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Abstract

A fractal model for predicting the effective heat conductivity of fibrous assemblies was established.
In the model, fiber-to-fiber contact influence on solid heat conductivity was taken into consideration.
Radiative heat conductivity was also considered to get the effective heat conductivity. The effective
heat conductivity was proved to be related to the following parameters, including the pore area fractal
dimension, tortuosity fractal dimension, maximum and minimum pore diameters, solid conductivity, air
conductivity, porosity and the ratio of the number of perpendicular channels to the total number of
channels. Experiment was conducted to verify the model, and good agreement was found between the
experimental and theoretical results.
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1 Introduction

The study of the effective heat conductivity of fibrous assemblies has received continuous attention
[1-3] due to their various applications in clothing and engineering. Numerous researchers have
worked on the effective heat conductivity calculation of fibrous assemblies [4-6]. These studies are
all based on the assumption that the fibrous assemblies are a continuous medium, which makes
it difficult to consider the influence of microstructure of pores, and thus the application of these
existing theories has some fundamental limitations.

Fractal theory has been applied to study the thermal conductivity of porous media [7-9]. Chen
et al [8] developed a fractal model to study effective heat conductivity of soil. Later, Yu et al [9]
proposed fractal models to calculate the effective thermal conductivity of mono- and bi-dispersed
porous media, such as sandstone and particles etc. The effective heat conductivity of wood [10],
foam [11] and other objects were also discussed by some researchers [12, 13]. The above models
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established were based on the assumption that the objects investigated are exactly self-similar,
which is not in accordance with real porous media. For real porous media, the microstructure
are statistically self-similar. Kou et al [14] investigated the effective heat conductivity of fibrous
materials under this condition. The model assumed that the air and fibers are in parallel arrange-
ment in the fibrous materials, which neglects the fiber-to-fiber contact effect on the effective heat
conductivity. The previous models also did not take radiative heat conductivity into considera-
tion.

In this paper, we will use the fractal theory to calculate the effective heat conductivity of fibrous
assemblies. Fiber-to-fiber contact effect on the property was taken into consideration. What is
more, radiative heat conductivity was also considered. Experiment is conducted to verify the
model.

2 The Effective Heat Conductivity Calculation by Fractal

Method

2.1 Microstructure and Fractal Description of Porous Media

As is known, an object measurement is related to its dimension and is invariant with the unit of
measurement used. In general, ordered objects such as points, lines, surfaces and cubes can be
described by Euclidean geometry using integer dimension 0, 1, 2 and 3, respectively. However, it
is found that numerous objects in nature, such as rough surfaces, coastlines, mountains, rivers,
lakes and islands are disordered and irregular, and they cannot be described by the Euclidean
geometry because of the scale-dependent measures of length, area and volume. These objects
are called fractals, and the dimensions of such objects are non-integral and defined as fractal
dimensions. A fractal object measurement M(L) is related to the length scaleL by the following
power form [15].

M(L) ∼ LDf (1)

Where the “∼” should be read as “scale as”. M can be the length of a line, the area of a
surface, the volume of a cube, or the mass of an object. Df is the fractal dimension of the object,
0 < Df < 2 in two dimensions. For real porous media, the size distribution of pores satisfies the
fractal power law [8, 9],

N(L ≥ pmin) =

(
pmax

p

)Df

(2)

Where p, pmin and pmax is the pore size, minimum pore size and maximum pore size respectively.

The number of pores within the infinitesimal range p to p+dp can be deduced by a differentiating
equation (2) with respect to p.

−dN = Dfp
Df
maxp

−(1+Df )dp (3)

Dividing Eq. 3 by 2, Eq. 4 is obtained:

−dN

N
= Dfp

Df

minp
−(1+Df )dp = f(p)dp (4)
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In the above equation, f(p) is the probability density function and should satisfy the following
relationship (5). ∫ ∞

0

f(p)dp =

∫ pmax

pmin

f(p)dp = 1−
(

pmin

pmax

)Df

≡ 1 (5)

It is obvious that equation (5) holds if equation (6) is satisfied.

pmin

pmax

∼= 0 (6)

That is to say pmin ¿ pmax in equation (6) must be satisfied for fractal analysis of porous
media. In general, pmin/pmax ≤ 10−2 in porous media, so the fractal theory can be used to study
the characters of porous media.

