

for all d(α)≤D. Let

f̃ =
f |B|

1
q

‖ f‖q‖χB‖L
p(·)
Hn

.

Then by Definition 2.2 we have ( f̃ ,B)∈A(p(·),q) and hence it follows from (4.6) that

‖ f‖
H

p(·),q
atom,∗(H

n)
≤‖ f‖

H
p(·),q
atom (Hn)

≤
‖χB‖L

p(·)
Hn

|B|
1
q

‖ f‖q . (4.7)
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Before proving the equivalence of Hardy norms given by atomic decompositions, we
need to show the Calderón-Zygmund Decomposition on homogeneous group and some
related conclusions from [19]. Since Hn is a kind of homogeneous group, we can use
these them directly.

Theorem 4.3 (Calderón-Zygmund Decomposition). Let G be a homogeneous group. Suppose
f ∈S′(G) such that |{x :M(x)>α}|<∞ for all α>0. Set Ω= {x :M(x)>α}. Then f can be
decomposed as f = g+∑i bi with the following properties:
(1) Ω=

⋃∞
j=1 Bj,

(2) The balls 1
4γ Bj are disjoint,

(3) T2Bj∩Ωc=∅, but T3Bj∩Ωc 6=∅,
(4) There exists L∈N such that no point of Ω lies in more than L of the balls T2Bj,

(5)
∫
Hn bi(x)xβdx=0 for all β with d(β)≤a,

(6) bi is supported in 2Bi,
where T1, T2, T3, a and γ are constants from [19]. We call it Calderón-Zygmund decomposition
of f of degree a and height α associated to M f .

Lemma 4.2 (see [19]). Let bi be from the Calderón-Zygmund decomposition of f as in Theorem
4.3 and B̃i=T1Bi. The constant a is from Theorem 4.3 and the constant N is given in the definition
of M. Then we have

Mbi(x).M f (x) for x∈ B̃i

and

Mbi(x).α

(
ri

|z−1
i x|

)2n+2+b

for x /∈ B̃i,

where b=min{b′∈△ :b′>a} if a<N and b=N if a≥N (Note that △=N if G is the Heisenberg
group and since the constants N and a can be chosen sufficiently large, we can choose b to be a
large integer).

Lemma 4.3 (see [19]). Suppose G is a homogeneous group and ∑i bi converges in S′. Then for
all x∈G,

Mg(x).α∑
i

(
ri

|z−1
i x|+ri

)2n+2+b

+M f (x)χΩc(x),

where b is as in Lemma 4.2.

Lemma 4.4. Assume that g is given by Calderón-Zygmund decomposition of f as in Theorem
4.3. If f ∈Lp, 1≤ p<∞, then we have ‖g‖∞.α.

The proof is the same as [19, Theorem 3.20(ii)]. Thus we omit it.
Now we show the equivalence of atomic Hardy norms.

Theorem 4.4. If p(·) satisfies (2.2), (3.2) and (3.2b), then for all f ∈S′(Hn),

‖ f‖
H

p(·)
Hn

∼‖ f‖
H

p(·),∞
atom (Hn)

∼‖ f‖
H

p(·),∞
atom,∗(H

n)
.
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Proof. Since it is a direct deduction from Remark 4.1 that ‖ f‖
H

p(·),∞
atom (Hn)

≥‖ f‖
H

p(·),∞
atom,∗(H

n)
. We

show the other parts of this proof below.
Part 1. ‖ f‖

H
p(·)
Hn

.‖ f‖
H

p(·),∞
atom,∗(H

n)
.

Since the proof of this inequality is like [37, pp. 3690], we omit it.

Part 2. Let us prove ‖ f‖
H

p(·),∞
atom (Hn)

.‖ f‖
H

p(·)
Hn

.

Let f ∈Hp(·)(Hn)∩Lp++1(Hn). For each j∈Z, we write Oj≡{x∈Hn :M f (x)>2j}. Then
it follows that Oj+1⊂Oj. Now we use the Calderón-Zygmund Decomposition introduced

in Theorem 4.3 with α=2j to decompose f as follow,

f = gj+bj, bj =∑
k

bj,k, bj,k =( f −Pj,k)ζ j,k.

