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Abstract. We establish several fundamental identities, including recurrence relations,
degree elevation formulas, partition of unity and Marsden identity, for quantum Bern-
stein bases and quantum Bézier curves. We also develop two term recurrence relations
for quantum Bernstein bases and recursive evaluation algorithms for quantum Bézier
curves. Our proofs use standard mathematical induction and other elementary tech-
niques.
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1 Introduction and definitions

Bernstein bases are polynomial bases used as blending functions for the construction of
Bézier curves and surfaces. These bases have been used extensively over the last half
century in geometric modeling, computer aided geometric design (CAGD), and approx-
imation theory. The main application of Bézier curves and surfaces is in mathematical
modeling of curves and surfaces that are used in various real life problems. One essential
property of a Bézier curve or a Bézier surface is that it can be computed very efficiently
using affine recursive evaluation algorithms. This is due to certain structural properties
of the Bernstein basis functions that other polynomial bases do not possess.

The classical Bernstein polynomials were introduced by Bernstein in 1912 and have
found many applications in applied and computational mathematics since then. The clas-
sical Bézier curves and surfaces were introduced in 1962 by the French engineer Pierre
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Bézier who worked for the French car manufacturer Renault. He used Bézier curves and
surfaces to design and model aerodynamic car bodies [1]. The q-Bernstein polynomi-
als were introduced and studied only recently by G. Phillips and his collaborators [7].
The theory of quantum q- and h-Bézier curves in the context of the quantum q- and h-
blossoming was developed very recently by Goldman, Simeonov, and Zafiris [4, 9, 10].

In this paper, our main goal is to state and prove several of the most important
properties of the (q,h)-Bernstein polynomials and (q,h)-Bézier curves such as recurrence
relations, degree elevation algorithms, the partition of unity property, linear indepen-
dence (polynomial basis), recursive evaluation algorithms, and a (q,h)-Marsden identity.
This work extends and generalizes some analogous results of Goldman, Simeonov, and
Zafiris [2, 4, 9, 10] for q- and h-Bernstein polynomials and q- and h-Bézier curves. Most
of our proofs will use the method of mathematical induction (with respect to the poly-
nomial degree), instead of the blossoming techniques used by Goldman, Simeonov, and
Zafiris [2,4,9,10], since we lack the machinery of the (q,h)-blossoming theory. The advan-
tage of our approach is that we can establish all these important properties almost from
scratch using only the very popular and well-understood induction argument, instead of
the much less familiar theory of quantum blossoming.

We begin with some notation and terminology. Let g(t)= qt+h be a linear function,
q 6=0,−1. The j-th composition of the function g is defined by

g[j](t)=(g◦g◦··· ◦g
︸ ︷︷ ︸

j times

)(t), j≥1.

We set g[0](t)= t. For example

g[2](t)=(g◦g)(t)= g(g(t))=q2 t+qh+h,

g[3](t)= g(g[2](t))=q·g[2](t)+h=q3t+(q2+q+1)h.

Notice that

q+1=
1−q2

1−q
=[2]q and q2+q+1=

1−q3

1−q
=[3]q,

where [n]q =
1−qn

1−q if q 6=1, [n]q =n if q=1 and [n]0 =1 are the so-called q-integers [6]. By

induction it is easy to show that

g[n](t)=qn ·t+

(
1−qn

1−q

)

h=qnt+[n]qh. (1.1)

The (q,h)-Bernstein polynomials of degree n on the interval [a,b] are defined by [3]

Bn
k (t;[a,b];q,h)=

[
n

k

]

q

∏
k−1
j=0 (t−g[j](a))·∏n−k−1

j=0 (b−g[j](t))

∏
n−1
j=0 (b−g[j](a))

, (1.2)
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k=0,··· ,n. Here [nk]q are the q-binomial coefficients defined by [6]

[
n

k

]

q

=
(q;q)n

(q;q)k(q;q)n−k
, k=0,··· ,n,

and (a;q)n denotes the q-shifted factorial defined by [8]

(a;q)n =(1−a)(1−aq)··· (1−aqn−1), n≥1, (a;q)0 =1.

