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Abstract. The multifractal formalism for single measure is reviewed. Next, a mixed
generalized multifractal formalism is introduced which extends the multifractal for-
malism of a single measure based on generalizations of the Hausdorff and packing
measures to a vector of simultaneously many measures. Borel-Cantelli and Large de-
viations Theorems are extended to higher orders and thus applied for the validity of
the new variant of the multifractal formalism for some special cases of multi-doubling
type measures.
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1 Introduction

In the present work, we are concerned with the whole topic of multifractal analysis of
measures and the validity of multifractal formalisms. We aim to consider some cases
of simultaneous behaviors of measures instead of a single measure as in the classic or
original multifractal analysis of measures. We call such a study mixed multifractal anal-
ysis. Such a mixed analysis has been generating a great attention recently and thus
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proved to be powerful in describing the local behavior of measures especially fractal
ones (see [1, 2, 9–14]).

In this paper, multi purposes will be done. Firstly we review the classical multifractal
analysis of measures and recall all basics about fractal measures as well as fractal dimen-
sions. We review Hausdorff measures, Packing measures, Hausdorff dimensions, Pack-
ing dimensions as well as Renyi dimensions and we recall the eventual relations linking
these notions. A second aim is to develop a type of multifractal analysis, multifractal
spectra, multifractal formalism which permit to study simultaneously a higher number
of measures. As it is noticed from the literature on multifractal analysis of measures,
this latter always considered a single measure and studies its scaling behavior as well as
the multifractal formalism associated. Recently, many works have been focused on the
study of simultaneous behaviors of finitely many measures. In [9], a mixed multifrac-
tal analysis is developed dealing with a generalization of Rényi dimensions for finitely
many self similar measures. This was one of the motivations leading to our present pa-
per. Secondly, we intend to combine the generalized Hausdorff and packing measures
and dimensions recalled after with Olsen’s results in [14] to define and develop a more
general multifractal analysis for finitely many measures by studying their simultaneous
regularity, spectrum and to define a mixed multifractal formalism which may describe
better the geometry of the singularities’s sets of these measures. We apply the techniques
of L. Olsen especially in [9] and [14] with the necessary modifications to give a detailed
study of computing general mixed multifractal dimensions of simultaneously many fi-
nite number of measures and try to project our results for the case of a single measure to
show the generecity of our’s.

The first point to check in multifractal analysis of a measure is its singularity on its
spectrum. Given a measure µ eventually Borel and finite, for x∈supp(µ), the singularity
of µ is estimated via µ(B(x,r)) as r → 0. If µ(B(x,r))∼ rα, the measure µ is said to be
α-Hölder at x. The local lower dimension and the local upper dimension of µ at the point
x are respectively defined by

αµ(x)= liminf
r↓0

log(µ(B(x,r)))

logr
and αµ(x)= limsup

r↓0

log(µ(B(x,r)))

logr
.

When these quantities are equal we call their common value the local dimension, denoted
by αµ(x) of µ at x. Next, the α-singularity set is X(α) = {x ∈ supp(µ); αµ(x) = α} and
finally, the spectrum of singularities is the mapping defined by d(α) = dimX(α) where
dim stands for the Hausdorff dimension.

The computation of such a spectrum is the delicate point and the most principal aim
in the whole multifractal study of the measure. Its computation needs more efforts and
special techniques based on the characteristics of the measure, such that self similarity,
scalings. In multifractal analysis, it is related to multifractal dimensions and in some
cases it is computed by means of the Legendre transform of such dimensions. This fact
constitutes the so-called multifractal formalism for measures.
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The present work will be organized as follows. The next section concerns a review of
Hausdorff and packing measures and dimensions. Section 3 is concerned to Multifractal
generalizations of Hausdorff and packing measures as well as the associated dimensions.
In Section 4, the mixed multifractal generalizations of Hausdorff and packing measures
and dimensions are introduced. Section 5 is devoted to the mixed multifractal gener-
alization of Bouligand-Minkowsky or Rényi dimension inspired from Olsen in [14]. In
Section 6, a mixed multifractal formalism associated to the mixed multifractal generaliza-
tions of Hausdorff and packing measures and dimensions is proved in some case based
on a generalization of the well known large deviation formalism.

2 Hausdorff and packing measures and dimensions

Given a subset E ⊆R, and ǫ > 0, we call an ǫ-covering of E, any countable set (Ui)i of
non-empty subsets Ui⊆R satisfying

E⊆
⋃

i

Ui and |Ui|=diam(Ui)≤ǫ, (2.1)

where for any subset U⊆R, |U|=diam(U) is the diameter defined by

|U|=diam(U)= sup
x,y∈U

|x−y|.

Remark here that for ǫ1 < ǫ2, any ǫ1-covering of E is obviously an ǫ2-covering of E. This
implies that the quantity

H
s
ǫ(E)= inf

{
∑

i

|Ui|
s;(Ui) satisfying (2.1)

}

is a non increasing function in ǫ. Its limit

H
s(E)= lim

ǫ↓0
H

s
ǫ(E)

defines the so-called s-dimensional Hausdorff measure of E. It holds that for any set
E⊆R there exists a critical value sE in the sense that

H
s(E)=0, ∀s< sE and H

s(E)=+∞, ∀s> sE,

or otherwise,

sE =sup{s>0; Hs(E)=0}= inf{s>0; Hs(E)=+∞}.

Such a value is called the Hausdorff dimension of the set E and is usually denoted by
dimHE or simply dimE. When Ui=B(xi,ri) is a ball centered at xi∈E and with diameter
ri<ǫ, the covering (B(xi,ri))i is called an ǫ-centered covering of E. However, surprisingly,
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the quantity Hs restricted only on centered coverings does not define a measure. To
obtain a good measure with centered coverings one should do more. Denote

C
s
ǫ(E)= inf

{
∑

i

|2ri|
s; (B(xi,ri))i an ǫ−centered covering of E

}

and similarly as above,

C
s
(E)= lim

ǫ↓0
C

s
ǫ(E).

As stated previously, this is not a good measure. So, to obtain a good candidate, we set
for E⊆R,

C
s(E)=sup

F⊆E

C
s
(F).

It is called the centered Hausdorff s-dimensional measure of E. But, although a fascinat-
ing relation to the Hausdorff measure exists. It holds that

2−s
C

s(E)≤H
s(E)≤C

s(E); ∀E⊆R
d. (2.2)

Indeed, let F ⊆ E be subsets of R
d. It follows from the definition of Hs and C

s
that

Hs(F)≤ C
s
(F). Next, from the fact that Hs is an outer metric measure on R

d, and the
definition of Cs, il results that Hs(E)≤Cs(E). Next, let {Uj}j be an ǫ-covering of F and
rj = diam(Uj). For each i fixed, consider a point xi ∈ Ui∩F. This results in a centered
ǫ-covering {B(xi,ri)}i of F. Consequently,

C
s
ǫ(F)≤∑

i

(2ri)
s=2s ∑

i

(diam(Ui))
s.

Hence,
C

s
ǫ(F)≤2s

H
s
ǫ(F).

Next, as ǫ↓0, we obtain
C

s
(F)≤2s

H
s(F), ∀F⊆E,

which guaranties that
C

s(E)≤2s
H

s(E).

It holds that these measures give rise to some critical values in the sense that, for any set
E⊆R there exists a critical value hE and cE for which

H
s(E)=0, ∀s<hE and H

s(E)=+∞, ∀s>hE,

and similarly
C

s(E)=0, ∀s< cE and C
s(E)=+∞, ∀s> cE.