By Lemma 4.2 we have

∥∥Mϕbj

∥∥
L

p(·)
Hn

≤

∥∥∥∥∥∑
k

Mϕbj,k

∥∥∥∥∥
L

p(·)
Hn

.

∥∥∥∥∥∑
k

M f ·χB̃j,k

∥∥∥∥∥
L

p(·)
Hn

+

∥∥∥∥∥∥∑k

2j

(
rj,k

|z−1
j,k ·|

)2n+2+b

χ
Hn\B̃j,k

∥∥∥∥∥∥
L

p(·)
Hn

.
∥∥∥χOj

M f
∥∥∥

L
p(·)
Hn

+

∥∥∥∥∥∑
k

2j
(

MχB̃j,k
.
) 2n+2+b

2n+2

∥∥∥∥∥
L

p(·)
Hn

.

We can choose b=D. Then by Theorem 4.2 we have

∥∥∥∥∥∑
k

2j
(

MχB̃j,k

) 2n+2+b
2n+2

∥∥∥∥∥
L

p(·)
Hn

.

∥∥∥∥∥∑
k

2jχB̃j,k

∥∥∥∥∥
L

p(·)
Hn

.
∥∥∥2jχOj

∥∥∥
L

p(·)
Hn

.
∥∥∥χOj

M f
∥∥∥

L
p(·)
Hn

.

Thus it follows that

∥∥ f −gj

∥∥
H

p(·)
Hn

=
∥∥bj

∥∥
H

p(·)
Hn

∼
∥∥Mϕbj

∥∥
L

p(·)
Hn

.
∥∥∥χOj

M f
∥∥∥

L
p(·)
Hn

→0 as j→∞.

Next, by Lemma 4.4 we have gj →0 uniformly as j→−∞. Hence it follows that

f =
∞

∑
j=−∞

(gj+1−gj) in S
′(Hn). (4.8)

By [19, pp. 101-102] we have f =∑j,k hj,k in S′(Hn), where each hj,k is supported in T2Bj,k

and satisfies the estimate |hj,k(x)|≤C22k for some universal constant C2 and the moment

condition
∫
Hn hj,k(x)xβdx for all d(β)≤D. Set

aj,k ≡
hj,k

kj,k
, kj,k ≡C22k

∥∥∥χT2Bj,k

∥∥∥
L

p(·)
Hn

.
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Then it follows that each aj,k is a (p(·),∞)-atom and that f =∑j,k kj,kaj,k in Lp++1(Hn)≈

Hp++1(Hn). By Theorem 4.3(4) we get

A(
{

kj,k

}
j,k

,
{

T2Bj,k

}
j,k
)=inf





λ>0 :
∫

Hn



∑

j,k




kj,kχT2Bj,k
(x)

λ
∥∥∥χT2Bj,k

∥∥∥
L

p(·)
Hn




p


p(x)
p

dx≤1





∼inf





λ>0 :
∫

Hn

{
∞

∑
j=−∞

(
2jχOj

(x)

λ

)p} p(x)
p

dx≤1





.

Since the rest part of this proof is similar to [37, pp. 3692–3693], we omit it.

Then the following theorem shows the atomic decomposition for A(p(·),q) (q≫1).

Theorem 4.5. Under the assumptions that p(·) satisfies (3.2), (3.2b) and 0< p−≤ p+< q≤∞

and q≫1 is large enough. Then for all f ∈S′(Hn),

‖ f‖
H

p(·)
Hn

∼‖ f‖
H

p(·),q
atom (Hn)

.

Since the proof of this theorem is an analogue of [37, pp. 3694] by using the dyadic
cubes on Hn given by [29, Theorem 2.2], we omit it and we only note that the inequal-
ity (4.4) used in the discussion of [37, pp. 3694] has already been generalized to the Hn

version in the proof of Proposition 4.1.

As an application of Theorem 4.4 and Theorem 4.5 we study the molecular decompo-
sition. Here we give the definition of molecules like in [37].

Definition 4.2 (Molecules). Let 0< p−≤ p+< q≤∞, q≥1 and D∈Z∩[Dp(·),∞) be fixed.
We call M a (p(·),q)-molecule centered at a ball B=Br(z) if the following conditions hold.

1. On B, M satisfies

‖M‖Lq(B)≤
|B|

1
q

‖χB‖L
p(·)
Hn

.

