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Abstract. This paper introduces a unified operator theory approach to the abstract
Fourier analysis over homogeneous spaces of compact groups. Let G be a compact
group and H be a closed subgroup of G. Let G/H be the left coset space of H in G and
µ be the normalized G-invariant measure on G/H associated to the Weil’s formula.
Then, we present a generalized abstract framework of Fourier analysis for the Hilbert
function space L2(G/H,µ).
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1 Introduction

The abstract aspects of harmonic analysis over homogeneous spaces of compact non-
Abelian groups or precisely left coset (resp. right coset) spaces of non-normal subgroups
of compact non-Abelian groups is placed as building blocks for coherent states analy-
sis [2–4, 12], theoretical and particle physics [1, 9–11, 13]. Over the last decades, abstract
and computational aspects of Plancherel formulas over symmetric spaces have achieved
significant popularity in geometric analysis, mathematical physics and scientific comput-
ing (computational engineering), see [6, 7, 13–18] and references therein.

Let G be a compact group, H be a closed subgroup of G, and µ be the normalized
G-invariant measure on G/H associated to the Weil’s formula. The left coset space G/H
is considered as a compact homogeneous space, which G acts on it via the left action.
This paper which contains 5 sections, is organized as follows. Section 2 is devoted to
fix notations and preliminaries including a brief summary on Hilbert-Schmidt operators,
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non-Abelian Fourier analysis over compact groups, and classical results on abstract har-
monic analysis over locally compact homogeneous spaces. We present some abstract
harmonic analysis aspects of the Hilbert function space L2(G/H,µ), in Section 3. Then

we define the abstract notion of dual space Ĝ/H for the homogeneous space G/H and
we will show that this definition is precisely the standard dual space for the compact
quotient group G/H, when H is a closed normal subgroup of G. We then introduce the
definition of abstract operator-valued Fourier transform over the Banach function space
L1(G/H,µ) and also generalized version of the abstract Plancherel (trace) formula for
the Hilbert function space L2(G/H,µ). The paper closes by a presentation of Peter-Weyl
Theorem for the Hilbert function space L2(G/H,µ).

2 Preliminaries and notations

Let H be a separable Hilbert space. An operator T ∈B(H) is called a Hilbert-Schmidt
operator if for one, hence for any orthonormal basis {ek} of H we have ∑k‖Tek‖2 < ∞.
The set of all Hilbert-Schmidt operators on H is denoted by HS(H) and for T ∈HS(H)
the Hilbert-Schmidt norm of T is ‖T‖2

HS = ∑k‖Tek‖2. The set HS(H) is a self adjoint
two sided ideal in B(H) and if H is finite-dimensional we have HS(H) =B(H). An
operator T ∈B(H) is trace-class, whenever ‖T‖tr = tr[|T|]<∞, if tr[T] =∑k〈Tek,ek〉 and
|T|=(TT∗)1/2 [20].

Let G be a compact group with the probability Haar measure dx. Then each irre-
ducible representation of G is finite dimensional and every unitary representation of G is
a direct sum of irreducible representations, see [1,10]. The set of of all unitary equivalence
classes of irreducible unitary representations of G is denoted by Ĝ. This definition of Ĝ is
in essential agreement with the classical definition when G is Abelian, since each charac-
ter of an Abelian group is a one dimensional representation of G. If π is any unitary repre-
sentation of G, for ζ,ξ∈Hπ the functions πζ,ξ(x)=〈π(x)ζ,ξ〉 are called matrix elements of
π. If {ej} is an orthonormal basis for Hπ , then πij means πei,e j

. The notation Eπ is used for
the linear span of the matrix elements of π and the notation E is used for the linear span
of

⋃
[π]∈ĜEπ . Then Peter-Weyl Theorem [1, 10] guarantees that if G is a compact group, E

is uniformly dense in C(G), L2(G)=
⊕

[π]∈ĜEπ , and {d−1/2
π πij : i, j=1,··· ,dπ ,[π]∈ Ĝ} is an

orthonormal basis for L2(G). For f ∈L1(G) and [π]∈ Ĝ, the Fourier transform of f at π is
defined in the weak sense as an operator in B(Hπ) by

f̂ (π)=
∫

G
f (x)π(x)∗dx. (2.1)

If π(x) is represented by the matrix (πij(x))∈Cdπ×dπ . Then f̂ (π)∈Cdπ×dπ is the matrix

with entries given by f̂ (π)ij =d−1
π cπ

ji ( f ) which satisfies

dπ

∑
i,j=1

cπ
ij ( f )πij(x)=dπ

dπ

∑
i,j=1

f̂ (π)jiπij(x)=dπtr[ f̂ (π)π(x)],
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where cπ
i,j( f )=dπ〈 f ,πij〉L2(G). Then as a consequence of Peter-Weyl Theorem we get [19,