But using Eq. (2.2) above, it proved that hE = cE and otherwise,

hE =sup
{

s>0; Hs(E)=0}= inf{s>0; Hs(E)=+∞
}

.
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Such a value is called the Hausdorff dimension of the set E and is usually denoted by
dimHE or simply dimE.

Similarly, we call a centered ǫ-packing of E⊆R
d, any countable set (B(xi,ri))i of dis-

joint balls centered at points xi ∈E and with diameters ri < ǫ. The packing measure and
dimension are defined as follows

P
s
(E)= lim

ε↓0

(
sup

{
∑

i

(2ri)
s; (B(xi,ri))iǫ−packing of E

})
,

P
s(E)= inf

{
∑

i

P
s
(Ei); E⊆∪iEi

}
.

It holds as for the Hausdorff measure that there exists critical values ∆E and pE satisfying
respectively

P
s
(E)=+∞ for s<∆(E) and P

s
(E)=0 for α>∆(E),

and respectively

P
s(E)=∞ for s< pE and P

s(E)=0 for s> pE.

The critical value ∆(E) is called the logarithmic index of E and pE is called the packing
dimension of E denote by DimP(E) or simply Dim(E). These quantities may be shown
as

∆(E)=sup{s;P
s
(E)=0}= inf{s;P

s
(E)=+∞}

and respectively

Dim(E)=sup{s;Ps(E)=0}= inf{s;Ps(E)=+∞}.

Usually, we have the inequality

dim(E)≤Dim(E)≤∆(E), ∀E⊆R
d.

Definition 2.1. A set E⊆R
d is said to be fractal in the sense of Taylor iff dim(E)=Dim(E).

3 Multifractal generalizations of Hausdorff and packing

measures

Let µ be a Borel probability measure on R
d, a nonempty set E⊆R

d and ǫ>0. Let also q, t be
real numbers. We will recall hereafter the steps leading to the multifractal generalizations
of the Hausdorff and packing measures due to L. Olsen in [9]. Denote

H
q,t
µ,ǫ(E)= inf

{
∑

i

(µ(B(xi,ri)))
q(2ri)

t
}

,
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where the inf is taken over the set of all centered ǫ-coverings of E, and for the empty set,

H
q,t
µ,ǫ(∅)=0. As for the preceding cases of Hausdorff and packing measures, it consists of

a non increasing quantity as a function of ε. We then consider its limit

H
q,t
µ (E)= lim

ǫ↓0
H

q,t
µ,ǫ(E)=sup

δ>0

H
q,t
µ,ǫ(E)

and finally, the multifractal generalization of the s-dimensional Huasdorrf measure

H
q,t
µ (E)=sup

F⊆E

H
q,t
µ (F).

Similarly, we define the multifractal generalization of the packing measure as follows

P
q,t
µ,ǫ(E)=sup

{
∑

i

(µ(B(xi,ri)))
q(2ri)

t
}

,

where the sup is taken over the set of all centered ǫ-packings of E. For the empty set, we

set as usual P
q,t
µ,ǫ(∅)=0. Next,

P
q,t
µ (E)= lim

ǫ↓0
P

q,t
µ,ǫ(E)= inf

δ>0
P

q,t
µ,ǫ(E)

and finally,

P
q,t
µ (E)= inf

E⊆∪iEi
∑

i

P
q,t
µ (Ei).

In [9], it has been proved that the measures H
q,t
µ , P

q,t
µ and the pre-measure P

q,t
µ assign in a

usual way a dimension to every set E⊆R
d as resumed in the following proposition.

Proposition 3.1 (see [9]). Given a subset E⊆R
d,

1. There exists a unique number dim
q
µ(E)∈ [−∞,+∞] such that

H
q,t
µ (E)=

{
+∞, for t<dim

q
µ(E),

0, for t>dim
q
µ(E).

2. There exists a unique number Dim
q
µ(E)∈ [−∞,+∞] such that

P
q,t
µ (E)=

{
+∞, for t<Dim

q
µ(E),

0, for t>Dim
q
µ(E).

3. There exists a unique number ∆
q
µ(E)∈ [−∞,+∞] such that

P
q,t
µ (E)=

{
+∞, for t<∆

q
µ(E),

0, for t>∆
q
µ(E).
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The quantities dim
q
µ(E), Dim

q
µ(E) and ∆

q
µ(E) defines the so-called multifractal gener-

alizations of the Hausdorff dimension, the packing dimension and the logarithmic index
of the set E. More precisely, one has

dim0
µ(E)=dim(E), Dim0

µ(E)=Dim(E) and ∆0
µ(E)=∆(E).

The characteristics of these functions have been studied completely by L. Olsen. He
proved among author results that dim

q
µ and Dim

q
µ are monotones and σ-stables. Fur-

thermore, if E=supp(µ) is the support of the measure µ, one obtains

a. The functions q 7−→Dim
q
µ(E) and q 7−→∆

q
µ(E) are convex non increasing.

b. q 7−→dim
q
µ(E) is non increasing.

c. i. For q<1; 0≤dim
q
µ(E)≤Dim

q
µ(E)≤∆

q
µ(E).

ii. dim1
µ(E)=Dim1

µ(E)=∆1
µ(E)=0.

iii. For q>1; dim
q
µ(E)≤Dim

q
µ(E)≤∆

q
µ(E)≤0.

4 Mixed multifractal generalizations of Hausdorff and packing

measures and dimensions

The purpose of this section is to present our ideas about mixed multifractal generaliza-
tions of Hausdorff and packing measures and dimensions. Let µ=(µ1,µ2,··· ,µk) a vector
valued measure composed of probability measures on R

d. We aim to study the simulta-
neous scaling behavior of µ, which we denote

lim
r↓0

logµ(B(x,r))

logr
≡
(

lim
r↓0

logµ1(B(x,r))

logr
,··· ,lim

r↓0

logµk(B(x,r))

logr

)
.

Let E⊆R
d be a nonempty set and ǫ > 0. Let also q= (q1,q2,··· ,qk)∈R

k and t∈R. The
mixed generalized multifractal Hausdorff measure is defined as follows. Denote

µ(B(x,r))≡
(
µ1(B(x,r)),··· ,µk(B(x,r))

)

and the product
(µ(B(x,r)))q ≡ (µ1(B(x,r)))q1 ···(µk(B(x,r)))qk .

Denote next,

H
q,t
µ,ǫ(E)= inf

{
∑

i

(µ(B(xi,ri)))
q(2ri)

t
}

,

where the inf is taken over the set of all centered ǫ-coverings of E, and for the empty set,

H
q,t
µ,ǫ(∅)=0. As for the single case, of Hausdorff measure, it consists of a non increasing

function of the variable ε. So that, its limit as ǫ↓0 exists. Let

H
q,t
µ (E)= lim

ǫ↓0
H

q,t
µ,ǫ(E)=sup

δ>0

H
q,t
µ,ǫ(E).



310 M. Menceur, A. B. Mabrouk and K. Betina / Anal. Theory Appl., 32 (2016), pp. 303-332

Let finally

H
q,t
µ (E)=sup

F⊆E

H
q,t
µ (F).

Lemma 4.1. H
q,t
µ is an outer metric measure on R

d.

The proof of this lemma is technic and follows carefully analogous steps as the single
case.

Definition 4.1. The restriction of H
q,t
µ on Borel sets is called the mixed generalized Haus-

dorff measure on R
d.

Now, we define the mixed generalized multifractal packing measure. We use already
the same notations as previously. Let

P
q,t
µ,ǫ(E)=sup

{
∑

i

(µ(B(xi,ri)))
q(2ri)

t
}

,

where the sup is taken over the set of all centered ǫ-packings of E. For the empty set, we

set as usual P
q,t
µ,ǫ(∅)=0. Next, we consider the limit as ǫ↓0,

P
q,t
µ (E)= lim

ǫ↓0
P

q,t
µ,ǫ(E)= inf

δ>0
P

q,t
µ,ǫ(E)

and finally,

P
q,t
µ (E)= inf

E⊆∪iEi
∑

i

P
q,t
µ (Ei).

