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1 Introduction

Let Z, C and T denote the set of integers, set of complex numbers and the unit circle,
respectively. Let L2(T) (simply written as L2) denote the classical Hilbert space with
standard orthonormal basis {en : n∈Z}, where en(z)= zn for each z∈T. The symbol H2

denotes the space generated by {en : n≥ 0}. The symbol L∞ is used to denote the space
of all essentially bounded measurable functions on T and H∞ = L∞∩H2. The theory of
Hankel operators, which is a beautiful area of mathematical analysis, admits of vast ap-
plications. In 1861, Hankel [12] began the study of finite matrices whose entries depend
only on the sum of the coordinates and such objects are called Hankel matrices. In 1881,
Kronecker [14] obtained first theorem about infinite Hankel matrices that characterizes
Hankel matrices of finite rank.

The development of the theory of Hankel operators led to different generalizations of
the original concept, like, slant Hankel operators, λ-Hankel operators and (λ,µ)-Hankel
operators (see [2, 5] and [8]). A lot of progress has taken place in the study of Hankel
operators on Bergman spaces on the disk, Dirichlet type spaces, Bergman and Hardy
spaces on the unit ball in Cn or on symmetric domains, etc. [16].
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Hankel operators on the space L2 are characterized by the operator equation MzX=
XMz, whereas on the Hardy space H2 these are characterized by the operator equation
U∗X = XU, where U is the forward unilateral shift operator on the Hardy space H2.
We refer to [10, 11, 16] and the references therein for the basic study of Hankel opera-
tors on these spaces. Motivated by the approach initiated by Barría and Halmos [2],
various equations, like, MzX = XMz2 ( solutions of which are named as slant Hankel
operators [2]), U∗X−XU = λX, λ ∈ C ( solutions of which are named as λ-Hankel op-
erators [5]) etc. are attained by mathematicians. In this row, generalized slant Hankel
operators [3] have also been obtained which are nothing but the solution of the operator
equation MzX=XMzk , for k≥2 and are named as kth-order slant Hankel operators. Work
of Avendaño [5] dragged our attention to the operator equation λMzX=XMzk , for k≥2
and λ∈C. Clearly, for λ=1, this equation characterizes the kth-order slant Hankel oper-
ators and if further k= 2 then it is nothing but the equation characterizing slant Hankel
operators.

From the work of Nehari [15], it is known that each Hankel operator is induced by
an essentially bounded measurable symbol φ∈ L∞ and is denoted as Hφ. Not much is
known about spectral properties of Hankel operators in terms of the inducing symbol.
Power [17] described the essential spectrum of Hφ for piecewise continuous functions
φ∈L∞. In this paper, we completely solve the operator equation λMzX=XMzk , for k≥2
and λ∈C. We describe some of the spectral properties of the solutions of the equation
λMzX = XMzk , for k≥ 2 and λ∈C. We achieve the containment of a closed disc in the
spectrum of each non-zero operator satisfying the equation λMzX=XMzk , for k≥2 and
λ∈C.

2 Operator equation: λMzX=XMzk for k≥2, λ∈C

In last two decades various operator equations generalizing the notion of Hankel op-
erators have been discussed, for the details and importance of which we suggest the
references [2, 3] and [4]. The purpose here is to call attention to the operator equation
λMzX=XMzk , for an integer k≥2 and λ∈C. Throughout the paper, k is assumed to be
an integer greater than or equal to 2. We begin with the following result.

Theorem 2.1. The only solution of the operator equation λMzX = XMzk , |λ| 6= 1 is the zero
operator.

Proof. Suppose that X satisfies λMzX =XMzk . First, consider the case |λ|< 1. Define a
map τ :B(L2)→B(L2) as τ(X)=λMzXMzk . Then ‖τ‖≤ |λ|<1 and (I−τ) is invertible.
Now (I−τ)X=0, which implies that X=0.

Now consider the case |λ|>1. This time we define the mapping τ as τ(X)=MzXMzk .
Now ‖τ‖ ≤ 1 so (λI−τ) is invertible and this provides that X = 0. This completes the
proof.
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Now in view of the last result, we are left to solve the operator equation λMzX=XMzk

for |λ|=1. We consider the operators Wk and J (the flip operator) on L2 defined as

Wken =

{

em, if n= km, m∈Z,

0, otherwise,

and Jen = e−n for each n∈Z. Then the facts Wk J= JWk , Mφ(z)Wk=Wk Mφ(zk) and Mφ(z) J=
JMφ(z), where φ∈L∞, are well known about these operators. It is interesting to know that

each kth-order slant Hankel operator on L2 is of the form Wk JMφ for some φ∈L∞ (see [3]).
Using these facts, we claim the following.