2. Outside B, M satisfies

|M(x)|≤
1

‖χB‖L
p(·)
Hn

(
1+

|z−1x|

r

)−4n−2D−7

,

which is called the decay condition.

3. For all d(α)≤D we have
∫
HnM(x)xαdx=0, which is called the moment condition.

By this definition (p(·),q)-atoms are (p(·),q)-molecules.
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Theorem 4.6. Under the assumptions that 0< p−≤ p+< q≤∞, q≥1, D∈Z∩[Dp(·),∞), we
choose q≥1 to be large enough and p(·) satisfying (3.2) and (3.2b).

Let
{

Bj

}∞

j=1
=
{

Br j
(zj)

}∞

j=1
be a sequence of balls and, for each j ∈N, there is a (p(·),q)-

molecule Mj centered at Bj. If a sequence of positive numbers
{

kj

}∞

j=1
satisfies

A(
{

kj

}∞

j=1
,
{

Bj

}∞

j=1
)=1,

which implies that

∫

Hn





∞

∑
j=1




kjχBj
(x)∥∥∥χBj

∥∥∥
L

p(·)
Hn




p


p(x)
p

dx≤1.

Then we have ∥∥∥∥∥
∞

∑
j=1

kjMj

∥∥∥∥∥
H

p(·)
Hn

.1.

By using Theorem 3.1 and Corollary 3.1, we can prove the theorem in a similar way
to [37, Theorem 5.2] with a more complicated calculation. Thus we omit the proof.

We turn to consider the boundedness of a class of singular integral operators as an
application of molecular decomposition. Here and below we denote by b the constant
from Theorem 3.1.

Theorem 4.7. Let T:L2(Hn)→L2(Hn) be a singular integral operator with a kernel k:Hn\{0}→
R possessing the following properties:

1.
Am≡ sup

x∈Hn\{0},d(ϑ)=m

|x|2n+2+m|Xϑk(x)|<∞

for every m∈N∪{0}, where ϑ∈ (N∪{0})2n+1.
2. If f is a L2(Hn)-function with compact support, we have

T f (x)=
∫

Hn
f (xy−1)k(y)dy

for a.e. x /∈ supp( f ).
Assume that p(·) satisfies (3.2), (3.2b) and 0< p− ≤ p+<∞. The operator T can not only

be extended to a Hµ(Hn)−Hµ(Hn) bounded operator for all 0<µ<∞ (see [19, Theorem 6.10]),
but also be extended to a Hp(·)(Hn)−Lp(·)(Hn) bounded operator and the operator norm of T
depends only on b, ‖T‖L2(Hn)→L2(Hn) and a sequence of numbers A1,A2,··· ,AN, where N is a

finite number depending only on p(·).

Since by using Corollary 3.1 this can be proven in a similar way to [37, Proposition
5.3] with a more complicated calculation, we omit the proof.
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Theorem 4.8. Suppose 0< p−≤ p+<q<∞ and D∈Z∪[Dp(·),∞). Assume that q≥1 is large
enough and p(·) satisfies (3.2) and (3.2b). Let k∈S(Hn) and write

Am≡ sup
x∈Hn\{0},d(ϑ)=m

|x|2n+2+m|Xϑk(x)|, (m∈N∪{0},ϑ∈ (N∪{0})2n+1).

Suppose B is a ball and a∈L∞
c (Hn) with the following properties:

1. supp a∈B.

2. ‖a‖L∞
Hn

≤‖χB‖
−1

L
p(·)
Hn

.

3. For all multiindex α which satisfies d(α)≤4n+2D+6, we have
∫
Hn xαa(x)dx=0.

If the singular integral operator T is induced by the kernel k and bounded on L2(Hn), Then
there exists a constant C′

0 depending only on b, ‖T‖L2(Hn)→L2(Hn) and a sequence of numbers

A1,A2,··· ,AN, where N is a finite number depending only on p(·) such that a∗k
C′

0
is a (p(·),q)-

molecule centered at B.

By using Corollary 3.1 we can prove this theorem in a similar way to [37, Proposition
5.4] with a more complicated calculation. Thus we omit the proof.