It is considered that a unit cell in a fibrous assembly includes a bundle of tortuous capillary
tubes with variable cross-sectional area. Let the diameter of a capillary in the fibrous assembly
be p and its tortuous length along the flow direction be L(p). Due to the tortuous nature of the
capillary, L(p) ≥ L0, with L0 being the representative length. The equation, L(p) = L0, holds for
a straight capillary. When heat flows through the pores of the fibrous assembly, the capillaries
may be tortuous. These tortuous capillaries can be described by fractal equation [9]:

L(p)

L0

=

(
L0

p

)Dt−1

(7)

Where Dt is the tortuosity fractal dimension, in the range of 1 ≤ Dt ≤ 2, which represents the
extent of convolutions of capillary pathways for heat flow through a medium. The higher the
value Dt, the higher the tortuous capillary. For a straight capillary path, Dt = 1, the limiting
case of Dt = 2 corresponds to a highly tortuous line that fills a plane.

2.2 The Fractal Model for the Effective Heat Conductivity

Heat transfer through fibrous materials involves combined modes of heat transfer: solid conduction
through fibers, air conduction and natural convection in the space between fibers, and radiation
interchange through participating media. Natural convection heat transfer in fibrous materials
with densities greater than 20 kg/m3 is negligible [16]. According to Stark and Fricke [17], the
total heat flux (qsa) passing through a fibrous material is:

qtotal = qsa + qr (8)

Where qsa is the heat flux by solid fibers and air, and qr is the heat flux due to radiation.

By using Fourier’s law q = −λ grad T , the effective heat conductivity is:

keff = ksa + kr (9)

So the effective heat conductivity can be calculated from the derivation of solid and air heat
conductivity and the radiative heat conductivity.
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2.2.1 Heat Conductivity by Solid and Air (ksa)

In general, numerous capillary channels are both parallel and perpendicular to heat flow direction
for real fibrous assemblies, so the heat conductivity by solid and air can be divided into two parts,
which are parallel and perpendicular heat conductivities kpar, kper. The total heat conductivity
by solid and air can be expressed as:

ksa = δkper + (1− δ)kpar (10)

Where δ is the ratio of the number of perpendicular channels to the total number of channels,
with values ranging from 0 to 1.

2.2.1.1 Fractal Parallel Model kpar

By heat-electric analogy approach, the parallel heat conductivity can be calculated by assuming
that fibers and air channels are in parallel arrangement to heat flow.

According to Fourier’s law, the thermal resistance of a single channel r can be expressed as:

r(p) =
L(p)

Ak
(11)

Where k is heat conductivity. The thermal resistance of a single air channel can be expressed as:

ra(p) =
L(p)

Aaka

=
4L(p)

πp2ka

(12)

The heat resistance of the air channels with the diameter between p and p+dp can be written
as:

R−dN(p) =
ra(p)

−dN
=

4L(p)

πp2kaDfp
Df
maxp−(Df+1)dp

(13)

Substituting Eq. 7 into Eq. 13, we can get Eq. 14.

R−dN(p) =
ra(p)

−dN
=

4LDt
0

πp2kaDfp
Df
maxpDt−Df dp

(14)

According to heat-electrical analogy principle, the total heat resistance of air phase can be
described as:

Ra(p) =
1

pmax∑
pmin

1

R−dN(p)

=
4LDt

0
pmax∫

pmin

πkaDfp
Df
maxp

Dt−Df dp

=
4LDt

0 (Dt −Df + 1)

πkaDfpDt+1
max

[
1−

(
pmin

pmax

)Dt−Df+1
] (15)
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The heat transfer resistance caused by fibers can be written as

Rs =
L0

(1− ε)Aks

(16)

Theoretical modeling of solid conduction through fibers and points of contact between them is
difficult, and various empirical relations have been developed to model the solid conduction. The
empirical model used in this study was:

ks = (1− ε)mk∗s (17)

Where m is the constant determined by comparing the experimental and theoretical results.