Theorem 2.2. Let λ ∈ C be such that |λ|= 1. The operator equation λMzX = XMzk admits
of non-zero solutions and each non-zero solution is of the form X=DλWk JMφ for some φ∈ L∞,

where Dλ is the composition operator on L2 induced by z 7→λz, i.e., Dλ f (z)= f (λz) for all f ∈L2.

Proof. Suppose X is an operator of the form DλWk JMφ for some φ∈L∞, where symbol Dλ

is used in the sense it is defined in the statement. Now it can be seen that λMzDλ=DλMz

and Mz(Wk JMφ)=(Wk JMφ)Mzk , which provides that λMzX=XMzk .

Conversely, suppose that X is an operator satisfying λMzX=XMzk . Pre-multiplying
by Dλ, we get that MzDλX=DλXMzk . Therefore, DλX is a kth-order slant Hankel operator
on L2 and hence we get the result.

Now onward, we are focussed to study the behavior of the solutions of the equation
λMzX=XMzk , |λ|=1. In fact, here onward, the term solution is always used in reference
to the solution of this equation only. The notion of Toeplitz operators, Hankel operators,
slant Toeplitz operators and slant Hankel operators are characterized in terms of matrices
(see [2, 7, 13, 17]) and in the same direction we would like to have a look at the matrix
characterization to the solutions of the equation λMzX=XMzk , |λ|=1. For φ=∑n∈Z anen

in L∞ and λ∈C with |λ|=1, the solution X=DλWk JMφ satisfies

〈Xej,ei〉= 〈DλWk JMφej,ei〉=λ
i
a−ki−j

for each i, j∈Z. So the matrix representation of the solution X is





















...
...

...
...

...
··· λak+1 λak λak−1 ··· λa0 ···
··· a1 a0 a−1 ··· a−k ···
··· λ−1a−k+1 λ−1a−k λ−1a−k+1 ··· λ−1a−2k ···
··· λ−2a−2k+1 λ−2a−2k λ−2a−2k−1 ··· λ−2a−3k ···

...
...

...
...

...





















.

We now have the following characterization to the solutions in terms of matrices.
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Theorem 2.3. A necessary and sufficient condition for an operator X on L2 to be a solution of the
equation λMzX=XMzk , |λ|=1 is that its matrix [aij] with respect to the standard orthonormal
basis {en : n∈Z} satisfies

ai−1,j+k =λai,j

for every i, j∈Z.

Theorem 2.2 can be restated in the following form.

Theorem 2.4. Let λ∈C be such that |λ|=1. An operator X on L2 is a solution of the operator
equation λMzX=XMzk if and only if it is of the form X=DλWk JMφ for some φ∈L∞.

As each solution is induced by an element of L∞ and also depend on the choice of λ,
we’ll denote the solution X of the form X=DλWk JMφ by Xφ,λ. It is clear that for φ∈ L∞,
‖Xφ,λ‖=‖DλWk JMφ‖≤‖φ‖∞ . We see the following.

Theorem 2.5. For φ∈L∞ and |λ|=1, ‖Xφ,λ‖=
√

‖ξλ‖∞, where ξλ in L∞ is given by

ξλ(z)= ∑
n∈Z

〈ψ,en〉λ
n
zn.

Proof. Proof follows as

Xφ,λX∗
φ,λ=DλWk JMφ(DλWk JMφ)

∗=DλWk JMφ Mφ J∗W∗
k Dλ=DλMψDλ=Mξλ

,

where ψ and ξλ are elements of L∞ given by

ψ=Wk(|φ|
2) and ξλ(z)= ∑

n∈Z

〈ψ,en〉λ
n
zn.

Thus, we complete the proof.

Without any extra efforts, along the lines of techniques used in [4], it is easy to check
the following observation about the set Sλ of all the solutions of the equation λMzX =
XMzk , |λ|=1.

Theorem 2.6. We have the following:

1. The mapping φ 7→Xφ,λ is one-one from L∞ into Sλ.

2. Sλ is weakly and hence strongly closed.

3. Sλ is a norm closed subspace of B(L2), the algebra of all bounded operators on L2.

4. Sλ is not self adjoint.
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Proof. We just give proof for (4). It follows using Theorem 2.3 and the fact that for φ=

∑n∈Z anen ∈L∞, the adjoint of a non-zero Xφ,λ is X∗
φ,λ=Mφ J∗W∗

k Dλ and hence

〈X∗
φ,λej,ei〉= 〈ej,DλWk JMφei〉=

〈

ej, ∑
m∈Z

λ
m

a−km−iem

〉

=λja−kj−i

for each i, j∈Z.