Theorem 4.9. Assume that p(·) satisfies (2.2), (3.2) and (3.2b). Let k∈S(Hn) and write

Am≡ sup
x∈Hn\{0},d(ϑ)=m

|x|2n+2+m|Xϑk(x)|, (m∈N∪{0},ϑ∈ (N∪{0})2n+1).

Define a convolution operator T by

T f (x)≡ f ∗k(x), ( f ∈L2(Hn)).

The operator T which is bounded on L2(Hn) can be extended to a Hp(·)(Hn)−Hp(·)(Hn) bounded
operator and the norm of T depends only on b, ‖T‖L2(Hn)→L2(Hn) and the numbers A1,A2,··· ,AN

with N, a finite number, depending only on p(·).

Since we can prove this theorem in a similar way to [37, Proposition 5.5] with a more
complicated calculation, we omit the proof here.

5 Littlewood-Paley characterization

In this section, as in Theorem 3.3, we denote by L the sub-Laplace operator. The gradient
operator onHn is given by

▽=(X1,X2,··· ,X2n).

Let R+ be the set (0,∞). Since by [7, pp. 76] or [2, pp. 975] the point 0 may be neglected in
the spectral resolution of L, we denote by φ the kernel function of φ∗(L) for each function
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φ∗∈S(R+), that is, f̂ ∗φ(λ)= φ̂(λ) f̂ (λ)= φ̂∗(L) f (λ). As in [32, pp. 97] we can calculate
that

φ(z,t)=(2π)−n−1
∞

∑
k=0

∫ +∞

−∞
e−iλtLn−1

k

(
|λ||z|2

2

)
e
|λ||z|2

4 φ∗((2k+n)|λ|)|λ|n dλ,

where Ln−1
k are Laguerre polynomials. We see that φ(z,t) depends only on |z| and t.

By [20, Proposition 6] we know that φ is a Schwartz function on Hn. Let φk∗(λ) =
φ∗(2−2kλ). Then by a coordinate transformation we can easily see that φk is the kernel
function of φk∗(L).

We introduce the ℓ2(Z) valued function space Hp(·)(Hn;ℓ2(Z)).

Definition 5.1 (Hp(·)(Hn;ℓ2(Z))). Let ψ∗ ∈ S(R+) be such that χ(0,1)≤ψ∗≤ χ(0,2) and ψ

be the kernel function of ψ∗(L). We define Hp(·)(Hn;ℓ2(Z)) to be the function space
equipped with the following norm:

∥∥∥{ f j}
∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

≡

∥∥∥∥∥∥
sup
k∈Z

(
∞

∑
j=−∞

| f j∗ψk|
2

) 1
2

∥∥∥∥∥∥
L

p(·)
Hn

.

Theorem 5.1. Suppose that p(·) satisfies (2.2), (3.2) and (3.2b). Let T = {Tk}k∈Z be a collec-
tion of L2(Hn;ℓ2(Z))−L2(Hn) bounded operators such that there exists a sequence of functions
{ki,j}i,j∈Z ⊂S(Hn) possessing the following properties:

1. sup
x∈Hn,d(ϑ)=m

|x|2n+2+m
∥∥{Xϑki,j(x)}i,j∈Z

∥∥
ℓ2(Z)

< ∞ for every m ∈ N∪{0}, where ϑ ∈ (N∪

{0})2n+1.
2. If { f j}

∞
j=−∞ is a L2(Hn;ℓ2(Z))-function with compact support, then we have

Ti[{ f j}
∞
j=−∞](x)=

∞

∑
j=−∞

f j∗ki,j(x), i∈Z for x∈Hn.

3. ki,j ≡0 if |i|+|j| is large enough. Then we have

∥∥∥{Ti[{ f j}
∞
j=−∞]}

∞
i=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

.
∥∥∥{ f j}

∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

. (5.1)

By re-examining some related assertions (see Theorems 4.5, 4.7 and 4.9) we can give
its proof. We, therefore, omit the details (see [37, Theorem 5.6] for the Rn version).

Lemma 5.1. Suppose that Ω∈R+ is a compact set, ϕ∗∈S(R+) and supp ϕ∗⊂Ω. Let ϕ be the
kernel function of ϕ∗(L). Then for 0< r<∞ and f ∈S′(R+) we have

sup
z∈Hn

|▽ f ∗ϕ(xz)|

1+|z|
2n+2

r

. sup
z∈Hn

| f ∗ϕ(xz)|

1+|z|
2n+2

r

. ((M| f ∗ϕ|r)(x))
1
r .