21, 23]

‖ f‖2
L2(G)= ∑

[π]∈Ĝ

dπ‖ f̂ (π)‖2
HS. (2.2)

Let H be a closed subgroup of G with the probability Haar measure dh. The left coset
space G/H is considered as a compact homogeneous space that G acts on it from the left
and q : G→G/H given by x 7→ q(x) := xH is the surjective canonical map. The classical
aspects of abstract harmonic analysis on locally compact homogeneous spaces are quite
well studied by several authors, see [5,8,10,11,22] and references therein. If G is compact,
each transitive G-space can be considered as a left coset space G/H for some closed sub-
group H of G. The function space C(G/H) consists of all functions TH( f ), where f ∈C(G)
and

TH( f )(xH)=
∫

H
f (xh)dh. (2.3)

Let µ be a Radon measure on G/H and x ∈ G. The translation µx of µ is defined by
µx(E) = µ(xE), for all Borel subsets E of G/H. The measure µ is called G-invariant if
µx=µ, for all x∈G. The homogeneous space G/H has a normalized G-invariant measure
µ, which satisfies the following Weil’s formula [1, 22]

∫

G/H
TH( f )(xH)dµ(xH)=

∫

G
f (x)dx for all f ∈L1(G), (2.4)

and also the following norm-decreasing formula

‖TH( f )‖L1(G/H,µ)≤‖ f‖L1(G) for all f ∈L1(G).

3 Abstract harmonic analysis of Hilbert function spaces over

homogeneous spaces of compact groups

Throughout this paper we assume that G is a compact group with the probability Haar
measure dx, H is a closed subgroup of G with the probability Haar measure dh, and also
µ is the normalized G-invariant measure on the homogeneous space G/H which satisfies
(2.4).

In this section, we present some properties of the Hilbert function space L2(G/H,µ)
in the framework of abstract harmonic analysis.

First we shall show that the linear map TH has a unique extension to a bounded linear
map from L2(G) onto L2(G/H,µ).

Theorem 3.1. Let H be a closed subgroup of a compact group G and µ be the normalized G-
invariant measure on G/H associated to the Weil’s formula. The linear map TH :C(G)→C(G/H)
has a unique extension to a bounded linear map from L2(G) onto L2(G/H,µ).
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Proof. Let µ be the normalized G-invariant measure on the homogeneous space G/H
which satisfies (2.4) and f ∈C(G). Then we claim that

‖TH( f )‖L2(G/H,µ)≤‖ f‖L2(G). (3.1)

To this end, using compactness of H, we have

‖TH( f )‖p

L2(G/H,µ)
=
∫

G/H
|TH( f )(xH)|2dµ(xH)=

∫

G/H

∣∣∣∣
∫

H
f (xh)dh

∣∣∣∣
2

dµ(xH)

≤
∫

G/H

(∫

H
| f (xh)|dh

)2

dµ(xH)≤
∫

G/H

∫

H
| f (xh)|2dhdµ(xH).

Then, by the Weil’s formula, we get

∫

G/H

∫

H
| f (xh)|2dhdµ(xH)=

∫

G/H

∫

H
| f |2(xh)dhdµ(xH)

=
∫

G/H
TH(| f |2)(xH)dµ(xH)=

∫

G
| f (x)|2dx=‖ f‖2

L2 (G),

which implies (3.1). Thus, we can extend TH to a bounded linear operator from L2(G)
onto L2(G/H,µ), which we still denote it by TH and satisfies

‖TH( f )‖L2(G/H,µ)≤‖ f‖L2(G) for all f ∈L2(G).

Thus, we complete the proof.

Let J2(G,H) :={ f ∈L2(G) :TH( f )=0} and J2(G,H)⊥ be the orthogonal completion of
the closed subspace J2(G,H) in L2(G).

As an immediate consequence of Theorem 3.1 we deduce the following result.

Proposition 3.1. Let H be a closed subgroup of a compact group G and µ be the normal-
ized G-invariant measure on G/H associated to the Weil’s formula. Then TH : L2(G)→
L2(G/H,µ) is a partial isometric linear map.