In order to see whether Sλ form an algebra or not, we first claim the following about
a solution Xφ,λ, φ∈L∞.

Lemma 2.1. DλWk JXφ,λ is a solution if and only if Xφ,λ is zero.

Proof. Let φ=∑n∈Z anen∈L∞ and let DλWk JXφ,λ be a solution. Then on applying Theorem
2.3, we have

λ〈DλWk JXφ,λej,ei〉= 〈DλWk JXφ,λej+k,ei−1〉

for each i, j∈Z. This gives

〈

∑
n∈Z

λ
n
a−kn−jen,e−ki

〉

=
〈

∑
n∈Z

λ
n
a−kn−j−ken,e−ki+k

〉

,

which implies that ak(ki)−j =λ−kak2(i−1)−(j+k) for each i, j∈Z. Hence, if i= 0 then we get

a−j =λ−ka−k2−j−k for each j∈Z. This gives that for integer t, at =λ−kna−n(k2+k)+t →0 as
n→0. As a matter of fact φ=0 and Xφ,λ=0. Converse is obvious.

For φ,ψ∈L∞, the product of two solutions Xφ,λ and Xψ,λ satisfies

Xφ,λXψ,λ=DλWk JMφDλWk JMψ =DλWk JMφDλ JWk Mψ

=DλWk JDλMφ(λz)JWk Mψ=DλWk JDλ JWk Mφ(λzk)Mψ

=DλWkXξ,λ,

where ξ(z)=φ(λzk)ψ(z). This observation along with Lemma 2.1 help to conclude that
Sλ does not form an algebra.

If we multiply the solution Xφ,λ with a Laurent (multiplication) operator A (= Mψ),
where φ,ψ∈ L∞ then Xφ,λA= DλWk JMφ Mψ = DλWk JMφψ and AXφ,λ = MψDλWk JMφ =
DλMψ(λz)Wk JMφ = Dλ J = Mψ(λz)Wk Mφ = Dλ JWk Mψ(λzk)φ(z). These observations land at

the conclusion that a solution Xφ,λ commutes with a Laurent operator Mψ if and only if

ψφ=ψ(λzk)φ. It is interesting to attain the following about these products.

Theorem 2.7. The product of a solution and a Laurent operator is always a solution.

Proof. For any φ∈L∞, a straight forward computation shows that for any Laurent opera-
tor M, λMz(Xφ,λ A)=(λMzXφ,λ)A=(Xφ,λMzk)A=(Xφ,λA)Mzk . Similarly, λMz(Xφ,λ A)=
(λMz A)Xφ,λ=A(λMzXφ,λ)=A(Xφ,λMzk)=(Xφ,λ A)Mzk . Hence the result.
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It is shown in [3] that the only compact kth-order slant Hankel operator is the zero
operator. When we use this with the fact that the composition operator Dλ is unitary, we
get the following.

Theorem 2.8. The solution Xφ,λ is compact if and only if it is zero operator.

Now we discuss the isometric behavior of the solutions and find a result similar to
the result obtained for generalized λ-slant Toeplitz operators in [9]. If φ∈ L∞ is unimod-
ular (i.e., |φ|= 1) then simple computation shows that Xφ,λ is co-isometry (i.e., X∗

φ,λ is

isometry). However, by the same technique as used in [9], we get the following.

Theorem 2.9. For φ∈L∞, Xφ,λ is co-isometry if and only if

∣

∣

∣
φ
( θ

k

)∣

∣

∣

2
+
∣

∣

∣
φ
(θ+2π

k

)∣

∣

∣

2
+···+

∣

∣

∣
φ
(θ+(k−1)π

k

)∣

∣

∣

2
= k

for a.e. θ∈ [0,2π].

There is a dearth of hyponormal solutions and we find that the only solution Xφ,λ

which is hyponormal is the zero operator.

Theorem 2.10. For φ∈L∞ and |λ|=1, the solution Xφ,λ is hyponormal if and only if Xφ,λ=0.

Proof. Suppose φ=∑n∈Z anen ∈L∞ and Xφ,λ is hyponormal. Then for all f ∈L2,

‖X f‖≥‖X∗ f‖.