The total parallel heat conductivity can be written as:

kpar =
L0

A

(
1

Ra

+
1

Rs

)
=

πDfp
Dt+1
max

[
1−

(
pmin

pmax

)Dt−Df+1
]

4A(Dt −Df + 1)LDt−1
0

ka + (1− ε)ks (18)

Where A is the surface area and can be expressed as:

A =
Ap

ε
= −1

ε

pmax∫

pmin

1

4
πp2dN =

πDfp
2
max

4(2−Df )ε

[
1−

(
pmin

pmax

)2−Df

]
(19)

Therefore, the total parallel heat conductivity can be obtained:

kpar =
L0

A

(
1

Ra

+
1

Rs

)
=

(2−Df )ε

[
1−

(
pmin

pmax

)Dt−Df+1
]

(Dt −Df + 1)

[
1−

(
pmin

pmax

)2−Df

]
(

pmax

L0

)Dt−1

ka + (1− ε)ks (20)

2.2.1.2 Fractal Perpendicular Model

The perpendicular heat conductivity can be calculated by assuming that fibers and air channels
are in perpendicular arrangement to heat flow. The perpendicular heat conductivity can be
written as:

kper =
1

ε

ka

+
1− ε

ks

(21)

Inserting Eq. 20 and Eq. 21 into Eq. 10, we can obtain:

kfa = (1− δ)





(2−Df )ε

[
1−

(
pmin

pmax

)Dt−Df+1
]

(Dt −Df + 1)

[
1−

(
pmin

pmax

)2−Df

]
(

pmax

L0

)Dt−1

ka + (1− ε)kf





+ δ
1

1

ka

+
1− ε

kf

(22)
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2.2.2 Radiative Heat Conductivity kr

The radiative heat conductivity can be obtained from the following equation, according to the
studies by previous researchers [18,19,20].

kr = CσT 3 R′

e(1− ε)
(23)

Where R′ is the radius of fiber, e is the emissivity of the fiber, σ is the Boltzmann constant,
5.67× 10−8 w/m2k4, T is the temperature and C is the constant determined by fiber orientation.

In the previous study, we found the new constant by comparing theoretical model and experi-
ment results, which is more accurate [21].

kr = 3.315σT 3 R′

e(1− ε)
(24)

2.2.3 The Total Effective Heat Conductivity

The total effective heat conductivity can be obtained by substituting Eq. 22 and Eq. 24 into Eq. 9.

ksa =
X

δ
εks + (1− ε)ka

kaks

X + (1− δ)Y

+ 3.315σT 3 R′

e(1− ε)
(25)

There is no empirical constant and every parameter has a clear physical meaning. Several
parameters have to be determined in this equation, which are the pore area fraction Df , the
maximum pore size pmax, the minimum pore size pmin, and the tortuosity fractal dimension Dt.

2.2.4 Parameter Determination

2.2.4.1 Df Determination

The pore area fractal dimension Df is a parameter for characterizing the complex structure of
porous media. It can be obtained based on the box-counting method [8, 9].

2.2.4.2 Dt Determination

The determination of tortuosity fractal dimension can be classified into two categories. One
is the box-counting method, which proved successful in ref [22, 23]. The other is the analytical
method, and several researchers have applied the method [24,25]. Since it is complicated to obtain
the cross-section areas, being parallel to the air flow of the fibrous assemblies, the second method
is applied.

As a matter of fact, Eq. 7 can be rewritten as:

τ =
L(p)

L0

=

(
L0

p

)Dt−1

(26)
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The average tortuosity (τm) can be determined by substituting the average pore diameter (pm)
into Eq. 21.

τm =

(
L0

pm

)Dt−1

(27)

Then, the fractal dimension, Dt, for tortuous flow stream tubes in porous media can be obtained
from Eq. 21 as:

Dt = 1 +
ln τm

ln
L0

pm

(28)

In the above equation, the average pore diameter pm can be determined by Eq. 29.

pm =

∫ pmax

pmin

pf(p)dp =

∫ pmax

pmin

pDfp
Df

minp
−(1+Df )dp =

Df

Df − 1
pmin

[
1−

(
pmin

pmax

)Df−1
]

(29)

The tortuosity model of fibrous assemblies developed by Koponen [26] is selected for calculation
here, as it was proved to be more accurate.