Proof. Let ϕ∈L2(G/H,µ) and ϕq := ϕ◦q. Then ϕq∈L2(G) with

‖ϕq‖L2(G)=‖ϕ‖L2(G/H,µ). (3.2)

Indeed, using the Weil’s formula we can write

‖ϕq‖2
L2(G)=

∫

G
|ϕq(x)|2dx=

∫

G/H
TH

(
|ϕq|2

)
(xH)dµ(xH)

=
∫

G/H

(∫

H
|ϕq(xh)|2dh

)
dµ(xH),
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and since H is compact and dh is a probability measure, we get

∫

G/H

(∫

H
|ϕq(xh)|2dh

)
dµ(xH)=

∫

G/H

(∫

H
|ϕ(xhH)|2dh

)
dµ(xH)

=
∫

G/H

(∫

H
|ϕ(xH)|2dh

)
dµ(xH)

=
∫

G/H
|ϕ(xH)|2

(∫

H
dh

)
dµ(xH)

=
∫

G/H
|ϕ(xH)|2dµ(xH)=‖ϕ‖2

L2(G/H,µ),

which implies (3.2). Then T∗
H(ϕ)=ϕq and THT∗

H(ϕ)=ϕ. Because using the Weil’s formula
we have

〈T∗
H(ϕ), f 〉L2(G)=〈ϕ,TH( f )〉L2(G/H,µ)=

∫

G/H
ϕ(xH)TH( f )(xH)dµ(xH)

=
∫

G/H
ϕ(xH)TH( f )(xH)dµ(xH)=

∫

G/H
TH(ϕq. f )(xH)dµ(xH)

=
∫

G
ϕq(x) f (x)dx= 〈ϕq, f 〉L2(G),

for all f∈L2(G), which implies that T∗
H(ϕ)=ϕq. Now a straightforward calculation shows

that TH =THT∗
HTH. Then by Theorem 2.3.3 of [20], TH is a partial isometric operator.

We then can conclude the following corollaries as well.

Corollary 3.1. Let H be a closed subgroup of a compact group G. Let PJ2(G,H) and

PJ2(G,H)⊥ be the orthogonal projections onto the closed subspaces J2(G,H) and J2(G,H)⊥

respectively. Then, for each f ∈L2(G) and a.e. x∈G, we have

1. PJ2(G,H)⊥( f )(x)=TH( f )(xH).

2. PJ2(G,H)( f )(x)= f (x)−TH( f )(xH).

Corollary 3.2. Let H be a compact subgroup of a compact group G and µ be the normal-
ized G-invariant measure on G/H associated to the Weil’s formula. Then

1. J2(G,H)⊥={ψq : ψ∈L2(G/H,µ)}.

2. For f ∈J2(G,H)⊥ and h∈H we have Rh f = f .

3. For ψ∈L2(G/H,µ) we have ‖ψq‖L2(G)=‖ψ‖L2(G/H,µ).

4. For f ,g∈J2(G,H)⊥ we have 〈TH( f ),TH(g)〉L2(G/H,µ)= 〈 f ,g〉L2(G).

We finish this section by the following remark.
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Remark 3.1. Invoking Corollary 3.2 one can regard the Hilbert function space L2(G/H,µ)
as a closed linear subspace of the Hilbert function space L2(G), that is the closed linear
subspace consists of all f ∈L2(G) which satisfies Rh f = f for all h∈H. Then Theorem 3.1
and Proposition 3.1 guarantees that the bounded linear map

TH : L2(G)→ L2(G/H,µ)⊂ L2(G)

is an orthogonal projection.

4 Abstract trace formulas over homogeneous spaces of compact

groups

In this section, we present the abstract notions of dual spaces and Plancherel (trace) for-
mulas over homogeneous spaces of compact groups.

For a closed subgroup H of G, let

H⊥=
{
[π]∈ Ĝ : π(h)= I for all h∈H

}
. (4.1)

Then by definition we have

H⊥⊆ Ĝ. (4.2)

If G is Abelian, each closed subgroup H of G is normal and the compact group G/H is

Abelian and so Ĝ/H is precisely the set of all characters (one dimensional irreducible
representations) of G which are constant on H, that is precisely H⊥. If G is a non-Abelian

group and H is a closed normal subgroup of G, then the dual space Ĝ/H which is the set
of all unitary equivalence classes of unitary representations of the quotient group G/H,
has meaning and it is well-defined. Indeed, G/H is a non-Abelian group. In this case, the

map Φ : Ĝ/H→H⊥ defined by σ 7→Φ(σ) :=σ◦q is a Borel isomorphism and Ĝ/H=H⊥,
see [1, 19, 23]. Thus if H is normal, H⊥ coincides with the classic definitions of the dual
space either when G is Abelian or non-Abelian.

For a given closed subgroup H of G and also a continuous unitary representation
(π,Hπ) of G, define

Tπ
H :=

∫

H
π(h)dh, (4.3)

where the operator valued integral (4.3) is considered in the weak sense. In other words,

〈Tπ
Hζ,ξ〉=

∫

H
〈π(h)ζ,ξ〉dh for ζ,ξ∈Hπ . (4.4)

The function h 7→ 〈π(h)ζ,ξ〉 is bounded and continuous on H. Since H is compact, the
right integral is the ordinary integral of a function in L1(H). Hence, Tπ

H is a bounded
linear operator on Hπ with ‖Tπ

H‖≤1.
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Definition 4.1. Let H be a compact subgroup of a compact group G. The dual space Ĝ/H
of the left coset space G/H, is defined as the subset of Ĝ given by

Ĝ/H :=
{
[π]∈ Ĝ : Tπ

H 6=0
}
=

{
[π]∈ Ĝ :

∫

H
π(h)dh 6=0

}
. (4.5)

Then evidently we have

H⊥⊆ Ĝ/H. (4.6)

First we shall present an interesting property of (4.5), when the left coset space G/H
has the canonical quotient group structure.