266 J. X. Fang and J. M. Zhao / Anal. Theory Appl., 32 (2016), pp. 242-271

Proof. 1◦ Let the function ψ∗ ∈ S(R+) satisfy ψ∗(x) = 1 whenever x ∈Ω. Then we have
ϕ∗= ϕ∗ ·ψ∗, which indicates that ϕ= ϕ∗ψ. Hence it follows that

|Xi f ∗ϕ(x−1z)|=

∣∣∣∣
∫

Hn
f ∗ϕ(y)Xiψ(y

−1x−1z)dy

∣∣∣∣.
∣∣∣∣
∫

Hn
| f ∗ϕ(y)|(1+|y−1 x−1z|)−λdy

∣∣∣∣ ,

where i=1,2,··· ,2n and λ is chosen sufficiently large. We divide both sides of this modi-

fied estimate by 1+|z|
2n+2

r and use the inequality

1+|xy|
2n+2

r

1+|z|
2n+2

r

.1+|y−1x−1z|
2n+2

r , (x,y,z∈Hn).

Then it follows that

sup
z∈Hn

|▽ f ∗ϕ(x−1z)|

1+|z|
2n+2

r

. sup
z∈Hn

∫

Hn

| f ∗ϕ(y)|

1+|xy|
2n+2

r

(1+|y−1x−1z|
2n+2

r )−εdy,

where ε is chosen large enough. Hence by a coordinate transformation we have

sup
z∈Hn

|▽ f ∗ϕ(xz)|

1+|z|
2n+2

r

. sup
z∈Hn

| f ∗ϕ(xz)|

1+|z|
2n+2

r

. (5.2)

2◦ Suppose g(z) is a continuously differentiable function supported in the closed ball bB,
where b is the constant from Theorem 3.1 and B={x∈Hn : |x|≤1} denotes the closed unit
ball of Hn. By the stratified mean value theorem (Theorem 3.1), for z∈B, we have

|g(z)|.min
w∈B

|g(w)|+ sup
w′∈bB

|▽g(w′)|

≤ sup
w′∈bB

|▽g(w′)|+

(∫

B
|g(w)|rdw

) 1
r

.

Replacing g(z) by g(δz) we have

|g(z)|.δ sup
w′∈δbB

|▽g(w′)|+δ−
2n+2

r

(∫

δB
|g(w)|rdw

) 1
r

, (z∈δB).

3◦ Let g(z)= f ∗ϕ(xz) we have

| f ∗ϕ(xz)|.δ sup
|y′ |≤δb

|▽ f ∗ϕ(xzy′)|+δ−
2n+2

r

(∫

|y|≤δ
| f ∗ϕ(xzy)|r dy

) 1
r

. (5.3)

Let 0< δ≤1. Then the last integral from the right-hand side of the above inequality can
be estimated by

(∫

|u|≤|z|+1
| f ∗ϕ(xu)|rdu

) 1
r

. (1+|z|
2n+2

r )[(M| f ∗ϕ|r)(x)]
1
r .
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We substitute this estimate into (5.3) and divide both sides by 1+|z|
2n+2

r . Taking the supre-
mum with respect to z∈Hn, we obtain

sup
z∈Hn

| f ∗ϕ(xz)|

1+|z|
2n+2

r

.δ sup
z∈Hn

|▽ f ∗ϕ(xz)|

1+|z|
2n+2

r

+δ−
2n+2

r [(M| f ∗ϕ|r)(x)]
1
r . (5.4)

Substituting (5.4) in (5.2) and choosing δ sufficiently small, we obtain

sup
z∈Hn

| f ∗ϕ(xz)|

1+|z|
2n+2

r

. ((M| f ∗ϕ|r)(x))
1
r .

Thus, we complete the proof.

Now we consider the Littlewood-Paley characterization of variable Hardy spaces.

