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Abstract. The first part of this paper is devoted to study the existence of solution for
nonlinear p(x) elliptic problem A(u) =pu in Q, u =0 on 0Q), with a right-hand side
measure, where () is a bounded open set of RN, N>2 and A(u) = —div(a(x,u,Vu)) is
a Leray-Lions operator defined from WS b () (Q) in to its dual W—L7'(*)(Q). However
the second part concerns the existence solution, of the following setting nonlinear el-
liptic problems A(u)+g(x,u,Vu)=p in Q, u=0 on 9Q2. We will give some regularity
results for these solutions.
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1 Introduction

Let Q) be a bounded open set of RN, (N >2). In this paper, we deal with the following
Direchlet problem:

Au+g(x,u,Vu)=yp, in Q, (P)
u=0, on d(),

with non-standard p-structure which involves a variable growth exponent p(-).
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The principal part of the above equation is the operator A defined by
Au=—div(a(x,u,Vu)),

which satisfies the classical Leray-Lions conditions with some variable exponent p(-).
However the non linearity g is supposed to satisfy the sign condition and some natural
growth with respect to Vu, but no growth with u is supposed. The second member u
considered in this paper is not regular that is a Radon measure.

The study of partial differential equation involving p(x) growth conditions has re-
ceived specific attention in recent decades. This is a consequence of the fact that such
equations can be used to model phenomena which arise in mathematical physics. Electro
rheological fluids and elastic mechanics are two examples of physical fields which benefit
from such kinds of studies.

Problem (P) is studied in [1] where a =a(x,Vu) which satisfying the classical Leray-
Lions conditions with some constant exponent p such that: 2— & < p < N. The solution

obtained in [1] admits the following regularity u € W& 1(Q) for all:

N(p—1)
< .
ISI<—H=
The approach used by the authors in [1] is to approximate the measure u by a sequence
(fu) in W=7 ()NL1(Q) which converge to y. The limiting process hinges of the proof of
the almost pointwise convergence of the sequence (571, ), where u, is the weak solution

of the problem (P) with u= f,.

When trying to relax the coefficients of 4, that is a(-) have not a polynomial growths,
then the problem (P) is formulated is the general setting of Orlicz spaces generated by
an N-function M which appears in the non classical growths of a(-). In this case, we
found the work [2] which treat the study of a problem (P) in Orlicz-Sobolev spaces. The
solutions obtained in [2] and [3] belongs to Ty (Q)NWLp(Q) for any B € Py, where
Be Py is a special class of N-functions. For others works, we refer the reader [4-8] and [9].

In the recent years, variable exponent Sobolev spaces have attracted an increasing
amount attention, the impulse, for this mainly comes from there physical applications,
such in image processing (underline the borders, eliminate the noise) and electro-rheolog-
ical fluids.

In the framework of variable exponent Sobolev spaces, we list the works [6,7,10,11]
and others, where the second member y of the problem (P) is taking as an element of
L'(Q) or is a measure which admits the composition u = f —div(F), with f € L!(Q) and
FeTILPM(Q).

Our purpose in this paper is to study the existence of solution of the problem (P), in
the case where the datum y is a finite Radon measure and in the case of variable exponent,
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(that is A is a Leray-Lions operator acting from Wg’p(x)(()) in to W1 () (Q)), with the
regularity u € Wé’q(Q) forall: 1<g~ <g"<(N/(N-=1))(p~— —1).

This paper can be seen as a generalization to the variable exponent of the works [1]
and as a continuation of the works [6] (f € L'(Q), f€ W17 (%), p=p(x)).

The paper is organized as follows: In the Section 1, we recall some important defini-
tions and some results of variable exponent Lebesgue and Sobolev spaces. In the Section
2 we give and proof ours mains results.