Therefore, we have the following limiting relation

lim
(q,h)→(1,0)

Bn
k (t;[a,b];q,h)=Bn

k (t;[a,b]), (1.3)

where

Bn
k (t;[a,b])=

(
n

k

)

(t−a)k(b−t)n−k, k=0,··· ,n,

are the classical Bernstein polynomials of degree n on the interval [a,b], [2].

The paper is organized as follows. In Section 2 we establish recurrence relations for
the (q,h)-Bernstein polynomials. The degree elevation formula for the (q,h)-Bernstein
polynomials is established in Section 3. The partition of unity property is given and
proved in Section 4. We show that the (q,h)-Bernstein polynomials form a basis for the
space of degree n polynomials in Section 5. Using the recurrence relations from Section
2, we derive two recursive evaluation algorithms for (q,h)-Bézier curves in Section 6.
Degree elevation for (q,h)-Bézier surfaces is discussed in Section 7, and the proof of the
(q,h)-Marsden identity is given in Section 8. We conclude the paper by discussing future
work in Section 9.

2 Recurrence relations for the (q,h)-Bernstein polynomials

In this section we derive two recurrence relations for the (q,h)-Bernstein polynomials
using the two recurrence relations for the q-binomial coefficients [6]:

[
n

k

]

q

=

[
n−1

k

]

q

+qn−k

[
n−1

k−1

]

q

, (2.1a)

[
n

k

]

q

=qk

[
n−1

k

]

q

+

[
n−1

k−1

]

q

, (2.1b)
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k=0,··· ,n. We set [ n
−1]q=0 and [ n

n+1]q =0. Substituting (2.1a) into (1.2), we get

Bn
k (t;[a,b];q,h)=

[
n−1

k

]

q

(

b−g[n−k−1](t)
)

∏
k−1
j=0

(

t−g[j](a)
)

∏
n−k−2
j=0

(

b−g[j](t)
)

(
b−g[n−1](a)

)

∏
n−2
j=0

(
b−g[j](a)

)

+qn−k

[
n−1

k−1

]

q

(

t−g[k−1](a)
)

∏
k−2
j=0

(

t−g[j](a)
)

∏
n−k−1
j=0 (b−g[j](t))

(
b−g[n−1](a)

)

∏
n−2
j=0

(
b−g[j](a)

)

=

(

b−g[n−k−1](t)

b−g[n−1](a)

)

Bn−1
k (t;[a,b];q,h)

+qn−k

(

t−g[k−1](a)

b−g[n−1](a)

)

Bn−1
k−1 (t;[a,b];q,h). (2.2)

Similarly, substituting (2.1b) into (1.2), we derive

Bn
k (t;[a,b];q,h)=qk

(

b−g[n−k−1](t)

b−g[n−1](a)

)

Bn−1
k (t;[a,b];q,h)

+

(

t−g[k−1](a)

b−g[n−1](a)

)

Bn−1
k−1 (t;[a,b];q,h). (2.3)

3 Degree elevation formula for the (q,h)-Bernstein polynomials

First we need to find coefficients c(n,k) and d(n,k) such that

c(n,k)[n+1]q
[k+1]q

·

(

t−g[k](a)
)

(
b−g[n](a)

)+
d(n,k)[n+1]q
[n+1−k]q

·

(

b−g[n−k](t)
)

(
b−g[n](a)

) =1. (3.1)

Suppose we have found these coefficients. Then we can write

Bn
k (t;[a,b];q,h)=

c(n,k)[n+1]q
(

t−g[k](a)
)

[k+1]q
(
b−g[n](a)

) Bn
k (t;[a,b];q,h)

+
d(n,k)[n+1]q

(

b−g[n−k](a)
)

[n+1−k]q
(
b−g[n](a)

) Bn
k (t;[a,b];q,h).