Next theorem shows that the reverse inclusion of (4.6) holds, if H is a normal sub-
group of G.

Theorem 4.1. Let H be a closed normal subgroup of a compact group G. Then,

Ĝ/H=H⊥.

Proof. Let H be a closed normal subgroup of a compact group G. Invoking the inclusion

(4.6), it is sufficient to show that Ĝ/H ⊆ H⊥. Let [π]∈ Ĝ/H be given. Due to normality
of H in G the map τx : H→H given by h 7→τx(h) :=x−1hx belongs to Aut(H) and also we
have x−1Hx=H, for all x∈G. Let x∈G. Then by compactness of G we have d(τx(h))=dh
and hence we can write

∫

H
π(h)dh=

∫

xHx−1
π(τx(h))d(τx(h))=

∫

H
π(τx(h))dh

=
∫

H
π(x)∗π(h)π(x)dh=π(x)∗

(∫

H
π(h)dh

)
π(x)

=π(x)∗Tπ
Hπ(x),

which implies that π(x)Tπ
H = Tπ

Hπ(x). Since x ∈ G was arbitrary we deduce that Tπ
H ∈

C(π). Irreducibility of π guarantees that Tπ
H =αI for some constant α∈C with |α|≤1. By

definition of Ĝ/H we have Tπ
H 6= 0 and hence we get α 6= 0. Now let t∈ H be arbitrary.

Then we can write

π(t)=α−1π(t)αI=α−1π(t)Tπ
H =α−1

∫

H
π(th)dh=α−1

∫

H
π(h)dh=α−1Tπ

H = I,

which implies [π]∈H⊥ .

Let
KH

π :={ζ∈Hπ : π(h)ζ= ζ ∀h∈H} . (4.7)

Then, KH
π is a closed linear subspace of Hπ and R(Tπ

H)=KH
π , where

R(Tπ
H)={Tπ

Hζ : ζ∈Hπ}.

It is easy to see that [π]∈H⊥ if and only if KH
π =Hπ .

Then, we can also present the following results.
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Proposition 4.1. Let H be a closed subgroup of a compact group G and (π,Hπ) be a
continuous unitary representation of G. Then,

1. The operator Tπ
H is an orthogonal projection of Hπ onto KH

π .

2. The operator Tπ
H is unitary if and only if [π]∈H⊥.

Proof. (1) Using compactness of H, we have

(Tπ
H)

∗=
(∫

H
π(h)dh

)∗
=

∫

H
π(h)∗dh=

∫

H
π(h−1)dh=Tπ

H .

As well as, we can write

Tπ
HTπ

H =

(∫

H
π(h)dh

)(∫

H
π(t)dt

)
=

∫

H
π(h)

(∫

H
π(t)dt

)
dh

=
∫

H

(∫

H
π(h)π(t)dt

)
dh=

∫

H

(∫

H
π(ht)dt

)
dh=

∫

H
Tπ

Hdt=Tπ
H .

(2) The operator Tπ
H is unitary if and only if Tπ

H= I. The operator Tπ
H is identity if and only

if π(h)= I for all h∈H. Thus, Tπ
H is unitary if and only if [π]∈H⊥.

Let ϕ∈L1(G/H,µ) and [π]∈ Ĝ/H. The Fourier transform of ϕ at [π] is defined as the
linear operator

F(ϕ)(π)= ϕ̂(π) :=
∫

G/H
ϕ(xH)Γπ(xH)∗dµ(xH), (4.8)

on the Hilbert space Hπ , where for each xH ∈G/H the notation Γπ(xH) stands for the
bounded linear operator defined on the Hilbert space Hπ by Γπ(xH)=π(x)Tπ

H, that is

〈Γπ(xH)ζ,ξ〉= 〈π(x)Tπ
H ζ,ξ〉 for ζ,ξ∈Hπ . (4.9)

Then we have

〈Γπ(xH)ζ,ξ〉=TH(πζ,ξ)(xH)

for all ζ,ξ∈Hπ . Indeed,

〈Γπ(xH)ζ,ξ〉=〈π(x)Tπ
Hζ,ξ〉=

〈
π(x)

(∫

H
π(h)dh

)
ζ,ξ

〉

=

〈(∫

H
π(x)π(h)dh

)
ζ,ξ

〉
=

〈(∫

H
π(xh)dh

)
ζ,ξ

〉

=
∫

H
〈π(xh)ζ,ξ〉dh=

∫

H
πζ,ξ(xh)dh=TH(πζ,ξ)(xH).
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Remark 4.1. Let H be a closed normal subgroup of a compact group G and µ be the
normalized G-invariant measure over the left coset space G/H associated to the Weil’s
formula. Then it is easy to check that µ is a Haar measure of the compact quotient group

G/H and by Theorem 4.1 we have Ĝ/H=H⊥. Also, for each ϕ∈L1(G/H,µ) and [π]∈H⊥,
we have

ϕ̂(π)=
∫

G/H
ϕ(xH)π(x)∗dµ(xH).