2 Framework of the spaces

In this paragraph, we recall some definition and basic results about the Sobolev spaces
with variable exponent.
Let () be a bounded open subset of IRN, (N >2), we denote
C (Q)= {continuous p(:):Q—1IR suchthat 1<p_ <p(x)<p.< N},

where
p—=min{p(x)/x€Q} and  pi=max{p(x)/x€Q}.

We define the variable exponent Lebesgue space for p(-) € C.(Q) by
Lr) Q)= {u 0O — IR measurable/ / |u(x) ]P(x)dx < oo}.
0

The space LP*)(Q) under the norm

. p(x)
lull ) =inf{ A >0, /Q dx<1},

is a uniformly convex Banach space, and therefore reflexive. We denote by LP'®)(Q)) the

conjugate space of LP*) (Q)) where ﬁ + ﬁ =1 (see [12,13]).

u(x)
A

Proposition 2.1. ([12,13]) (Generalized Holder inequality)

(i) Forany uc LP™)(Q) and ve LV ) (Q)), we have

/ uovdx
Q

(ii) For all pi(-),pa(-) € C4(QY) such that pi(x) < pa(x), we have LP2¥)(Q) — LP)(Q)
and the embedding is continuous.

1 1
< (5t o Ml ol o
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Proposition 2.2. ([12,13]). If we denote
o(u) = / ulfMdy,  Vuel!®(Q),
0

then, the following assertions holds
@) |ullyy<1 (resp,=1,>1) <= p(u)<1l (resp,=1,>1),

(ii) [[ull i >1 = Nullly,, <p(w) < ullly,,
lell ey <1 = Iy <o00) < [l

(iii) ||ullpx) =0 p(u) =0 and |ul ) — 00 & p(u)— oo
Now, we define the variable exponent Sobolev space by
WP () ={ueLl!®(Q) and |Vu|eL!¥(Q)},

normed by
Hqu,p(x) = Hqu(x) + Hqup(x)/ Vue Wl,p(x) (Q)

We denote by Wg P (Q) the closure of CP(Q) in WP (Q)) and we define the Sobolev

Nl\iprgg) for p(x) <N.

Proposition 2.3. ([12,14])

exponent by p*(x) =

(i) Assuming 1< p_ < p, < oo, the spaces W'P)(Q) and Wg’p(x)(ﬂ) are separable and
reflexive Banach spaces.

(ii) If g(-) € C+(Q)) and q(x) < p*(x) for any x € Q), then the embedding Wg’p(x)(ﬂ) e
L1X)(Q)) is continuous and compact.

(iii) Poincaré inequality: there exists a constant C >0, such that
[l SCIVally,  ueWo™ ().
(iv) Sobolev inequality: there exists an other constant C >0, such that
[llpei <CIVallp, Ve Wy (@)

Remark 2.1. By (iii) of the Proposition 2.3, we deduce that ||Vul|,,) and [lu]/; () are

equivalent norms in W& # () (Q).
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Definition 2.1. For all k>0 and s € IR, the truncation function Ty (-) can be defined by
s if |s| <k,
Te() =93 k2 it |s|>k
and we define

Tg’p(x)(Q) = {u measurable such that T(u) € Wg"’(")(ﬂ), Vk > 0}~

Lemma 2.1. ([15]) Let g€ L"™)(Q) and g, € L"™)(Q) with ||g, () S C for 1<r(x) <oo. If
gn(x) = g(x) ae. on Q, then g, — g weakly in L'™)(Q)).

Lemma 2.2. ([15]) Let ue W&’p(x) (Q), then Ti(u) € W&’p(x) (Q) for all k>0. Moreover, we have

Te(u)—u in Wg’p(x)(()) as k— oo.

Lemma 2.3. ([10]) Let p(+) be a continuous function in C(Q)) and u a function in Wé’p *) (Q).
Suppose 2— & < p~ < p* <N, and that there exists a constant Cy such that

/ |7ulPMdx<C,,  Vk>0.
{k<|u|<k+1}

Then, there exists a constant Cp, depending on Cq, such that

HuH WS/Q(X)(Q) < CZ/

for all continuous functions q(.) on Q) satisfying

1<q(x)<%(p(x)—l), forall xeQ.