From the last equation and (1.2) it follows that

Bn
k (t;[a,b];q,h)= c(n,k)Bn+1

k+1 (t;[a,b];q,h)+d(n,k)Bn+1
k (t;[a,b];q,h), (3.2)

k= 0,··· ,n. Eq. (3.2) expresses a (q,h)-Bernstein polynomial of degree n as a linear com-
bination of two (q,h)-Bernstein polynomials of degree n+1. Now, we return to finding
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the coefficients c(n,k) and d(n,k). Comparing the like terms in (3.1), we obtain the linear
system

c(n,k)
[n+1]q
[k+1]q

−d(n,k)
[n+1]q

[n+1−k]q
qn−k=0, (3.3a)

−c(n,k)
[n+1]q
[k+1]q

g[k](a)
(
b−g[n](a)

)+d(n,k)
[n+1]q

[n+1−k]q

(
b−[n−k]qh

)

(
b−g[n](a)

) =1. (3.3b)

Multiplying (3.3a) by
g[k](a)

(b−g[n](a))
and adding to (3.3b) we get

d(n,k)=
[n+1−k]q

(

b−g[n](a)
)

[n+1]q
(
b−qn−kg[k](a)−[n−k]qh

) =
[n+1−k]q
[n+1]q

, (3.4)

since

b−qn−kg[k](a)−[n−k]qh

=b−qn−k(qka+[k]qh)−[n−k]qh

=b−qna−
h

1−q

(

qn−k(1−qk)+(1−qn−k)
)

=b−qna−[n]qh=b−g[n](a). (3.5)

From (3.3a) and (3.4) it follows that

c(n,k)=
[k+1]q

[n+1−k]q
qn−kd(n,k)=

[k+1]q
[n+1]q

qn−k. (3.6)

From (3.2), (3.4), and (3.6) we obtain the degree elevation formula

Bn
k (t;[a,b];q,k)=qn−k [k+1]q

[n+1]q
Bn+1

k+1 (t;[a,b];q,h)+
[n+1−k]q
[n+1]q

Bn+1
k (t;[a,b];q,h). (3.7)

4 Partition of unity

Proposition 4.1. The (q,h)-Bernstein polynomials satisfy the partition of unity property

n

∑
k=0

Bn
k (t;[a,b];q,h)=1. (4.1)

Proof. To prove (4.1), we use induction with respect to n≥0.
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When n = 0, by (1.2) we have B0
0(t;[a,b];q,h) = 1. Therefore (4.1) holds in this case.

Assume that (4.1) is true for some n≥ 0. Now we prove (4.1) for the case n+1. Using
recurrence relation (2.2), we can write

n+1

∑
k=0

Bn+1
k (t;[a,b];q,h)

=
n+1

∑
k=0

{ (b−g[n−k](t))

(b−g[n](a))
Bn

k (t;[a,b];q,h)+qn+1−k (t−g[k−1](a))

(b−g[n](a))
Bn

k−1(t;[a,b];q,h)
}

,

where Bn
n−1=0 and Bn

n+1=0. Then

n+1

∑
k=0

Bn+1
k (t;[a,b];q,h)

=
n

∑
k=0

(b−g[n−k](t))

(b−g[n](a))
Bn

k (t;[a,b];q,h)+
n

∑
k=0

qn−k (t−g[k](a))

(b−g[n](a))
Bn

k (t;[a,b];q,h)

=
n

∑
k=0

b−qn−kt−
(

1−qn−k

1−q

)

h+qn−kt−qn−k
(

qka+
(

1−qk

1−q

)

h
)

(b−g[n](a))
Bn

k (t;[a,b];q,h)

=
n

∑
k=0

{

b−qna−
(

1−qn

1−q

)

h
}

(b−g[n](a))
Bn

k (t;[a,b];q,h)

=
n

∑
k=0

Bn
k (t;[a,b];q,h)=1,

by the induction hypothesis. Therefore (4.1) is true for every n.

5 Polynomial basis

Proposition 5.1. The (q,h)-Bernstein polynomials of degree n form a basis for the space
of polynomials of degree at most n.