Lemma 4.2. P
q,t
µ is an outer metric measure on R

d.

The proof of this lemma is more specific than Lemma 4.1 and uses the following result.

P
q,t
µ (A∪B)=P

q,t
µ (A)+P

q,t
µ (B), whenever d(A,B)>0. (4.1)

Indeed, let

0<ǫ<
1

2
d(A,B)

and (B(xi,ri))i be a centered ǫ-packing of the union A∪B. It can be divided into two parts
I and J,

(B(xi,ri))i=
(

B(xi,ri)
)

i∈I

⋃(
B(xi,ri)

)
i∈J

,

where

∀i∈ I, B(xi,ri)∩B=∅ and ∀i∈ J, B(xi,ri)∩A=∅.
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Therefore, (B(xi,ri))i∈I is a centered ǫ-packing of A and (B(xi,ri))i∈J is a centered ǫ-
packing of the union B. Hence,

∑
i

(µ(B(xi,ri)))
q(2ri)

t=∑
i∈I

(µ(B(xi,ri)))
q(2ri)

t

︸ ︷︷ ︸
≤P

q,t
µ,ǫ(A)

+∑
i∈I

(µ(B(xi,ri)))
q(2ri)

t

︸ ︷︷ ︸
≤P

q,t
µ,ǫ(B)

.

Consequently,

P
q,t
µ,ǫ(A∪B)≤P

q,t
µ,ǫ(A)+P

q,t
µ,ǫ(B)

and thus the limit for ǫ↓0 gives

P
q,t
µ (A∪B)≤P

q,t
µ (A)+P

q,t
µ (B).

The converse is more easier and it states that P
q,t
µ,ǫ and next P

q,t
µ are sub-additive. Let

(B(xi,ri))i be a centered ǫ-packing of A and (B(yi,ri))i be a centered ǫ-packing of B. The
union

(
B(xi,ri)

)
i

⋃(
B(yi,ri)

)
i

is a centered ǫ-packing of A∪B. So that

P
q,t
µ,ǫ(A∪B)≥∑

i

(µ(B(xi,ri)))
q(2ri)

t+∑
i

(µ(B(yi,ri)))
q(2ri)

t.

Taking the sup on (B(xi,ri))i as a centered ǫ-packing of A and next the sup on (B(yi,ri))i

as a centered ǫ-packing of B, we obtain

P
q,t
µ,ǫ(A∪B)≥P

q,t
µ,ǫ(A)+P

q,t
µ,ǫ(B)

and thus the limit for ǫ↓0 gives

P
q,t
µ (A∪B)≥P

q,t
µ (A)+P

q,t
µ (B).

Definition 4.2. The restriction of P
q,t
µ on Borel sets is called the mixed generalized packing

measure on R
d.

It holds as for the case of the multifractal analysis of a single measure that the mea-

sures H
q,t
µ , P

q,t
µ and the pre-measure P

q,t
µ assign a dimension to every set E⊆R

d.

Proposition 4.1. Given a subset E⊆R
d,

1. There exists a unique number dim
q
µ(E)∈ [−∞,+∞] such that

H
q,t
µ (E)=

{
+∞, for t<dim

q
µ(E),

0, for t>dim
q
µ(E).
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2. There exists a unique number Dim
q
µ(E)∈ [−∞,+∞] such that

P
q,t
µ (E)=

{
+∞, for t<Dim

q
µ(E),

0, for t>Dim
q
µ(E).

3. There exists a unique number ∆
q
µ(E)∈ [−∞,+∞] such that

P
q,t
µ (E)=

{
+∞, for t<∆

q
µ(E),

0, for t>∆
q
µ(E).

Definition 4.3. The quantities dim
q
µ(E), Dim

q
µ(E) and ∆

q
µ(E) define the so-called mixed

multifractal generalizations of the Hausdorff dimension, the packing dimension and the
logarithmic index of the set E.

Remark that if we denote Qi=(0,0,··· ,qi,0,··· ,0) the vector with zero coordinates ex-
cept the ith one which equals qi, we obtain the multifractal generalizations of the Haus-
dorff dimension, the packing dimension and the logarithmic index of the set E for the
single measure µi,

dimQi
µ (E)=dim

qi
µi
(E), DimQi

µ (E)=Dim
qi
µi
(E) and ∆

Qi
µ (E)=∆

qi
µi
(E).

Similarly, for the null vector of R
k, we obtain

dim0
µ(E)=dim(E), Dim0

µ(E)=Dim(E) and ∆0
µ(E)=∆(E).

Proof of Proposition 4.1. We will sketch only the proof of the first point. The rest is analo-
gous.

First, we claim that ∀t∈R such that H
q,t
µ (E)<∞ it holds that H

q,t′

µ (E)=0 for any t′> t.
Indeed, let ǫ>0, F⊆E and (B(xi,ri))i be a centered ǫ-covering of F. We have

H
q,t′

µ,ǫ(F)≤∑
i

(µ(B(xi,ri)))
q(2ri)

t′ ≤δt′−t∑
i

(µ(B(xi,ri)))
q(2ri)

t.

Consequently,

H
q,t′

µ,ǫ(F)≤ǫt′−tH
q,t′

µ,ǫ(F).

Hence,

H
q,t′

µ (F)=0, ∀F⊆E.

As a result, H
q,t′

µ (E)=0. We then set

dim
q
µ(E)= inf{t∈R; H

q,t′

µ (E)=0}.
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One can proceed otherwise by claiming that ∀t ∈ R such that H
q,t
µ (E)> 0 it holds that

H
q,t′

µ (E)=+∞ for any t′< t. Indeed, proceeding as previously, we obtain for ǫ>0,

ǫt′−tH
q,t
µ,ǫ(F)≤H

q,t′

µ,ǫ(F).

Hence,

H
q,t′

µ (F)=+∞, ∀F⊆E.

As a result, H
q,t′

µ (E)=+∞. We then set

dim
q
µ(E)=sup{t∈R; H

q,t′

µ (E)=+∞}.

Next, we aim to study the characteristics of the mixed multifractal generalizations of
dimensions. To do this we will adapt the following notations. For q=(q1,··· ,qk)∈R

k,

bµ,E(q)=dim
q
µ(E), Bµ,E(q)=Dim

q
µ(E) and Λµ,E(q)=∆

q
µ(E).

When E= supp(µ) is the support of the measure µ, we will omit the indexation with E
and denote simply

bµ(q), Bµ(q) and Λµ(q).

Thus, we complete the proof. �

The following propositions resume the characteristics of these functions and extends
the results of L. Olsen [9] for our case.

Proposition 4.2. (a) bµ,·(q) and Bµ,·(q) are non decreasing with respect to the inclusion

property in R
d.

(b) bµ,·(q) and Bµ,·(q) are σ-stable.

Proof. (a) Let E⊆F be subsets of R
d. We have

H
q,t
µ (E)= sup

A⊆E

H
q,t
µ (A)≤ sup

A⊆F

H
q,t
µ (A)=H

q,t
µ (F).

So for the monotony of bµ,·(q).

(b) Let (An)n be a countable set of subsets An ⊆R
d and denote A=

⋃
n An. It holds

from the monotony of bµ,·(q) that

bµ,An(q)≤bµ,A(q), ∀n.

Hence,
sup

n
bµ,An

(q)≤bµ,A(q).