3 Main result

3.1 Preliminary lemma

Lemma 3.1. Let (v,), be a sequence of functions in Wé’p (x)(ﬂ). Suppose that there exists a
constant C >0 such that, for all k>0 :

/ IV Ty (v,)[P¥dx < Ck.
0
Then, there exists a subsequence still denoted by (v, ), and a function v, such that

vp(x) — v ae. in Q, Tyv, — Tyv weakly in Wé’p(')(Q),

Tiv, — Tyv strongly in LPO(Q).
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Proof. We have

IV Te(oa) I} <CK,
where
(7 TR >
Lt i V(o) ST
Thus

1
HVTk<vn)Hp(x) <Ciko, (3.1)

where C; is a constant which does not depend on k.
From (3.1), it easily follows that (v,), is Cauchy sequence in measure. Indeed, we
have

k meas{|v,| >k} = !Tk(l’n)|dx</ | Tk (0n) |dx.
{lon|>k} Q

By Holder inequality, we obtain

1 1
k meas{[v,| >k} < <p—+p—,) ) T (@) ) -

Therefore

1 1 4
k meas{|v,| >k} < <p——|—p—,) (meas(Q))+1)7- HTk(vn)Hp(x).

By the Poincaré inequality we have
meas{|vy| >k}<Czk%_l—>O, as k — +oo. (3.2)
Forall nand m in IN, for all e>0 and for every k>0, we get

{lon—vm| > e} =({|on—vm| Ze, [vu| >k})U{|vn —om|Ze, |va| <k})
({|vn—vm| ¢, |va| >k} U({|on —vm| Z¢, |0a| <k, |om]<k})
U({lon—om| Ze, |oa| <k, |om|>k}). (3.3)

Thus
{lon—vm| 2 e} C{[vn| >k} U{[Tic(v0n) = Tec(vm)| > €} U{|om| >k}

Therefore

meas({|v, —vn| >¢€}) <meas({|v,|>k})+meas({|Tx(vy) —Tx(vm)| =¢€})
+meas({|vm| >k}). (3.4)

By (3.2), we have for all 6 >0 there exists ko such that

meas({|vn]>k})<§, meas({]vm|>k})<§, Wk > ko ().
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By (3.1), we have (Ty(vy,)), is bounded in Wg p0) (Q)), then there exists a subsequence still
denoted (Ty(v,)), which is strongly compact in LP(*)(Q). This means, in particular, that
the sequence (Ty(vy))n is Cauchy in measure. We then choose n and m, such that

meas({|T(on) ~ Ts(om)] > €}) < 5.

Therefore the sequence (0n)n is Cauchy in measure, we thus have (up to subsequence,
still denoted by (v3),) which converge almost everywhere in (), to some function v.
On the other, we have, Ti(v,,) = Tx(v) a.e. in Q), by combining (3.1) and (Lemma 2.1),
we have
Tyvn — Tyv weakly in WS’P(')(Q);
and therefore
Tyv, — Tyv strongly in LPO)(Q).

U
3.2 Nonlinear elliptic problem: —div (a(x,u,Vu)) =u
Let Q) be a bounded open subset of IRN (N >2), and let p € C,.(Q)), such that
2—%<p_<p+<N. (3.5)

We consider a Leray-Lions operator A from Wé’p () (Q) into its dual W—1#'(¥)(Q)), defined
by
Au:—div<a(x,u,Vu)>; (3.6)

where a: Q) x IR x IRN — IRV is a Carathéodory function, satisfying the following condi-
tions

a(x,5,8)| < B(K(x)+][s[P) T ]g P, 3.7)
a(x,5,8)5 > wlg]"™), (38)
[a(x,s,¢)—a(x,5,&E)](—&)>0, forall F#&inIRY, (3.9)

for almost every x in Q, for every (s,¢) in IR x IRN, where K(x) is a positive function
lying in LP'()(Q) and f>0,a>0. Let