Proof. It suffices to show that for every n≥0 there exist coefficients {Cn,m,k}
n
k=0 such that

tm =
n

∑
k=0

Cn,m,kBn
k (t;[a,b];q,h), m=0,··· ,n. (5.1)

We use induction with respect to n. When n=0 we have B0
0(t;[a,b];q,h)=1. Assume that

(5.1) is true for some degree n≥0. We now prove (5.1) for degree n+1.
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First, let 0 ≤m ≤ n. By the induction hypothesis and the degree elevation equation
(3.2) we have

tm =
n

∑
k=0

Cn,m,kBn
k (t;[a,b];q,h)

=
n

∑
k=0

Cn,m,k

{

c(n,k)Bn+1
k+1 (t;[a,b];q,h)+d(n,k)Bn+1

k (t;[a,b];q,h)
}

=
n+1

∑
k=0

Cn+1,m,kBn+1
k (t;[a,b];q,h),

where
Cn+1,m,k=Cn,m,k−1c(n,k−1)+Cn,m,kd(n,k), (5.2)

k=0,··· ,n+1, and c(n,k) and d(n,k) are given by (3.6) and (3.4).
Now consider the monomial tn+1. By the induction hypothesis

tn+1=t·tn =
n

∑
k=0

Cn,n,ktBn
k (t;[a,b];q,h)

=
n

∑
k=0

Cn,n,k

{

c̃(n,k)Bn+1
k+1 (t;[a,b];q,h)+ d̃(n,k)Bn+1

k (t;[a,b];q,h)
}

,

where by (1.2) the coefficients c̃(n,k) and d̃(n,k) must satisfy the equation
{

c̃(n,k)
[n+1]q
[k+1]q

(t−g[k](a))+ d̃(n,k)
[n+1]q

[n+1−k]q
(b−g[n−k](t))

}

×
1

b−g[n](a)
= t. (5.3)

Equating the coefficients of t on the both sides of (5.3), we obtain

[n+1]q
[k+1]q

c̃(n,k)−
[n+1]q

[n+1−k]q
qn−kd̃(n,k)=b−g[n](a). (5.4)

Equating the constant coefficients on both sides of (5.3) we obtain

−
[n+1]qg[k](a)

[k+1]q
c̃(n,k)+

[n+1]q
[n+1−k]q

(
b−[n−k]qh

)
d̃(n,k)=0. (5.5)

Multiplying (5.4) by g[k](a) and adding to (5.5) yields

d̃(n,k)[n+1]q
[n+1−k]q

(

−qn−kg[k](a)+b−[n−k]qh
)

=(b−g[n](a))g[k](a).

Solving the last equation for d̃(n,k) and applying (3.5), we get

d̃(n,k)=

(

b−g[n](a)
)

g[k](a)[n+1−k]q
(
−qn−kg[k](a)+b−[n−k]qh

)
[n+1]q

=
[n+1−k]q
[n+1]q

g[k](a). (5.6)
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Then from (5.5) and (5.6) it follows that

c̃(n,k)=
[k+1]q

[n+1−k]q

(
b−[n−k]qh

)

g[k](a)
d̃(n,k)=

[k+1]q
[n+1]q

(
b−[n−k]qh

)
. (5.7)

Therefore
{

Bn+1
k (t;[a,b];q,h)

}n+1

k=0
is a basis for the space of polynomials of degree at most

n+1, and this completes the proof of Proposition 5.1.

6 Recursive evaluation algorithms for (q,h)-Bézier curves

A (q,h)-Bézier curve of degree n on the interval [a,b] is a polynomial curve of the form

P(t)=
n

∑
k=0

PkBn
k (t;[a,b];q,h). (6.1)

Given a degree n polynomial P(t), the coefficients {Pk}
n
k=0 in Eq. (6.1) are unique, because

by Proposition 5.1 the (q,h)-Bernstein polynomials form a basis. These coefficients are
called the control points of the (q,h)-Bézier curve P(t).

Using recurrence relations (2.2) and (2.3), we can derive two recursive evaluation
algorithms for (q,h)-Bézier curves. Below we describe these two algorithms.