Next, for any t>supn bµ,An
(q), there holds that

H
q,t
µ (An)=0, ∀n.
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Consequently, from the sub-additivity property of H
q,t
µ , it holds that

H
q,t
µ

(⋃

n

An

)
=0, ∀t>sup

n
bµ,An

(q).

Which means that

bµ,A(q)≤ t, ∀t>sup
n

bµ,An(q).

Hence,

bµ,A(q)≤sup
n

bµ,An(q).

Similar arguments permit to prove the properties of Bµ,A(q).

Next, we continue to study the characteristics of the mixed generalized multifractal
dimensions. The following result is obtained.

Proposition 4.3. (a) The functions q 7−→Bµ(q) and q 7−→Λµ(q) are convex.

(b) For i = 1,2,··· ,k, the functions qi 7−→ bµ(q), qi 7−→ Bµ(q) and qi 7−→ Λµ(q), (q̂i =
(q1,··· ,qi−1,qi+1,··· ,qk) fixed), are non increasing.

Proof. (a) We start by proving that Λµ,E is convex. Let p,q∈R
k, α∈ [0,1], s>Λµ,E(p) and

t>Λµ,E(q). Consider next a centered ǫ-packing (Bi =B(xi,ri))i of E. Applying Hölder’s
inequality, it holds that

∑
i

(µ(Bi))
αq+(1−α)p(2ri)

αt+(1−α)s≤
(
∑

i

(µ(Bi))
q(2ri)

t
)α(

∑
i

(µ(Bi))
p(2ri)

s
)1−α

.

Hence,

P
αq+(1−α)p,αt+(1−α)s
µ,ǫ (E)≤

(
P

q,t
µ,ǫ(E)

)α(
P

p,s
µ,ǫ(E)

)1−α
.

The limit on ǫ↓0 gives

P
αq+(1−α)p,αt+(1−α)s
µ (E)≤

(
P

q,t
µ (E)

)α(
P

p,s
µ (E)

)1−α
.

Consequently,

P
αq+(1−α)p,αt+(1−α)s
µ (E)=0, ∀s>Λµ,E(p) and t>Λµ,E(q).

It results that

Λµ,E(αq+(1−α)p)≤αΛµ,E(q)+(1−α)Λµ,E(p).

We now prove the convexity of Bµ,E. We set in this case t= Bµ,E(q) and s= Bµ,E(p). We
have

P
q,t+ε
µ (E)=P

p,s+ε
µ (E)=0.
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Therefore, there exists (Hi)i and (Ki)i coverings of the set E for which

∑
i

P
q,t+ε
µ (Hi)≤1 and ∑

i

P
p,s+ε
µ (Ki)≤1.

Denote for n∈N, En=
⋃

1≤i,j≤n(Hi∩Kj). Thus, (En)n is a covering of E. So that,

P
αq+(1−α)p,αt+(1−α)s+ε
µ (En)

≤
n

∑
i,j=1

P
αq+(1−α)p,αt+(1−α)s+ε
µ (Hi∩Kj)

≤
n

∑
i,j=1

P
αq+(1−α)p,αt+(1−α)s+ε
µ (Hi∩Kj)

≤
( n

∑
i,j=1

P
q,t+ε
µ (Hi∩Kj)

)α( n

∑
i,j=1

P
p,s+ε
µ (Hi∩Kj)

)1−α

≤nαn1−α=n<∞.

Consequently,
Bµ,En(αq+(1−α)p)≤αt+(1−α)s+ε, ∀ε>0.

Hence,
Bµ,E(αq+(1−α)p)≤αBµ,E(q)+(1−α)Bµ,E(p).

(b) For i = 1,2,··· ,k, let q̂i fixed and pi ≤ qi reel numbers. Denote next q =
(q1,··· ,qi−1,qi,qi+1,··· ,qk) and p=(q1,··· ,qi−1,pi,qi+1,··· ,qk). Let finally A⊆E. For a cen-
tered ǫ-covering (B(xi,ri))i of A, we have immediately

µ(B(xi,ri))
q(2ri)

t≤µ(B(xi,ri))
p(2ri)

t, ∀t∈R.

Hence,
H

q,t
µ,ǫ(A)≤H

p,t
µ,ǫ(A).

When ǫ↓0, we obtain

H
q,t
µ (A)≤H

p,t
µ (A).

Therefore,

H
q,t
µ (E)= sup

A⊆E

H
q,t
µ (A)≤ sup

A⊆E

H
p,t
µ (A)=H

p,t
µ (E).

This induces the fact that
H

q,t
µ (E)=0, ∀t>bµ,E(p).

Consequently
bµ,E(q)< t, ∀t>bµ,E(p).

Hence,
bµ,E(q)≤bµ,E(p).

The remaining part to prove the monotony Λµ,E and Bµ,E is analogous.
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Proposition 4.4. (a) 0≤bµ(q)≤Bµ(q)≤Λµ(q), whenever qi <1 for all i=1,2,··· ,k.

(b) bµ(¶i)=Bµ(¶i)=Λµ(¶i)=0, where ¶i =(0,0,··· ,1,0,··· ,0).

(c) bµ(q)≤Bµ(q)≤Λµ(q)≤0 whenever qi >1 for all i=1,2,··· ,k.

The proof of this results reposes on the following intermediate ones.

Lemma 4.3. There exists a constant ξ∈ [0,+∞] satisfying for any E⊆R
d,

H
q,t
µ (E)≤ ξP

q,t
µ (E)≤ ξP

q,t
µ (E), ∀q,t.

More precisely, ξ is the number related to the Besicovitch covering theorem.

Theorem 4.1 (Besicovitch Covering Theorem). There exists a constant ξ∈N satisfying: For
any E∈R

d and (rx)x∈E a bounded set of positive real numbers, there exists ξ sets B1,B2,··· ,Bξ,
that are finite or countable composed of balls B(x,rx), x∈E such that

• E⊆
⋃

1≤i≤ξ

⋃

B∈Bi

B.

• each Bi is composed of disjoint balls.

Proof of Lemma 4.3. It suffices to prove the first inequality. The second is always true for
all ξ>0. Let F⊆R

d, ǫ>0 and V={B(x,ǫ/2); x∈F}. Let next
(
(Bij)j

)
1≤i≤ξ

be the ξ sets of

V obtained by the Besicovitch covering theorem. So that, (Bij)i,j is a centered ǫ-covering
of the set F and for each i, (Bij)j is a centered ǫ-packing of F. Therefore,

H
q,t
µ,ǫ(F)≤

ξ

∑
i=1

∑
j

(
µ(Bij)

)q
(2rij)

t≤
ξ

∑
i=1

P
q,t
µ,ǫ(F)= ξP

q,t
µ,ǫ(F).

Hence,

H
q,t
µ (F)≤ ξP

q,t
µ (F).

Consequently, for E⊆
⋃

i Ei, we obtain

H
q,t
µ (E)=H

q,t
µ

(⋃

i

(Ei∩E)
)
≤∑

i

H
q,t
µ (Ei∩E)

≤∑
i

sup
F⊆Ei∩E

H
q,t
µ (F)≤ ξ∑

i

sup
F⊆Ei∩E

P
q,t
µ (F)

≤ξ∑
i

P
q,t
µ (Ei).