This, in particular, for f = e0 gives

∑
n∈Z

|a−kn|
2≥ ∑

n∈Z

|a−n|
2,

which implies that a−kn−m =0 for m=1,2,··· ,k−1 and for all n∈Z. Now on substituting
f = e1 in the inequality, we find

∑
n∈Z

|a−kn−1|
2≥ ∑

n∈Z

|a−k−n|
2,

which yields that a−kn = 0 for all n∈Z. Thus φ= 0 and so Xφ,λ = 0. This completes the
proof as converse is trivial.
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3 Spectral behavior of solutions of the equation λMzX=XMzk

In this section, our aim is to investigate information about the spectral behavior of so-
lutions of the equation λMzX = XMzk , |λ|= 1. We also prove that the spectrum of the
solution contains a closed disc for an invertible symbol in L∞, which is a well known re-
sult in case of kth-order slant Toeplitz operators [1]. For an operator A on a Hilbert space,
the symbols σ(A) and σp(A) are used to denote the spectrum and the point spectrum of
A respectively. The result here are just stated as can be obtained without any extra efforts
by adopting the methods used to obtain the same for kth-order slant Toeplitz operators
in [1].

For φ∈L∞, we write
ϕ= ∑

n∈Z

〈φ,en〉λ
ne−n.

Theorem 3.1. If φ is invertible in L∞, then σp(Xϕ,λ)=σp(Xφ(zk),λ).

Theorem 3.2. For φ∈L∞, σ(Xϕ,λ)=σ(Xφ(zk),λ).

Our next result shows the containment of a closed disc in the spectrum of a solution
of the operator equation λMzX=XMzk .

Theorem 3.3. For any invertible φ in L∞, σ(Xϕ,λ) contains a closed disc, where X is a solution
of the equation λMzX=XMzk .

Proof. Let µ be any non-zero complex number. As φ is invertible in L∞ so is φ−1. Now
suppose that (X∗

φ
−1

(zk),λ
−µI) is onto. Then for each f ∈L2, we have

(X∗
φ
−1

(zk),λ
−µI) f =Mφ−1(zk) J∗W∗

k Dλ f −µ(Pk f ⊕(I−Pk) f )

=µW∗
k Mφ−1 J∗

( 1

µ
Dλ− JMφWk

)

f ⊕
(

−µ(I−Pk) f
)

,

where Pk is the projection on the closed span of {ekn : n∈Z} in L2. Now, pick 0 6= g0 in
(I−Pk)(L2). Being (X∗

φ
−1

(zk),λ
−µI) is onto, we find a f ∈L2 such that

g0 =µW∗
k Mφ−1 J∗(µ−1Dλ− JMφWk) f ⊕(−µ(I−Pk) f ).

Since g0 ∈ (I−Pk)(L2), we have µW∗
k Mφ−1 J∗(µ−1Dλ− JMφWk) f = 0. This, on using the

facts that µ 6= 0, Wk is co-isometry (i.e., WkW∗
k = I) and Mφ−1 and J are invertible, yields

that (µ−1Dλ− JMφWk) f =0. This shows that

0=(µ−1 I−Dλ JMφWk) f =(µ−1 I−DλWk JMφ(zk)) f =(µ−1 I−Xφ(zk),λ) f .

It implies that µ−1∈σp(Xφ(zk),λ). Now (X∗

φ
−1

(zk),λ
−µI) is onto (in fact invertible) for each

µ∈ρ(X∗

φ
−1

(zk),λ
), the resolvent of X∗

φ
−1

(zk),λ
, so on applying Theorem 3.1, we get that

{µ−1 : µ∈ρ(X∗
φ
−1

(zk),λ
)}⊆σp(Xφ(zk),λ)=σp(Xϕ,λ)⊆σ(Xϕ,λ),
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where ϕ = ∑n∈Z〈φ,en〉λne−n. As spectrum of any operator is compact it follows that
σ(Xϕ,λ) contains a disc of eigenvalues of Xϕ,λ.

Remark 3.1. Radius of closed disc contained in σ(Xϕ,λ) is 1
r(X

ϕ−1,λ
) , where r(A) denotes

the spectral radius of the operator A. For,

max
{

|λ−1| : λ∈ρ(X∗
φ
−1

(zk),λ
)
}

=
1

min{|λ| : λ∈ρ(X∗
φ
−1

(zk),λ
)}

=(r(X∗

φ
−1

(zk),λ
))−1

=(r(X
φ
−1

(zk),λ
))−1

=(r(Xϕ−1,λ))
−1.

Thus the radius of closed disc contained in σ(Xϕ,λ) is 1
r(X

ϕ−1 ,λ) . Since spectral radius of an

operator is the radius of smallest disc containing its spectrum so we get that 1
r(X

ϕ−1 ,λ)
≤

r(Xϕ,λ).

For unimodular φ ∈ L∞, ‖Xn
ϕ,λ‖

2 = ‖Xn
ϕ,λX∗n

ϕ,λ‖= ‖I‖= 1, so that r(Xϕ,λ) = 1 (using

Gelfand formula for spectral radius). Hence, if |φ|=1, then σ(Xϕ,λ)=D, the closed unit
disc.
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