Bp(.):{q€C+(Q): 1<q(x)<%(p_—1)}. (3.10)

Let u € My(Q), Mp(Q) denotes the set of bounded measures on Q) (finite Radon mea-
sures). Consider the nonlinear elliptic problem:

(P) —d1v<u(x,u,Vu)>:y in Q,
u=0 on dQ.
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Definition 3.1. A measurable function u will be called a weak solution of the problem (P), if
Lp(- 1, q(-
ueT, i )(Q)mwo 1)y q(-) € By,
/ a(x,u,Vu)Vedx=<u,9>, VYeeD(Q).
O

3.2.1 Approximate problem

Consider the approximate equation

P) { —div(a(x,un,Vun)) = fu in Q, (3.11)

u, €Wy P (Q),

where (f,) is a smooth function which converges to y in the distributional sense such
that,

|l ) <[l m, )

Lemma 3.2. The problem (P,) has at last one weak solution u, and there exists a sub-sequence
denoted again (u,,) and a function u such that

Uuy,—u ae in Q and Vu,—Vu ae. in Q. (3.12)

Proof. By [6], the problem (P,) has at last one weak solution u,.
For k>0, by taking T (u,) as a test function in (3.11), we deduce that

(3C>0): /Qa(x,Tk(un),VTk(un))VTk(un)dxgCk.

In view of (3.8), we get
/ VT (11,))[P¥dx < Ck. (3.13)
(@)

By Lemma 3.1 there exists a subsequence still denoted by u, and u such that:

Uy —u ae.in Q; Ti(uy) — T (u) weakly in Wg’p(')(ﬂ);
Ti(un) = Ti(u) strongly in LPO)(Q). (3.14)

We can write

0 </Q (a(x,Tk(un),VTk(un))—a(x,Tk(un),VTk(u))> [VTk(un)—VTk(u)} dx
:/Q (a(x,Tk(un),VTk(un))> [VTk(un)—VTk(u)]dx

—L(u(x,Tk(un),VTk(u))) [VTk(un)—VTkW)]dx- (3.15)
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We have
a(x, T (un), VTi(u)) —a(x,Ti(u), V(1)) ae.in Q. (3.16)

By combining (3.7), (3.16) and the dominated convergence theorem we get
a(x, T (1), V(1)) = a(x, T (u), VTi(u)) stongly in (L) (Q))N.

Therefore
/Q (a(x,Tk(un),VTk(u))> [VTk(un)—VTk(u) dx—0,  asn—oo.
Let 7 >0 and taking T, (u, — Ty(«)) as test function in (3.11), we obtain
/Qa(x,un,Vun)VT,,(un—Tk(u))deCn.

For the sake of simplicity, we write only &(n,%) to mean all quantities (possibly different)
such that

ggrgorl]lg})e(n,n)zo.

On the other hand
/a(x,un,Vun)VTﬂ(un—Tk(u))dx
Q
= a(x, T (uy),VTi(u,)) (VT (u,) —VTi(u))dx
Ty < <) (2, T (t4n), V Tie(un ) ) (V T (n) k(1))

—1-/ a(x,up, Vi) (Vu,—VTi(u))dx
{ltn=Tie(w) [} { | >}

a(xlTk(un)IVTk(un))<VTk<un) - VTk(”))dx

/{lTk(un)Tk(u)<7l}ﬁ{un<k}

—1-/ a(x,uy, Vi) Vu,dx
{lun—Tie(u) <0 {un| >k}

- a(x, 1y, Vi) V Ty (u)dx, 3.17
/{unTk(u)<r]}ﬁ{u,,>k} Ca n)VTi(u) ( )