So as Lemma 4.3. �

Proof of Proposition 4.4. It follows from Propositions 4.2, 4.3 and Lemma 4.3. �
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5 Mixed multifractal generalization of Bouligand-Minkowski’s

dimension

In this section, we propose to develop mixed multifractal generalization of Bouligand-
Minkowski’s dimension. Such a dimension is sometimes called the box-dimension or the
Renyi dimension. Some mixed generalizations are already introduced in [15]. We will
see hereafter that the mixed generalizations to be provided resemble to those in [15]. We
will prove that in the mixed case, these dimensions remain strongly related to the mixed
multifractal generalizations of the Hausdorff and packing dimensions. In the case of a
single measure µ, the Bouligand-Minkowski dimensions are introduced as follows. For
E⊆supp(µ), δ>0 and q∈R, let

T
q
µ,δ(E)= inf

{
∑

i

(
µ
(

B(xi,δ)
))q

}
,

where the inf is over the set of all centered δ-coverings
(

B(xi,δ)
)

i
of the set E. The

Bouligand-Minkowski dimensions are

L
q
µ(E)= limsup

δ↓0

log
(
T

q
µ,δ(E)

)

−logδ

for the upper one and

L
q
µ(E)= liminf

δ↓0

log
(
T

q
µ,δ(E)

)

−logδ

for the lower. In the case of equality, the common value is denoted L
q
µ(E) and is called

the Bouligand-Minkowski dimension of the set E. We can equivalently define these di-
mensions via the δ-packings as follows. For δ>0 and q∈R, we set

S
q
µ,δ(E)=sup

{
∑

i

(
µ
(

B(xi,δ)
))q

}
,

where the sup is taken over all the centered δ-packings
(

B(xi,δ)
)

i
of the set E. The upper

dimension is

C
q
µ(E)= limsup

δ↓0

log
(
S

q
µ,δ(E)

)

−logδ

and the lower is

C
q
µ(E)= liminf

δ↓0

log
(
S

q
µ,δ(E)

)

−logδ

and similarly, when these are equal, the common value will be denoted C
q
µ(E) and it

defines the dimension of E. We now introduce the mixed multifractal generalization of
the Bouligand-Minkowski dimensions. As we have noticed, our idea here is quite the
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same as the one in [15]. Let µ=(µ1,µ2,··· ,µk) be a vector valued measure composed of
probability measures on R

d. Denote as previously

µ(B(x,r))≡
(
µ1(B(x,r)),··· ,µk(B(x,r))

)

and for q=(q1,q2,··· ,qk)∈R
k,

(µ(B(x,r)))q ≡ (µ1(B(x,r)))q1 ···(µk(B(x,r)))qk .

Next, for a nonempty subset E⊆R
d and δ>0, we will use the same notations for T

q
µ,δ(E),

C
q
µ(E) and C

q
µ(E) but without forgetting that we use the new product for the measure µ.

Similarly for S
q
µ,δ(E), L

q
µ(E) and L

q
µ(E).

Definition 5.1. For E⊆supp(µ) and q=(q1,q2,··· ,qk)∈R
k, we will call

(a) C
q
µ(E) and L

q
µ(E) the upper mixed multifractal generalizations of the Bouligand

Minkowski dimension of E.

(b) C
q
µ(E) and L

q
µ(E) the lower mixed multifractal generalizations of the Bouligand

Minkowski dimension of E.

(c) C
q
µ(E) and L

q
µ(E) the mixed multifractal generalizations of the Bouligand Minkowski

dimension of E.

Remark 5.1. We stress the fact that each quantity defines in fact a mixed generalization

that can be different from the other. That is, we did not mean that C
q
µ(E) and L

q
µ(E) are

the same (equal) and similarly for the lower ones. We will prove in the contrary that as
for the single case, they can be different.

Theorem 5.1. For

1). For all q∈R
k, we have

L
q
µ(E)≤C

q
µ(E) and L

q
µ(E)≤C

q
µ(E).

2). For any q∈R
∗k
− , we have:

i). bµ,E(q)≤ L
q
µ(E)=C

q
µ(E) and

ii). Lµ,E(q)=C
q
µ(E)=Λµ,E(q).

3). For any q∈R
∗k
+ , we have

Lµ,E(q)≤C
q
µ(E)≤Λµ,E(q).

Proof. 1). Using Besicovitch covering theorem we get

T
q
µ,δ(E)≤CS

q
µ,δ(E),

with some constant C fixed. So as 1) is proved.
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2). We firstly prove that

L
q
µ(E)≥C

q
µ(E) and L

q
µ(E)≥C

q
µ(E).

Indeed, let
(

B(xi,δ)
)

i
be a centered δ-packing of E and

(
B(yi,δ/2)

)
be a centered δ/2-

covering of E. Consider for each i, the integer ki such that xi ∈ B(yki
,δ/2). It is straight-

forward that for i 6= j we have ki 6= kj. Consequently, for q∈R
∗k
− , there holds that

∑
i

(
µ(B(xi,δ))

)q
=∑

i

( µ(B(xi,δ))

µ(B(yki
,δ/2))

)q(
µ
(

B
(

yki
,
δ

2

)))q

≤∑
i

(
µ
(

B
(

yi,
δ

2

)))q
.

Which means that
S

q
µ,δ(E)≤T

q

µ, δ
2

(E)

and thus, for any q∈R
∗k
− ,

L
q
µ(E)≥C

q
µ(E) and L

q
µ(E)≥C

q
µ(E).

Using the assertion 1), we obtain the equalities

L
q
µ(E)=C

q
µ(E) and L

q
µ(E)=C

q
µ(E)

for all q∈R
∗k
− . Therefore, to prove i), it remains to prove the inequality of the left hand

side. So, let t > L
q
µ(E) and F ⊆ E. Consider next a sequence (δn)n ⊆ [0,1] to be ↓ 0, and

satisfying

t>
log(T

q
µ,δn

(E))

−logδn
, ∀n∈N.

This means that for each n∈N, there exists a centered δn-covering
(

B(xni,δn)
)

i
of E such

that

∑
i

(
µ(B(xni,δn))

)q
<δ−t

n .

There balls may be considered to be intersecting the set F. Next, for each i, choose an
element yi∈B(xni,δn)∩F. This results on a centered 2δn-covering

(
B(yi,2δn)

)
i
of F. There-

fore,

H
q,t
µ,2δn

(F)≤∑
i

(
µ(B(xni,δn))

)q
(4δn)

t

=4t∑
i

(µ(B(yi,2δn))

µ(B(xni,δn))

)q(
µ(B(xni,δn))

)q
δt

n

≤4t∑
i

(
µ(B(xni,δn))

)q
δt

n

≤4tδ−t
n δt

n =4t.
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Hence,

H
q,t
µ (F)≤4t, ∀F⊆E, t> L

q
µ(E).

So that,
H

q,t
µ (E)≤4t

<∞, ∀t> L
q
µ(E).

Consequently,
bµ,E(q)≤ t, ∀t> L

q
µ(E)⇒bµ,E(q)≤ L

q
µ(E).

The remaining part can be proved by following similar techniques.

Next we need to introduce the following quantities which will be useful later. Let
µ=(µ1,µ2,··· ,µk) be a vector valued measure composed of probability measures on R

d.
For j=1,2,··· ,k, a>1 and E⊆supp(µ), denote

T
j
a(E)= limsup

r↓0

(
sup
x∈E

µj

(
B(x,ar)

)

µj

(
B(x,r)

)
)

and for x∈supp(µ), T
j
a(x)=T

j
a({x}). Denote also

P0(R
d,E)={µ; ∃a>1; ∀x∈E, T

j
a(x)<∞, ∀j},

P1(R
d,E)={µ; ∃a>1; T

j
a(E)<∞, ∀j},

P0(R
d)=P0(R

d,supp(µ)) and P1(R
d)=P1(R

d,supp(µ)).

Theorem 5.2. For

1). For µ∈P0(Rd) and q∈R
∗k
+ , there holds that

bµ,E(q)≤ L
q
µ(E).