Thus, we deduce that the abstract Fourier transform defined by (4.8) coincides with the
classical Fourier transform over the compact quotient group G/H if H is normal in G.

The operator-valued integral (4.8) is considered in the weak sense. That is

〈ζ, ϕ̂(π)ξ〉=
∫

G/H
ϕ(xH)〈ζ,Γπ(xH)∗ξ〉dµ(xH) for ζ,ξ∈Hπ . (4.10)

In other words, for [π]∈ Ĝ/H and ζ,ξ∈Hπ we have

〈ζ, ϕ̂(π)ξ〉=
∫

G/H
ϕ(xH)TH(πζ,ξ)(xH)dµ(xH). (4.11)

Because, we can write

〈ζ, ϕ̂(π)ξ〉=
∫

G/H
ϕ(xH)〈ζ,Γπ(xH)∗ξ〉dµ(xH)

=
∫

G/H
ϕ(xH)〈Γπ(xH)ζ,ξ〉dµ(xH)

=
∫

G/H
ϕ(xH)TH(πζ,ξ)(xH)dµ(xH).

If ζ,ξ∈Hπ , then we have

|〈ζ, ϕ̂(π)ξ〉|

=

∣∣∣∣
∫

G/H
ϕ(xH)TH(πζ,ξ)(xH)dµ(xH)

∣∣∣∣≤
∫

G/H
|ϕ(xH)|

∣∣TH(πζ,ξ)(xH)
∣∣dµ(xH)

=
∫

G/H
|ϕ(xH)|

∣∣∣∣
∫

H
πζ,ξ(xh)dh

∣∣∣∣dµ(xH)≤
∫

G/H
|ϕ(xH)|

(∫

H
|πζ,ξ(xh)|dh

)
dµ(xH)

≤
∫

G/H
|ϕ(xH)|

(∫

H
‖π(xh)ζ‖·‖ξ‖dh

)
dµ(xH)=

∫

G/H
|ϕ(xH)|

(∫

H
‖ζ‖·‖ξ‖dh

)
dµ(xH)

=‖ζ‖·‖ξ‖·
(∫

G/H
|ϕ(xH)|

(∫

H
dh

)
dµ(xH)

)
=‖ζ‖·‖ξ‖·‖ϕ‖L1 (G/H,µ),

so we deduce that ϕ̂(π) is a bounded linear operator on Hπ with

‖ϕ̂(π)‖≤‖ϕ‖L1(G/H,µ).

The following proposition presents the canonical connection of the abstract Fourier trans-
form defined in (4.8) with the classical Fourier transform (2.1).
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Proposition 4.2. Let H be a closed subgroup of a compact group G and µ be the nor-
malized G-invariant measure on G/H associated to the Weil’s formula. Then, for ϕ ∈
L1(G/H,µ) and [π]∈ Ĝ/H, we have

ϕ̂(π)= ϕ̂q(π). (4.12)

Proof. Using the Weil’s formula and also (4.11), for ζ,ξ∈Hπ , we can write

〈ζ, ϕ̂(π)ξ〉=
∫

G/H
ϕ(xH)TH(πζ,ξ)(xH)dµ(xH)=

∫

G/H
TH(ϕq ·πζ,ξ)(xH)dµ(xH)

=
∫

G
ϕq(x)πζ,ξ(x)dx=

∫

G
ϕq(x)〈π(x)ζ,ξ〉dx

=
∫

G
ϕq(x)〈ζ,π(x)∗ξ〉dx= 〈ζ, ϕ̂q(π)ξ〉,

which implies (4.12).

In the next theorem we show that the abstract Fourier transform defined in (4.8) sat-
isfies a generalized version of the Plancherel (trace) formula.