τ = 1 + 0.65
(1− ε)

(ε− 0.33)0.19
(30)

Accordingly, the tortuosity fractal dimension can be derived by substituting Eq. 23 and 24 into
Eq. 22.

Dt = 1 +
ln τm

ln
L0

pm

= 1 +

ln

[
1 + 0.65

(1− ε)

(ε− 0.33)0.19

]

ln
L0(Df − 1)

Dfpmin

[
1−

(
pmin

pmax

)Df−1
]

(31)

2.2.4.3 pmax, pmin Determination

The largest pore size pmax in fibrous assemblies has been discussed in a series of papers [27, 28].
The expression can be [28]:

pmax =
2.459

ω
(32)

ω =
4µ

πL0R′ρf

(33)

Where ω is the total length of fibers per unit area, µ is the mass per unit area, and ρf is the
density of fiber.

The minimum pore size pmin in fibrous assemblies has not been found in previous studies, and
it is assumed to be expressed in Eq. 34.

pmin =
θ

ω
(34)

Where θ is the constant determined by comparing the experimental and theoretical results.
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3 Results and Discussion

3.1 Experimental

A variety of nonwoven fabrics were selected for the samples. The specifications of these samples

are listed in Table 1. The thickness was measured in accordance with ISO 5084-1996. The pressing

pressure is 100 cN and the pressing time is 10 s. The area density was calculated by measuring

the weight of a sample with the diameter of 10 cm using an electronical balance with the precision

of 0.00001 g. The porosity of the samples is calculated by the following equation:

ε = 1− µ

AL0ρf

(35)

Table 1: Parameters of the nonwoven fabrics chosen

Sample

number
Fiber type

Thickness

(mm)

Area density

(g/m2)

Porosity

(%)

1 PET-100% 0.449 34 0.945

2 PET/VS-30/70 0.49 42.46 0.941

3 PET/VS-70/30 0.633 65.7 0.927

4 PET/VS-70/30 0.817 84.5 0.927

5 PP 0.317 44.5 0.845

6 PP 0.464 67.4 0.840

8 PP 0.63 101.3 0.809

10 PET-100% 0.615 141 0.846

11 Basalt 3.25 581 0.936

The effective heat conductivity was measured by the Kawabata Thermolabo, which is in accor-

dance to the Chinese National Standard GB11048-89. The temperature difference ∆T between

the two sides of a sample is fixed during the testing, and is set to be 10℃ here. The pressure

applied to the sample is controlled to be 6 g/cm2 here. According to Fourier law, the heat

conductivity kexp can be expressed as:

kexp =
qL0

A∆T
(36)

3.2 The Comparison of the Effective Heat Conductivities Between

Fractal and Experimental Results

It can be seen in Fig. 1 that the effective heat conductivities by theoretical method and experiment

are in good accordance with each other, indicating the validation of the theoretical method.



W. Song et al. / Journal of Fiber Bioengineering & Informatics 4:1 (2011) 59–69 67

The parameters m and θ are determined to be 0.5 and 0.1 correspondingly. The parameter m

determined here is similar to the value got by Liu in his model [29]. The minimum pore diameters

of samples 2, 4, and 11 are calculated to be 7.5 µm, 8.4 µm, and 5.5 µm, very close to the results

of the experiment done by Yang [30], which are 7.37 µm, 8.27 µm, and 5.32 µm.
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Fig. 1: The effective heat conductivity versus porosity by theoretical method and experiment

4 Conclusion

In this paper, a fractal model was developed for studying the effective heat conductivity of
fibrous assemblies. The fractal model indicates that the effective heat conductivity is related
to the parameters, including the pore area fractal dimension, tortuosity fractal dimension, the
maximum and minimum pore diameters, the solid conductivity, air conductivity, porosity and
the ratio of the number of perpendicular channels to the total number of channels.

The theoretical results were compared with the experimental results, and good accordance was
obtained.

The parameter m is determined to be 0.5, indicating the fiber contact influence on solid heat
conductivity. The constant θ in the minimum pore size equation is determined to be 0.1.
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