2). For µ∈P1(R
d) and q∈R

∗k
+ , there holds that

i) L
q
µ(E)=C

q
µ(E).

ii) Lµ,E(q)=C
q
µ(E)=Λµ,E(q).

Proof. 1). The vector valued measure µ∈P0(Rd) yields that

E=
⋃

m∈N

Em,

where

Em =
{

x∈E;
µj(B(xi,4r))

µj(B(xi,r))
<m, 0< r<

1

m
, ∀j

}
.

Next, remark that for t > L
q
µ(E) and F ⊆ Em, there exists a sequence (δn)n ∈ [0,1] ↓ 0 for

which

t<
log(T

q
µ,δn

(F))

−logδn
, ∀n∈N.
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Therefore, there exists a centered δn-covering (B(xni,δn))i of F satisfying

∑
i

(
µ(B(xni,δn))

)q
<δ−t

n .

Let next yni ∈B(xni,δn). Then, (B(xni,2δn))i is a centered 2δn-covering of F. Hence,

H
q,t
µ,2δn

(F)≤∑
i

(
µ(B(yni,2δn))

)q
(4δn)

t

≤4t∑
i

(µ(B(yni,2δn))

µ(B(xni,δn))

)q(
µ(B(xni,δn))

)q
δt

n

≤4t∑
i

(µ(B(xni,4δn))

µ(B(xni,δn))

)q(
µ(B(xni,δn))

)q
δt

n

≤4tm|q|∑
i

(
µ(B(xni,δn))

)q
δt

n

≤4tm|q|,

where |q|=q1+q2+···+qk. Thus,

H
q,t
µ (F)≤4tm|q|, ∀m, and F⊆Em.

Which means that

H
q,t
µ (Em)≤4tm|q|

<∞, ∀m, and t> L
q
µ(E).

Consequently,
bµ,Em(q)≤ t, ∀m, and t> L

q
µ(E).

Using the σ-stability of bµ,·(q) (see Proposition 4.2), it results that

bµ,E(q)≤ t, ∀t> L
q
µ(E)⇒bµ,E(q)≤ L

q
µ(E).

Assertion 2 is left to the reader.

We now re-introduce the mixed multifractal generalization of the Lq-dimensions called
also Renyi dimensions based on integral representations. See [15] for more details and
other results. For q∈R

∗,k, µ=(µ1,µ2,··· ,µk) and δ>0, we set

I
q
µ,δ=

∫

Sµ

(
µ(B(t,δ))

)q
dµ(t),

where, in this case,

Sµ =supp(µ1)×supp(µ2)×···×supp(µk),(
µ(B(t,δ))

)q
=
(

µ1(B(t1,δ))
)q1

(
µ2(B(t2,δ))

)q2

···
(

µk(B(tk,δ))
)qk

,
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and
dµ(t)=dµ1(t1)dµ2(t2)···dµk(tk).

The mixed multifractal generalizations of the Renyi dimensions are

I
q
µ= limsup

δ↓0

log I
q
µ,δ

−logδ
and I

q
µ = liminf

δ↓0

log I
q
µ,δ

−logδ
.

We now propose to relate these dimensions to the quantities C
q
µ, C

q
µ, L

q
µ, L

q
µ introduced

previously.

Proposition 5.1. The following results hold:

a). ∀q∈R
∗,k
− ,

C
q+I

µ (supp(µ))≥ I
q
µ and C

q+I

µ (supp(µ))≥ I
q
µ.

b). ∀q∈R
∗,k
+ ,

C
q+I

µ (supp(µ))≤ I
q
µ and C

q+I

µ (supp(µ))≤ I
q
µ.

c). ∀q∈R
∗,k, µ∈P1(R

d),

C
q+I

µ (supp(µ))= I
q
µ and C

q+I

µ (supp(µ))= I
q
µ.

d). ∀q∈R
∗,k
− ,

I
q
µ≤ L

q+I

µ (supp(µ)) and I
q
µ≤ L

q+I

µ (supp(µ)).

Proof. We only prove a). The remaining proofs of points b), c) and d) follow the same
ideas.

For δ> 0, let (B(xi,δ))i be a centered δ-covering of supp(µ) and let next (B(xij,δ))j,
1≤ i≤ ξ the ξ sets defined in Besicovitch covering theorem. It holds that

∑
i,j

(
µ(B(xij,δ))

)q+I

=∑
i,j

(
µ(B(xij,δ))

)q∫

B(xij,δ)k
dµ(t)

≥∑
i,j

∫

B(xij,δ)k

(
µ(B(t,2δ))

)q
dµ(t)

≥
∫

Sµ

(
µ(B(t,2δ))

)q
dµ(t).

As a results,
ξS

q+I

µ,δ (supp(µ))≥ I
q
µ,2δ.

Which implies that

C
q+I

µ (supp(µ))≥ I
q
µ and C

q+I

µ (supp(µ))≥ I
q
µ.

Thus, we complete the proof.
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6 A mixed multifractal formalism for vector valued measures

Let µ = (µ1,µ2,··· ,µk) be a vector valued probability measure on R
d. For x ∈ R

d and
j=1,2,··· ,k, we denote

αµ j
(x)= liminf

r↓0

log(µj(B(x,r)))

logr
and αµ j

(x)= limsup
r↓0

log(µj(B(x,r)))

logr
,

respectively the local lower dimension and the local upper dimension of µj at the point x
and as usually the local dimension αµ j

(x) of µj at x will be the common value when these

are equal. Next for α=(α1,α2,··· ,αk)∈R
k
+, let

Xα={x∈supp(µ); αµ j
(x)≥αj, ∀j=1,2,··· ,k},

X
α
={x∈supp(µ); αµ j

(x)≤αj, ∀j=1,2,··· ,k},

and

X(α)=Xα∩X
α
.

The mixed multifractal spectrum of the vector valued measure µ is defined by

α 7−→dimX(α),

where dim stands for the Hausdorff dimension.

In this section, we propose to compute such a spectrum for some cases of measures
that resemble to the situation raised by Olsen in [9] but in the mixed case. This will
permit to describe better the simultaneous behavior of finitely many measures. We intend
precisely to compute the mixed spectrum based on the mixed multifractal generalizations
of the Haudorff and packing dimensions bµ, Bµ and Λµ. We start with the following
technic results.

Lemma 6.1. For

1). ∀δ>0, t∈R and q∈R
k
+, α∈R

k such that 〈α,q〉+t≥0, we have

i). H〈α,q〉+t+kδ(X
α
)≤2〈α,q〉+kδH

q,t
µ (X

α
).

ii). P〈α,q〉+t+kδ(X
α
)≤2〈α,q〉+kδP

q,t
µ (X

α
).

2). ∀δ>0, t∈R and q∈R
k
−, α∈R

k such that 〈α,q〉+t≥0, we have

i). H〈α,q〉+t+kδ(Xα)≤2〈α,q〉+kδH
q,t
µ (Xα).

ii). P〈α,q〉+t+kδ(Xα)≤2〈α,q〉+kδP
q,t
µ (Xα).
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Proof. 1). For i), We prove the first part. For m∈N
∗, consider the set

X
α
m =

{
x∈X

α
;
log(µj(B(x,r)))

logr
≤αj+

δ

qj
; 0< r<

1

m
, 1≤ j≤ k

}
.

Let next 0<η<1/m and (B(xi,ri))i a centered η-covering of X
α
m. It holds that

(µ(B(xi,ri)))
q≥ r

〈α,q〉+kδ
i .

Consequently,

H
〈α,q〉+t+kδ
η (X

α
m)≤∑

i

(2ri)
〈α,q〉+t+kδ≤2〈α,q〉+kδ∑

i

(µ(B(xi,ri)))
q(2ri)

t.