Theorem 4.2. Let H be a closed subgroup of a compact group G and µ be the normalized G-
invariant measure on G/H associated to the Weil’s formula. Then, each ϕ∈L2(G/H,µ) satisfies
the following Plancherel formula;

∑
[π]∈Ĝ/H

dπ‖ϕ̂(π)‖2
HS =‖ϕ‖2

L2(G/H,µ). (4.13)

Proof. Let ϕ∈L2(G/H,µ) be given. If [π]∈Ĝ with [π] 6∈Ĝ/H, then we have Tπ
H=0. Hence,

for ζ,ξ∈Hπ , we have TH(πζ,ξ)=0. Therefore, we get

ϕ̂q(π)=0. (4.14)

Indeed, using the Weil’s formula, for ζ,ξ∈Hπ we can write

〈ζ, ϕ̂q(π)ξ〉=
∫

G
ϕq(x)〈ζ,π(x)∗ξ〉dx=

∫

G
ϕq(x)〈π(x)ζ,ξ〉dx=

∫

G
ϕ(x)πζ,ξ(x)dx

=
∫

G/H
TH(ϕq.πζ,ξ)(xH)dµ(xH)=

∫

G/H
ϕ(xH)TH(πζ,ξ)(xH)dµ(xH)=0.

Using Eqs. (4.12), (4.14), invoking Plancherel formula (2.2), and also Corollary 3.2 we
achieve

∑
[π]∈Ĝ/H

dπ‖ϕ̂(π)‖2
HS = ∑

[π]∈Ĝ/H

dπ‖ϕ̂q(π)‖2
HS

= ∑
[π]∈Ĝ/H

dπ‖ϕ̂q(π)‖2
HS+ ∑

{[π]∈Ĝ:[π] 6∈Ĝ/H}
dπ‖ϕ̂q(π)‖2

HS

= ∑
[π]∈Ĝ

dπ‖ϕ̂q(π)‖2
HS =‖ϕq‖2

L2(G)=‖ϕ‖2
L2(G/H,µ),

which implies (4.13).
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Remark 4.2. Let H be a closed normal subgroup of a compact group G and µ be the
normalized G-invariant measure over the left coset space G/H associated to the Weil’s

formula. Then Theorem 4.1 implies that Ĝ/H = H⊥ and hence the Plancherel (trace)
formula (4.13) reads as follows;

∑
[π]∈H⊥

dπ‖ϕ̂(π)‖2
HS =‖ϕ‖2

L2(G/H,µ)

for all ϕ∈L2(G/H,µ), where

ϕ̂(π)=
∫

G/H
ϕ(xH)π(x)∗dµ(xH)

for all [π]∈H⊥, see Remark 4.1.

5 Peter-Weyl theorem for homogeneous spaces of compact

groups

In this section we present a version of Peter-Weyl Theorem [21] for the Hilbert function
space L2(G/H,µ).

Let (π,Hπ) be a continuous unitary representation of G such that Tπ
H 6= 0. Then the

functions πH
ζ,ξ : G/H→C defined by

πH
ζ,ξ(xH) := 〈π(x)Tπ

Hζ,ξ〉 for xH∈G/H (5.1)

for ξ,ζ∈Hπ are called H-matrix elements of (π,Hπ).
For xH∈G/H and ζ,ξ∈Hπ , we have

|πH
ζ,ξ(xH)|= |〈π(x)Tπ

Hζ,ξ〉|≤‖π(x)Tπ
Hζ‖‖ξ‖≤‖Tπ

H ζ‖‖ξ‖≤‖ζ‖‖ξ‖.

Also we can write
πH

ζ,ξ(xH)= 〈π(x)Tπ
Hζ,ξ〉=πTπ

H ζ,ξ(x). (5.2)

Invoking definition of the linear map TH and also Tπ
H we have

TH(πζ,ξ)(xH)=
∫

H
πζ,ξ(xh)dh=

∫

H
〈π(xh)ζ,ξ〉dh

=
∫

H
〈π(x)π(h)ζ,ξ〉dh= 〈π(x)Tπ

H ζ,ξ〉,

which implies that
TH(πζ,ξ)=πH

ζ,ξ . (5.3)

Theorem 5.1. Let H be a closed subgroup of a compact group G, µ be the normalized G-invariant
measure and (π,Hπ) be a continuous unitary representation of G such that Tπ

H 6=0. Then
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1. The subspace Eπ(G/H) depends on the unitary equivalence class of π.

2. The subspace Eπ(G/H) is a closed left invariant subspace of L1(G/H,µ).

Proof. (1) Let (σ,Hσ) be a continuous unitary representation of G such that [π]= [σ]. Let
S : Hπ →Hσ be the unitary operator which satisfies σ(x)S = Sπ(x) for all x ∈ G. Then
STπ

H =Tσ
HS and also Tσ

H 6=0. Thus for x∈G and ζ,ξ∈Hπ we can write

πH
ζ,ξ(xH)= 〈π(x)Tπ

Hζ,ξ〉Hπ
= 〈S−1σ(x)STπ

Hζ,ξ〉Hπ

= 〈σ(x)STπ
Hζ,Sξ〉Hσ

= 〈σ(x)Tσ
HSζ,Sξ〉Hσ

=σH
Sζ,Sξ(xH),

which implies that Eπ(G/H)=Eσ(G/H).
(2) It is straightforward.