We set P0
k =Pk, k=0,··· ,n to be the control points at level r=0. Suppose that for some

0≤ r≤n−1 we have found points {Pr
k}

n−r
k=0 such that

P(t)=
n−r

∑
k=0

Pr
k Bn−r

k (t;[a,b];q,h). (6.2)

Here Pr
k =Pr

k(t), k=0,··· ,n−r, are polynomials of degree r.

Substituting (2.2) into (6.2) (with Bn−r−1
−1 =Bn−r−1

n−r =0) we obtain

P(t)=
n−r

∑
k=0

Pr
k

{(

b−g[n−r−k−1](t)

b−g[n−r−1](a)

)

Bn−r−1
k (t;[a,b];q,h)

+qn−r−k

(

t−g[k−1](a)

b−g[n−r−1](a)

)

Bn−r−1
k−1 (t;[a,b];q,h)

}

=
n−r−1

∑
k=0

Bn−r−1
k (t;[a,b];q,h)

{(

b−g[n−r−k−1](t)

b−g[n−r−1](a)

)

Pr
k

+qn−r−k−1

(

t−g[k](a)

b−g[n−r−1](a)

)

Pr
k+1

}

=
n−r−1

∑
k=0

Pr+1
k Bn−r−1

k (t;[a,b];q,h),
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where the control points at level r+1 are

Pr+1
k =

(

b−g[n−r−k−1](t)

b−g[n−r−1](a)

)

Pr
k+qn−r−k−1

(

t−g[k](a)

b−g[n−r−1](a)

)

Pr
k+1, (6.3)

k=0,··· ,n−r−1.

At the last level n of this algorithm we get a single point Pn
0 which gives the value of

the Bézier curve at t, that is Pn
0 =P(t).

Similarly, substituting recurrence relation (2.3) into Eq. (6.2), we derive the second
recursive evaluation algorithm for (q,h)-Bézier curves:

Pr+1
k =qk

(

b−g[n−r−k−1](t)

b−g[n−r−1](a)

)

Pr
k +

(

t−g[k](a)

b−g[n−r−1](a)

)

Pr
k+1, (6.4)

k=0,··· ,n−r−1, r=0,··· ,n−1. Again, at the last level n we get Pn
0 =P(t).

7 Degree elevation for (q,h)-Bézier curves

Let

P(t)=
n

∑
k=0

PkBn
k (t;[a,b];q,h) (7.1)

be a (q,h)-Bézier curve of degree n on the interval [a,b]. We want to write P(t) as a (q,h)-
Bézier curve of degree n+1, that is,

P(t)=
n+1

∑
k=0

P̃kBn+1
k (t;[a,b];q,h). (7.2)

Substituting the degree-elevation formula (3.2) into (7.1), we get

P(t)=
n

∑
k=0

Pk

{

c(n,k)Bn+1
k+1 (t;[a,b];q,h)+d(n,k)Bn+1

k (t;[a,b];q,h)
}

=
n+1

∑
k=0

(d(n,k)Pk+c(n,k−1)Pk−1)Bn+1
k (t;[a,b];q,h),

where c(n,−1) = d(n,n+1) = 0 and the coefficients c(n,k) and d(n,k) are given by (3.6)
and (3.4). Therefore, the degree elevated control points {P̃k}

n+1
k=0 in (7.2) are given by

P̃k= c(n,k−1)Pk−1+d(n,k)Pk, (7.3)

k=0,··· ,n+1, where P−1=0 and Pn+1=0.
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8 The (q,h)-Marsden identity

Theorem 8.1 ((q,h)-Marsden Identity). The (q,h)-Bernstein polynomials on the interval [a,b]
satisfy

n−1

∏
j=0

(x−g[j](t))=
n

∑
k=0

{
n−1

∏
ν=k

(x−g[ν](a))

}{
k−1

∏
ν=0

(x−g[ν](b))

}

Bn
k (t,[a,b];q,h), (8.1)

where g(t)=qt+h and n≥1.