Hence, ∀η>0, there holds that

H
〈α,q〉+t+kδ
η (X

α
m)≤2〈α,q〉+kδ

H
q,t
µ,η(X

α
m).

Which means that

H
〈α,q〉+t+kδ(X

α
m)≤2〈α,q〉+kδ

H
q,t
µ (X

α
m)≤2〈α,q〉+kδ

H
q,t
µ (X

α
m).

Next, observing that X
α
=

⋃
m X

α
m, we obtain

H
〈α,q〉+t+kδ(X

α
)≤2〈α,q〉+kδ

H
q,t
µ (X

α
).

ii). For q∈R
∗,k
+ and m∈N

∗, consider the set X
α
m defined previously and let E⊆X

α
m,

0<η<1/m and
(

B(xi,ri)
)

i
a centered η-packing of E. We have

∑
i

(2ri)
〈α,q〉+t+kδ≤2〈α,q〉+kδ∑

i

(µ(B(xi,ri)))
q(2ri)

t≤2〈α,q〉+kδ
P

q,t
µ,η(E).

Consequently, ∀η>0,

P
〈α,q〉+t+kδ
η (E)≤2〈α,q〉+kδ

P
q,t
µ,η(E).

Hence, ∀E⊆X
α
m,

P
〈α,q〉+t+kδ

(E)≤2〈α,q〉+kδ
P

q,t
µ (E).

Let next, (Ei)i be a covering of X
α
m. Thus,

P
〈α,q〉+t+kδ(X

α
m)=P

〈α,q〉+t+kδ
(⋃

i

(X
α
m∩Ei)

)
=∑

i

P
〈α,q〉+t+kδ

(
X

α
m∩Ei

)

≤∑
i

P
〈α,q〉+t+kδ

(
X

α
m∩Ei

)
≤2〈α,q〉+kδ∑

i

P
q,t
µ

(
X

α
m∩Ei

)

≤2〈α,q〉+kδ∑
i

P
q,t
µ (Ei).
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Hence, ∀m,

P
〈α,q〉+t+kδ(X

α
m)≤2〈α,q〉+kδ

P
q,t
µ (X

α
m).

Consequently,

P
〈α,q〉+t+kδ(X

α
)≤2〈α,q〉+kδ

P
q,t
µ (X

α
).

2). i). and ii). follow similar arguments and techniques as previously.

Proposition 6.1. Let α∈R
k
+ and q∈R

k. The following assertions hold:

a). Whenever 〈α,q〉+bµ(q)≥0, we have

i). dimX
α
≤〈α,q〉+bµ(q), ∀qR

k
+.

ii). dimXα≤〈α,q〉+bµ(q), ∀qR
k
−.

b). Whenever 〈α,q〉+Bµ(q)≥0, we have

i). DimX
α
≤〈α,q〉+Bµ(q), ∀qR

k
+.

ii). DimXα≤〈α,q〉+Bµ(q), ∀qR
k
−.

Proof. a). i). It follows from Lemma 6.1, assertion 1) i),

H
〈α,q〉+t+kδ(X

α
)=0, ∀t>bµ(q), δ>0.

Consequently,

dimX
α
≤〈α,q〉+t+kδ, ∀t>bµ(q), δ>0.

Hence,

dimX
α
≤〈α,q〉+bµ(q).

a). ii). It follows from Lemma 6.1, assertion 2) i), as previously, that

H
〈α,q〉+t+kδ(Xα)=0, ∀t>bµ(q), δ>0.

Hence,

dimXα≤〈α,q〉+t+kδ, ∀t>bµ(q), δ>0,

and finally,

dimXα≤〈α,q〉+bµ(q).

b). i). Observing Lemma 6.1, assertion 1) ii), we obtain

P
〈α,q〉+t+kδ(X

α
), ∀t>Bµ(q), δ>0.

Consequently,

DimX
α
≤〈α,q〉+t+kδ, ∀t>Bµ(q), δ>0.
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Hence,

DimX
α
≤〈α,q〉+Bµ(q).

b). ii). observing Lemma 6.1, assertion 2) ii), we obtain

P
〈α,q〉+t+kδ(Xα)=0, ∀t>Bµ(q), δ>0.

Hence,

DimXα≤〈α,q〉+t+kδ, ∀t>Bµ(q), δ>0,

and finally,

DimXα≤〈α,q〉+Bµ(q).

Thus, we complete the proof.

Lemma 6.2. ∀q∈R
k such that

〈α,q〉+bµ(q)<0 or 〈α,q〉+Bµ(q)<0,

we have

X(α)=∅.

Proof. It is based on

1. For q∈R
k
− with 〈α,q〉+bµ(q)<0 or 〈α,q〉+Bµ(q)<0, Xα=∅.

2. For q∈R
k
+ with 〈α,q〉+bµ(q)<0 or 〈α,q〉+Bµ(q)<0, X

α
=∅.

Indeed, let q∈R
k
− and assume that Xα 6=∅. This means that there exists at least one point

x ∈ supp(µ) for which αµ j
(x)≥ αj, for 1 ≤ j ≤ k. Consequently, for all ε > 0, there is a

sequence (rn)n ↓0 and satisfying

0< rn <
1

n
and µj(B(x,rn))< r

αj−ε
n , 1≤ j≤ k.

Hence, (
µ(B(x,rn))

)q
(2rn)

t
>2tr

〈(α−εI),q〉+t
n .

Choosing t= 〈(εI−α),q〉, this induces that H
q,t
µ ({x})>2t and consequently,

bµ(q)≥dim
q
µ({x})≥ t, ∀ε>0.

Letting ε ↓ 0, it results that bµ(q)≥−〈α,q〉 which is impossible. So as the first part of 1.
The remaining part as well as 2 can be checked by similar techniques.
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Theorem 6.1. Let µ= (µ1,µ2,··· ,µk) be a vector-valued Borel probability measure on R
d and

q∈R
k fixed. Let further tq ∈R, rq > 0, Kq, Kq > 0, νq a Borel probability measure supported by

supp(µ), ϕq : R+→R be such that ϕq(r)= o(logr), as r→0. Let finally (rq,n)n ⊂ [0,1]↓0 and
satisfying

logrq,n+1

logrq,n
→1 and ∑

n

rε
q,n <∞, ∀ε>0.

Assume next the following assumptions:

A1). ∀x∈ supp(µ)andr∈ [0,rq ],

Kq ≤
νq(B(x,r))

(
µ(B(x,r))

)q
(2r)tq exp(ϕq(r))

≤Kq.

A2). Cq(p)= lim
n→+∞

Cq,n(p) exists and finite for all p∈R, where

Cq,n(p)=
1

−logrq,n
log

(∫

supp(µ)

(
µ(B(x,rq,n))

)p
dνq(x)

)
.

Then, the following assertions hold.

i).

dim(X−∇+Cq(0)∩X
−∇−Cq(0))

≥

{
−∇−Cq(0)q+Λµ(q)≥−∇−Cq(0)q+Bµ(q)≥−∇−Cq(0)q+bµ(q), q∈R

k
−,

−∇+Cq(0)q+Λµ(q)≥−∇+Cq(0)q+Bµ(q)≥−∇+Cq(0)q+bµ(q), q∈R
k
+.

ii). Whenever Cq is differentiable at 0, we have

fµ(−∇Cq(0))=b∗µ(−∇Cq(0))=B∗
µ(−∇Cq(0))=Λ∗

µ(−∇Cq(0)).