If ζ,ξ belongs to an orthonormal basis {ei} for Hπ , H-matrix elements of [π] with
respect to an orthonormal basis {ej} changes in the form

πH
ij (xH)=πH

e j,ei
(xH)= 〈π(x)Tπ

Hej,ei〉 for xH∈G/H. (5.4)

The linear span of the H-matrix elements of a continuous unitary representation (π,Hπ)
satisfying Tπ

H 6=0, is denoted by Eπ(G/H) which is a subspace of C(G/H).

Definition 5.1. Let H be a closed subgroup of a compact group G and [π]∈ Ĝ/H. An or-
dered orthonormal basis B={eℓ :1≤ℓ≤dπ} of the Hilbert space Hπ is called H-admissible,
if it is an extension of an orthonormal basis {eℓ : 1≤ ℓ≤dπ,H} of the closed subspace KH

π ,
which equivalently means that dπ,H-first elements of B be an orthogonal basis of KH

π .

Let [π]∈Ĝ/H and Bπ={eℓ :1≤ℓ≤dπ} be an H-admissible basis for the representation
space Hπ . Then, each πiℓ with 1≤ i≤ dπ and 1≤ ℓ≤ dπ,H , is a well-defined continuous
function over G/H. Let Eℓ

π(G/H) be the subspace of C(G/H) spanned by the set Bℓ
π :=

{
√

dππiℓ : 1≤ i≤dπ}.

Proposition 5.1. Let [π]∈ Ĝ/H, Bπ be an H-admissible basis for the representation space Hπ ,
and 1≤ ℓ 6= ℓ′≤dπ,H. Then

1. dimEℓ
π(G/H)=dπ and B

ℓ
π is an orthonormal basis for Eℓ

π(G/H).

2. Eℓ
π(G/H) is a closed left translation invariant subspace of C(G/H).

3. Eℓ′
π(G/H)⊥Eℓ

π(G/H).

Proof. (1) Let 1≤ i,i′≤dπ . Then by Theorem 27.19 of [11] we get

〈πiℓ,πi′ℓ〉L2(G/H,µ)= 〈πiℓ,πi′ℓ〉L2(G)=d−1
π δii′ .

Since dimEℓ
π(G/H)≤ dπ we achieve that Bℓ

π is an orthonormal basis for Eℓ
π(G/H) and

hence dimEℓ
π(G/H)=dπ .
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(2) It is straightforward.
(3) Let 1≤ i,i′≤dπ . Applying Theorem 27.19 of [11] we get

〈πiℓ,πi′ℓ′〉L2(G/H,µ)= 〈πiℓ,πi′ℓ′〉L2(G)=d−1
π δii′δℓℓ′,

which completes the proof.

The following theorem shows that H-admissible bases lead to orthogonal decompo-
sitions of the subspace Eπ(G/H).

Theorem 5.2. Let H be a closed subgroup of a compact group G. Let [π] ∈ Ĝ/H and Bπ =
{eℓ,π : 1≤ ℓ≤dπ} be an H-admissible basis for the representation space Hπ . Then Bπ(G/H) :=
{
√

dππiℓ : 1≤ i≤ dπ ,1≤ ℓ≤ dπ,H} is an orthonormal basis for the Hilbert space Eπ(G/H) and
hence it satisfies the following direct sum decomposition

Eπ(G/H)=
dπ,H⊕

ℓ=1

Eℓ
π(G/H). (5.5)

Proof. It is straightforward to check that Bπ(G/H) spans the subspace Eπ(G/H). Then
Proposition 5.1 guarantees that Bπ(G/H) is an orthonormal set in Eπ(G/H). Since
dimEπ(G/H)≤ dπ,Hdπ we deduce that it is an orthonormal basis for Eπ(G/H), which
automatically implies the decomposition (5.5).

Next proposition lists basic properties of H-matrix elements.

Proposition 5.2. Let H be a closed subgroup of a compact group G, µ be the normalized G-
invariant measure on G/H, and (π,Hπ) be a continuous unitary representation of G. Then,

1. Tπ
H =0 if and only if Eπ(G)⊆J2(G,H).

2. If Tπ
H 6=0 then TH(Eπ(G))=Eπ(G/H) and T∗

H(Eπ(G/H))⊆Eπ(G).

3. Eπ(G)⊆J2(G,H)⊥ if and only if π(h)= I for all h∈H.

Then we can prove the following orthogonality relation concerning the functions in
E(G/H).

Theorem 5.3. Let H be a closed subgroup of a compact group G, µ be a normalized G-invariant

measure on G/H and [π] 6= [σ] ∈ Ĝ/H. The closed subspaces Eπ(G/H) and Eσ(G/H) are
orthogonal to each other as subspaces of the Hilbert space L2(G/H,µ).