By (3.8) the second term of the right-hand side of (3.17) satisfies

/ a(x,uy,Vi,)Vu,dx >0,
{Jun =T (u) <30 { [unl >k}

the third term of the right side of (3.17) satisfies

/ a(x,uy, Vi) VT (u)dx
{lun=Tie() [< }O{[un| >k}

- T VT, VT (u)dx.
/{unTk<u><n}m{un>k}a(x ety (tn),V Ty (1)) V T () dx
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Since a(x, Ty1y (4n),V Tyy (un)) is bounded in (LY ()N, there exists hy k€ (LF' @) ()N
such that
a(x, Tgyy (Un),V Tigy () ) — Iy 1k, weakly in (L7 @ ()N,

Since,
V T (1) X { Ty ()] <} { a5y — O strongly in (LPF)(Q))N,

asn—oo and 7 —0. Thus

a(x, T (uy),VTi(uy))(VTi(u,)—VTi(u))dx
/{wTk<u)|<nm{|un|<k}< e (100), VT (1)) (VT (1) — VT (1)

<Cn+e(n,n).

On the other hand,

(1), VT VT (1) — VT (1)d
/{m(un)Tk(u><n}m{un>k}a(x ), VTic(t) (VT (1) =V Tie(u))dlx

g/ a(x, T (uy), VT (u,) ||V Ti(u)|dx. (3.18)
{ITk(un)—Tk(u)\<W}ﬂ{\un\>k}‘( k(1) ) IVT(w)]

We have
WTk(“)‘X{\Tk(un)—Tk(u)|<17}m{|un|>k}—>0, a.e. in () as n—oo,
| T () 1200 T )~ o) < L iy < T T ()

thus by Lebesgue dominated convergence theorem, we deduce that
VT () X 73 0) - T <>y =0 in LPO(Q), - asm—o0
Since the sequence (|a(x, Ty (1), V Ti (144))|) is bonded in (LP'()(Q))V,

a(x, T (u,), VT (u,))||VTi(u)|dx—0, asn — oo
/{lTk(W)Tk(W}Q{W,{}r (2, Ti (1), V Ty (14)) ||V Ti (1)

Thus

a(x, Ti(uy),VTi(u,)) (VTi(u,) —VTi(u))dx<e(n).
S oty 5 ) VT00)) (9 Titn) =V Tea) < )

On the other hand,

/ a(x, T (1), V T (1)) (V T (11) — VT (1) )dx — 0 as 11— oo,
{1 TeCo)~ TeCw) [} }

since
meas({|Ty(un) —Ti(u)| >n}) —0 asn— o0
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and by Holder inequality we have, a(x, Ty (uy), VT (un)) (VT (14,) — VT (1)) is bounded
in L'(Q).
Thus by passing to the limit over n and 77, we get

lim (a(x,Tk(un),VTk(un)) —a(x,Tk(un),VTk(u))> [VTk(un) —VTi(u)|dx=0.

n—aoo /()

We conclude by [11, Lemma 4.4] that there exists a sub-sequence denoted again (u,,) such
that
Vu,—Vu ae. in Q. (3.19)

This completes the proof of the lemma. O

3.2.2 Result of existence

Theorem 3.1. Assume that (3.5) and (3.7)-(3.9) hold and y € M,(Q)), then there exists at last
one weak solution of the problem (P).

Proof. Let k>0, we define the function  as:

Pr(x)=1, if x>k+1,
Pr(x)=x—k  if k<x<k+1,
Pr(x)=0, if —k<x<k,
1,bk(x):x if —k—1<x<—k,
l/)k<x)2 if x<—k—1.
By taking ¢y (1,) as test function in (3.11) and using (3.8) one has:
1
|1Vl @d < lnlly, o (320)
Dk,n &
with
Din={x€Q, k<|u,(x)|<k+1}. (3.21)

In view of Lemma 2.3, there exists a constant C that does not depend on 7 such that
ltnllypaco ) <SG V() €Bypy. (3.22)