Theorem 6.2. Assume that the hypotheses of Theorem 6.1 are satisfied for all q∈R
k. Then, the

following assertions hold:

i). αµ =−Bµ, νq, a.s., whenever Bµ is differentiable at q.

ii). Dom(B)⊆αµ(supp(µ)) and fµ =B∗
µ on Dom(B).

The proof of this result is based on the application of a large deviation formalism.

This will permit to obtain a measure ν supported by X−∇+C(0)∩X
−∇−C(0)

. To do this, we
re-formulate a mixed large deviation formalism to be adapted to the mixed multifractal
formalism raised in our work.
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Theorem 6.3 (The Mixed Large Deviation Formalism). Consider a sequence of vector-valued
random variables (Wn = (Wn,1,Wn,2,··· ,Wn,k))n on a probability space (Ω,A,P) and (an)n ⊂
[0,+∞] with limn→+∞ an =+∞. Let next the function

Cn : R
k→R,

t 7→Cn(t)=
1

an
log

(
E(exp(〈t,Wn〉))

)
.

Assume that

A1). Cn(t) is finite for all n and t.

A2). C(t)= limn→+∞ Cn(t) exists and is finite for all t.

There holds that

i). The function C is convex.

ii). If ∇−C(t)≤∇+C(t)<α, for some t∈R
k, then

limsup
n→+∞

1

an
log

(
e−anC(t)E

(
exp(〈t,Wn〉)1{Wn

an
≥α}

))
<0.

iii). If ∑n e−εan <∞ for all ε>0, then

limsup
n→+∞

Wn

an
≤∇+C(0) P a.s.

iv). If α<∇−C(t)≤∇+C(t), for some t∈R
k, then

limsup
n→+∞

1

an
log

(
e−anC(t)E

(
exp(〈t,Wn〉)1{Wn

an
≤α}

))
<0.

v). If ∑n e−εan is finite for all ε>0, then

∇−C(0)≤ limsup
n→+∞

Wn

an
P a.s.

Proof. i). It follows from Holder’s inequality.
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ii). Let h∈R
∗,k
+ be such that C(t)+〈α,h〉−C(t+h)>0. We have

1

an
log

[
e−anC(t)

E

(
exp(〈t,Wn〉)1{Wn

an
≥α}

)]

=
1

an
log

[
e−anC(t)

∫

{Wn
an

≥α}
e〈t,Wn〉dP

]

=
1

an
log

[
e−an(C(t)+〈α,h〉)

∫

{Wn
an

≥α}
e〈t,Wn〉+an〈α,h〉dP

]

≤
1

an
log

[
e−an(C(t)+〈α,h〉)

∫

{Wn
an

≥α}
e〈t+h,Wn〉dP

]

≤
1

an
log

[
e−an(C(t)+〈α,h〉)

E(exp(〈t+h,Wn〉))
]

=
1

an
log

[
e−an(C(t)+〈α,h〉−Cn(t+h))

]

=−(C(t)+〈α,h〉−Cn(t+h)).

Next, by taking the limsup as n−→+∞, the result follows immediately.
iii). Denote for n,m∈N,

Tn,m=
{Wn

an
≥∇+C(0)+

1

m

}
.

By choosing t=0 and α=∇+C(0)+1/m in item ii), and observing that C(0)=0, we obtain

limsup
n→+∞

1

an
log

(
E
(

1{Wn
an

≥∇+C(0)+ 1
m }

))
<0,

which means that limsupn
1
an

logP(Tn,m)< 0. Consequently, for some ε > 0 and n large

enough, there holds that limsupn
1
an

logP(Tn,m)<−ε. Thus, P(Tn,m)<e−εan which implies
the convergence of the series ∑n P(Tn,m). Hence, using Borel-Cantelli theorem, we obtain

P(limsup
n

Tn,m)=0

for all m. Therefore,

P

(
limsup

n

Wn

an
>∇+C(0)

)
=P

(⋃

m

limsup
n

Tn,m

)
=0

and finally,

limsup
n

Wn

an
≤∇+C(0), P a.s..

Thus, we complete the proof.
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Proof of Theorem 6.1. For simplicity we denote t= tq , K=Kq, K=Kq, ϕ= ϕq, ν= νq and
rn = rq,n. Next, for x∈supp(µ), let

αµ j
(x,rn)= liminf

n

log
[
µj(B(x,rn)

]

logrn
and αµ j

(x,rn)= limsup
n

log
[
µj(B(x,rn)

]

logrn
.

i). Using the hypothesis A1). and Lemma 4.3 we obtain bµ(q)=Bµ(q)=Λµ(q)= t. Next,
it is straightforward that the set

M=
{

x∈supp(µ); −∇+C(0)≤αµ(x,rn)≤αµ(x,rn)≤−∇−C(0)
}

coincides with X−∇+C(0)∩X
−∇−C(0)

. Hence, by setting in the mixed large deviation for-
malism Theorem 6.3, Ω= supp(µ), A=B(supp(µ)), IP= µ, Wn(x)= log(µ(B(x,rn)))=
(log(µ1(B(x,rn)),log(µ2(B(x,rn)),··· ,log(µk(B(x,rn))) and an =−logrn, it holds that

αµ(x)≥

{
−∇−C(0)q+t, for q≤0,

−∇+C(0)q+t, for q≥0.

Finally, applying the famous Billingsley’s Theorem [7], we obtain

dimM≥

{
−∇−C(0)q+t, for q≤0,

−∇+C(0)q+t, for q≥0.

ii). Remark that if C is differentiable at 0, item i). states that

dimM≥−∇C(0)q+t≥Λ∗
µ(−∇C(0))≥B∗

µ(−∇C(0))≥b∗µ(−∇C(0)).

In the other hand, since the set M is not empty, Lemma 6.2 implies that −∇C(0)q+t≥0.
Hence, Proposition 6.1 yields that dimM≤−∇C(0)q+t for any q∈R

k. Thus, taking the
inf on q, we obtain

dimM≤b∗µ(−∇C(0))≤B∗
µ(−∇C(0))≤Λ∗

µ(−∇C(0)).

iii). We firstly claim that, there exists β>0 such that, for all x∈supp(µ) and 0<r≪1, we
have

µ(B(x,2r))

µ(B(x,r))
<β.

So let (B(xij,rn))1≤iξ,j the ξ sets relatively to Besicovitch theorem extracted from the set
(B(xi,rn))i. A careful computation yields that

|p+q−I|I
p+q−I

µ =Cq(p)+tq, ∀p,q∈R
k, (6.1)

where

|p+q−I|=
k

∑
i=1

(pi+qi−1).
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Theorem 5.1 and Proposition 5.1 guarantee that

|p+q−I|I
p+q−1
µ =C

p+q
µ (supp(µ))=Λµ(p+q).

Consequently, Cq(p)=Λµ(p+q)−Λµ(p). So, if Λµ is differentiable at q, Cq will be too at
0 and ∇Cq(0)=∇Λµ(q). Thus, using the mixed large deviation formalism, we obtain

αµ(x)=−∇Cq(0); νq for almost all x∈supp(µ),

hence, finally, αµ(x)=−∇Λµ(q).
iv). Let q be such that ∇Λµ(q) exists. Then ∇Cq(0) exists too. So, item ii). states that

fµ(−∇C(0))=Λ∗
µ(−∇C(0)).

Which completes the proof. �

Proof of Theorem 6.2. i). Using the same notations as previously, we obtain Cq differen-
tiable at 0, Bµ differentiable at q, and ∇Cq(0) =∇Bµ(q). In the other hand, we obtain
also

αµ(x)=αµ(x,rn)= lim
n

Wn(x)

−an
=−∇Cq(0)=∇Bµ(q), νq, a.s.

ii). Follows immediately from i). and Theorem 6.1. �
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