Theorem 5.2. Assume that ϕ∗∈S(R+), suppϕ∗⊂{x : 1
4 ≤ x≤4} and ∑

∞
j=−∞ |ϕ∗(λ)|2 >0 for

all λ∈R+. Let ϕ be the kernel function of ϕ∗(L). Then the following norm is equivalent to the
norm of Hp(·):

‖ f‖Ḟ0
p(·)2

=

∥∥∥∥∥∥

(
∞

∑
j=−∞

| f ∗ϕj|
2

) 1
2

∥∥∥∥∥∥
L

p(·)
Hn

, f ∈S
′(Hn). (5.5)

Proof. Let

ζ∗(λ)=
ϕ∗(λ)

∑j∈Z |ϕj∗(λ)|2

and ζ be the kernel function of ζ∗(L). Then we can easily see that ζ∗ ∈ S(R+) and

∑
∞
j=−∞ ζ j∗ϕj∗ ≡ χR+ . Note that by the theorem given in [2, pp. 974], for each function

φ∗ ∈ S(R+), φ∗(L) extends to a bounded operator on Lp(Hn), 1 < p < ∞. If we define
T={Ti}i∈Z by Ti[{ f j}

∞
j=−∞]=ϕ∗ f0, then T satisfies the conditions 1 and 2 in Theorem 5.1.

Hence we have ∥∥∥{ f ∗ϕj}
∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

.‖ f‖
H

p(·)
Hn

.

Fix N∈N. If we choose k to be sufficiently large, by the definition of ψ∗ for all |i|≤N we
have ψk∗ϕi∗= ϕi∗, which indicates that ψk∗ϕi= ϕi. Hence we have

∥∥∥∥∥∥

(
N

∑
i=−N

| f ∗ϕi|
2

) 1
2

∥∥∥∥∥∥
L

p(·)
Hn

.
∥∥∥{ f ∗ϕj}

∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

uniformly over N. Then we obtain

‖ f‖ Ḟ0
p(·)2

=

∥∥∥∥∥∥

(
∞

∑
i=−∞

| f ∗ϕi|
2

) 1
2

∥∥∥∥∥∥
L

p(·)
Hn

.
∥∥∥{ f ∗ϕj}

∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

.‖ f‖
H

p(·)
Hn

.
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If we define T={Ti}i∈Z by

Ti[{ f j}
∞
j=−∞](x)≡





∞

∑
k=−∞

fk∗ζk, if i=0,

0, if i 6=0.

By (5.1) we have ∥∥∥∥∥
∞

∑
k=−∞

fk∗ζk

∥∥∥∥∥
H

p(·)
Hn

.
∥∥∥{ f j}

∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

.

If we let f j = f ∗ϕj (j∈Z), then by [28, Lemma 3], we can see that

‖ f‖
H

p(·)
Hn

.
∥∥∥{ f ∗ϕj}

∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

.

Since χ(0,1)≤ψ∗≤χ(0,2), we have

ψk∗ϕj

{
ϕj, if j< k−1,

0, if j> k+2.

Set k−1≤ j≤ k+2, L> 2n+2
θ +2n+3 and θ= 1

2 p. Then by Lemma 5.1 we have

| f ∗ϕj∗ψk(x)|.
∫

Hn
| f ∗ϕj(y)·2

k(2n+2)ψ(2k(y−1x))|dy

.

∫

Hn

2k(2n+2)

(1+2k|y−1x|)L
(1+2j|y−1x|)

2n+2
θ M[| f ∗ϕj|

θ ](x)
1
θ dy.M[| f ∗ϕj |

θ ](x)
1
θ .

Hence by using Theorem 4.2, we have

∥∥∥{ f ∗ϕj}
∞
j=−∞

∥∥∥
Hp(·)(Hn;ℓ2(Z))

=

∥∥∥∥∥∥
sup
k∈Z

(
∞

∑
j=−∞

| f ∗ϕj∗ψk(x)|2
) 1

2

∥∥∥∥∥∥
L

p(·)
Hn

.

∥∥∥∥∥∥

(
∞

∑
j=−∞

M[| f ∗ϕj|
θ ](x)

2
θ

) 1
2

∥∥∥∥∥∥
L

p(·)
Hn

.
∥∥∥{ f ∗ϕj}

∞
j=−∞

∥∥∥
Lp(·)(Hn;ℓ2(Z))

,

which implies the desired result.
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