Proof. Let ψ∈Eπ(G/H) and ϕ∈Eσ(G/H). Then we have ψq∈Eπ(G) and also ϕq∈Eσ(G).
Using Proposition 5.2, Corollary 3.2, and Theorem 27.15 of [11], we get

〈ϕ,ψ〉L2(G/H,µ)= 〈ϕq,ψq〉L2(G)=0,

which completes the proof.
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We can define

E(G/H) := the linear span of
⋃

[π]∈Ĝ/H

Eπ(G/H). (5.6)

Next theorem presents some analytic aspects of the function space E(G/H).

Theorem 5.4. Let H be a closed subgroup of a compact group G and µ be the normalized G-
invariant measure on G/H associated to the Weil’s formula. Then,

1. The linear operator TH maps E(G) onto E(G/H).

2. E(G/H) is ‖.‖L2(G/H,µ)-dense in L2(G/H,µ).

3. E(G/H) is ‖.‖sup-dense in C(G/H).

Proof. (1) It is straightforward.
(2) Let φ∈ L2(G/H,µ) and also f ∈ L2(G) with TH( f )= φ. Then by ‖·‖L2(G)-density

of E(G) in L2(G) we can pick a sequence { fn} in E(G) such that f = ‖·‖L2(G)−limn fn.
By Proposition 5.2 we have {TH( fn)}⊆E(G/H). Then continuity of the linear map TH :
L2(G)→ L2(G/H,µ) implies

φ=TH( f )=‖·‖L2(G/H,µ)−lim
n

TH( fn),

which completes the proof.
(3) Invoking uniformly boundedness of TH, uniformly density of E(G) in C(G), and

the same argument as used in (1), we get ‖·‖sup-density of E(G/H) in C(G/H).

The following theorem can be considered as an abstract extension of the Peter-Weyl
Theorem for homogeneous spaces of compact groups.

Theorem 5.5. Let H be a closed subgroup of a compact group G and µ be the normalized G-
invariant measure on G/H. The Hilbert space L2(G/H,µ) satisfies the following orthogonality
decomposition

L2(G/H,µ)=
⊕

[π]∈Ĝ/H

Eπ(G/H). (5.7)

Proof. Using Peter-Weyl Theorem, Proposition 5.2, and since the bounded linear map
TH : L2(G)→ L2(G/H,µ) is surjective we achieve that each ϕ∈ L2(G/H,µ) has a decom-

position to elements of Eπ(G/H) with [π]∈ Ĝ/H, namely

ϕ= ∑
[π]∈Ĝ/H

cπ ϕπ, (5.8)

with ϕπ ∈Eπ(G/H) for all [π]∈ Ĝ/H . Since the subspaces Eπ(G/H) with [π]∈ Ĝ/H are
mutually orthogonal we conclude that decomposition (5.8) is unique for each ϕ, which
guarantees (5.7).
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We immediately deduce the following corollaries.

Corollary 5.1. Let H be a closed subgroup of a compact group G and µ be the normalized

G-invariant measure on G/H. For each [π]∈ Ĝ/H, let Bπ = {eℓ,π : 1≤ ℓ≤ dπ} be an H-
admissible basis for the representation space Hπ . Then we have the following statements.

1. The Hilbert space L2(G/H,µ) satisfies the following direct sum decomposition

L2(G/H,µ)=
⊕

[π]∈Ĝ/H

dπ,H⊕

ℓ=1

Eℓ
π(G/H). (5.9)

2. The set B(G/H) := {πiℓ : 1≤ i≤ dπ , 1≤ ℓ≤ dπ,H} constitutes an orthonormal basis
for the Hilbert space L2(G/H,µ).

3. Each ϕ∈L2(G/H,µ) decomposes as the following:

ϕ= ∑
[π]∈Ĝ/H

dπ

dπ,H

∑
ℓ=1

dπ

∑
i=1

〈ϕ,πiℓ〉L2(G/H,µ)πiℓ, (5.10)

where the series is converges in L2(G/H,µ).

Remark 5.1. Let H be a closed normal subgroup of a compact group G. Also, let µ be the
normalized G-invariant measure over G/H associated to the Weil’s formula. Then G/H
is a compact group and the normalized G-invariant measure µ is a Haar measure of the

quotient compact group G/H. By Theorem 4.1, we deduce that Ĝ/H=H⊥, and for each

[π]∈ Ĝ/H we get Tπ
H = I and dπ,H =dπ . Thus we obtain

L2(G/H)=
⊕

[π]∈H⊥
Eπ(G/H),

which precisely coincides with the decomposition associated to applying the Peter-Weyl
Theorem to the compact quotient group G/H.
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