Proof. To prove (8.1) we use induction with respect to n.
First consider the case n=1. By (1.2) and (1.1) we have

B0
0 =1, B1

0(t;[a,b];q,h)=
b−t

b−a
, B1

1(t;[a,b];q,h)=
t−a

b−a
. (8.2)

In this case the left-hand side of (8.1) is (x−t), while the right-hand side of (8.1) is

(x−a)B1
0+(x−b)B1

1 =(x−a)
(b−t)

(b−a)
+(x−b)

(t−a)

(b−a)
=(x−t).

Therefore, (8.1) is true when n=1.
Next assume that (8.1) holds for some n≥1. Set

Pn,k(x)=
n−1

∏
ν=k

(x−g[ν](a))·
k−1

∏
ν=0

(x−g[ν](b)), k=0,··· ,n. (8.3)

Then (8.1) takes the form

n−1

∏
j=0

(x−g[j](t))=
n

∑
k=0

Pn,k(x)Bn
k (t;[a,b];q,h). (8.4)

Now we prove (8.4) for n+1. The left-hand side of (8.4) for n+1 is

n

∏
j=0

(x−g[j](t))=(x−g[n](t))
n−1

∏
j=0

(x−g[j](t))

=
n

∑
k=0

Pn,k(x)(x−g[n](t))Bn
k (t;[a,b];q,h)

=
n

∑
k=0

Pn,k(x)
(

en,kBn+1
k (t;[a,b];q,h)+ fn,k Bn+1

k+1 (t;[a,b];q,h)
)

=
n+1

∑
k=0

(Pn,k(x)en,k+Pn,k−1(x) fn,k−1)Bn+1
k (t;[a,b];q,h), (8.5)



I. Jegdić, J. Larson and P. Simeonov / Anal. Theory Appl., 32 (2016), pp. 373-386 383

with Pn,n+1=0 and Pn,−1=0, provided that we can find en,k=en,k(x) and fn,k= fn,k(x) such
that

(x−g[n](t))Bn
k = en,kBn+1

k + fn,kBn+1
k+1 , k=0,··· ,n. (8.6)

To simplify the notation we omit some of the variables and parameters in (8.6) and in the
equations that follow. From (1.2) and (8.6) we get

x−g[n](t)= ẽn,k(b−g[n−k](t))+ f̃n,k(t−g[k](a)), (8.7)

where

ẽn,k=
[n+1]q

[n+1−k]q
·

en,k
(
b−g[n](a)

) , f̃n,k=
[n+1]q
[k+1]q

·
fn,k

(
b−g[n](a)

) . (8.8)

Equating the constant terms and the t-terms in (8.7), we obtain the system

x−[n]qh=
(
b−[n−k]qh

)
ẽn,k−g[k](a) f̃n,k, (8.9a)

−qn =−qn−k ẽn,k+ f̃n,k, (8.9b)

where we used (1.1). Adding the second equation in (8.9) times g[k](a) to the first equation
in (8.9) yields

x−[n]qh−qng[k](a)=
(

b−[n−k]qh−qn−kg[k](a)
)

ẽn,k.

Therefore

ẽn,k=
x−[n]qh−qng[k](a)

b−[n−k]qh−qn−kg[k](a)
=

x−qng[k](a)−[n]qh

b−g[n](a)
, (8.10)

where we used (3.5). Then the second equation in (8.9) and (1.1) yield

f̃n,k=qn−k ẽn,k−qn

=
qn−kx−q2n−kg[k](a)−qn−k[n]qh−qnb+qng[n](a)

b−g[n](a)

=
qn−kx−q2na−q2n−k[k]qh−qn−k[n]qh−qnb+q2na+qn [n]qh

b−g[n](a)

=
qn−kx−qnb−(q2n−k−q2n+qn−k−q2n−k−qn+q2n)h/(1−q)

b−g[n](a)

=
qn−k

(
x−qkb−[k]qh

)

b−g[n](a)
=

qn−k
(

x−g[k](b)
)

b−g[n](a)
. (8.11)

From (8.8), (8.10), and (8.11) it follows that

en,k=
[n+1−k]q
[n+1]q

(

x−[n]qh−qng[k](a)
)

(8.12)
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and

fn,k =
[k+1]q
[n+1]q

qn−k
(

x−g[k](b)
)

. (8.13)

By (8.3) the coefficient of Bn+1
k in the last line of (8.5) equals

en,kPn,k(x)+ fn,k−1Pn,k−1(x)=
n−1

∏
ν=k

(x−g[ν](a))
k−2

∏
ν=0

(x−g[ν](b))

×
{

(x−g[k−1](b))en,k+(x−g[k−1](a)) fn,k−1

}

. (8.14)

Next, by (8.12) and (8.13), we get

[n+1]q
{

(x−g[k−1](b))en,k+(x−g[k−1](a)) fn,k−1

}

=(x−g[k−1](b))[n+1−k]q(x−[n]qh−qn g[k](a))

+qn+1−k[k]q(x−g[k−1](a))(x−g[k−1](b))

=(x−g[k−1](b))
{

[n+1−k]q
(

x−[n]qh−qng[k](a)
)

+qn+1−k[k]q(x−g[k−1](a))
}

. (8.15)

We now simplify the last expression in (8.15). We can write

[n+1−k]q(x−[n]qh−qng[k](a))+qn+1−k[k]q(x−g[k−1](a))=Ax−Ba−Ch. (8.16)

For the coefficients A,B, and C in (8.16) using (1.1) we derive

A=[n+1−k]q+qn+1−k[k]q =
1−qn+1−k+qn+1−k(1−qk)

1−q
=[n+1]q, (8.17a)

B=[n+1−k]qqn+k+qn+1−k[k]qqk−1=
(1−qn+1−k)qn+k+qn(1−qk)

1−q
=qn[n+1]q, (8.17b)

and

C=[n+1−k]q
(
[n]q+qn[k]q

)
+qn+1−k[k]q [k−1]q

=
(1−qn+1−k)(1−qn+qn−qn+k)+qn+1−k(1−qk)(1−qk−1)

(1−q)2

=
1−qn+1−k−qn+k+q2n+1+qn+1−k−qn+1−qn+qn+k

(1−q)2

=
(1−qn)(1−qn+1)

(1−q)2
=[n]q[n+1]q. (8.18)
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From (8.16), (8.17a), (8.17b), and (8.18) we get

[n+1−k]q(x−[n]qh−qng[k](a))+qn+1−k[k]q(x−g[k−1](a))

=[n+1]q(x−qna−[n]qh)= [n+1]q(x−g[n](a)). (8.19)

Then, from (8.15) and (8.19) it follows that

(x−g[k−1](b))en,k+(x−g[k−1](a)) fn,k−1=(x−g[k−1](b))(x−g[n](a)). (8.20)

From (8.14), (8.20), and (8.3) we get

en,kPn,k(x)+ fn,k−1Pn,k−1(x)=
n

∏
ν=k

(x−g[ν](a))
k−1

∏
ν=0

(x−g[ν](b))=Pn+1,k(x). (8.21)

Finally, combining (8.5) and (8.21) we obtain the right-hand side of equation (8.4) for the
case n+1. We have shown that (8.4) is true for the case n+1. This completes the proof of
the (q,h)-Marsden identity.

9 Future work

We have established several important properties, identities, and algorithms for the (q,h)-
Bernstein polynomials and the (q,h)-Bézier curves using only standard mathematical in-
duction. Many of these and other properties have been derived in the recent works [3, 4,
8–10].

The most natural next stage of this work is to program and implement the recursive
evaluation and degree elevation algorithms for (q,h)-Bézier curves. Then (q,h)-Bernstein
polynomials and (q,h)-Bézier surfaces of several variables can be constructed using ten-
sor products of univariate (q,h)-Bernstein polynomials and their analogous properties
can be studied. These multivariate (q,h)-Bernstein polynomials can be used as blend-
ing functions to define (q,h)-Bézier surfaces, and to study their properties and recursive
evaluation algorithms.

This future work is outside of the scope of this paper and will be accomplished in
future research projects.
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