Hence (u,) is relatively compact in Wg 1)y q(+) €By.), thus there exists a sub-sequence
denoted again by (u,) such that

u, — u weakly in Wg’ 9, u, — u strongly in L), up—uae. in Q.
By Lemma 3.2, we conclude that

a(x,uy, Vuy)—a(x,u,Vu), a.ein Q.
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Combining (3.7) and (3.22), yields
[la(x, 10, Vi) || ) <C,

for every 1 <r(x) <N/(N—1). Moreover, using Lemma 2.1, we can write

a(x,uy, Vu,)—a(x,u,Vu) weakly in L’(")(Q).
It is now possible to pass to the limit in (3.11), we conclude that u is the weak solution of
the problem (P). O
3.3 Strongly nonlinear elliptic problem: —div(a(x,u,Vu))+g(x,u,Vu)=pu
Consider the equation

oy dv(aen Vo) gru V=g in 0, (323)
u=0 on 0Q),

where a satisfies (3.6)-(3.9), u lie in M(Q), and the non linear term g: Qx IR x IRN — IR,
is a Carathédory function satisfying for almost every x € Q) and for all s€ IR, { € IR the
following conditions:

8(x,5,8).s>0, (3.24)
85,8 <b(Is)(e(x)+2]"™), (3.25)
where b: IR — IR" is a continuous growth function and c: () — IR with c€ L' (Q)).

Definition 3.2. We say that u is a weak solution of the problem (3.23) if
ue Wé’ 1)y q(-) € By, a(x,u,Vu)e LY(Q), g(x,u,Vu)eL(Q),
/a(x,u,Vu)qudx+/ glxu,Vu)pdx=<pu,¢>, VeeD(Q). (3.26)
O O

Theorem 3.2. Let a satisfy (3.6)-(3.9), g satisfy (3.24)-(3.25) and u lies in M(Q)). Then there
exists a weak solution of (3.23).

Proof. Let (f,) be a sequence of L'(Q)NW~#'()(Q) which converges to y in the distri-
butional sense and such that

[ falliro) <Hpllmy)y — VneN. (3.27)

By [6] there exists a weak solution (u,,) of the problem (3.23) with f, = u which satisfies:

U, € Wg’p(x) (Q), g(xu,,Vu,)e LY(Q),
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/Qa(x,un,Vun)-Vvdx-l—/Qg(x,un,Vun)vdx:<fn,v >,
Voe WP (Q)nL=(Q). (3.28)
Following the lines of [1], it is easy to deduce that
118 (14, Vi) || 1) < ful [ () (3.29)
Setting h, = f, —g(x,un, Vu,), by (3.27) and (3.29) we have

[l [0y <20 1| 6, (2)-

Note that u, is the solution of the problem (3.11) with a right-hand side is #,. By the

Section 2.2 the sequence (u,) is relatively compact in WS’Q(X) (Q),Vq(-) €By.). Then we
can assume (after extraction of a sub-sequence, still denoted by (1))

(%)

u, — u weakly in Wg’ 7Y, forall g(-) €B,.),

Uy — U In L), U, —uae. in ),
a(x,1,, Vi) —a(x,u,Vu) weakly in L' (Q), for 1<r(x)<N/(N—-1). (3.30)

Now, we prove that
g(x,uy, Vu,)—g(x,u,Vu) strongly in Ll(Q),

we have g, (x,u,, Vu,) — g(x,u,Vu) a.e.in Q), using the Vitali convergence theorem, it
sufficient to show that g, (x,u,, Vu,) is uniformly equi-integrable. Indeed, let >0, taking
Ty (uy— Ty (uy)) as a test function in (3.28), we obtain

/Qa(x,un,Vun)-VTl(un—Th(un))dx—l-/Qg(x,un,Vun)Tl(un—Th(un))dx
:/anTl(un_Th(un))dxr
it follows that

/{ >h}g(x,un,Vun)T1(un—Th(un))dxg/{ FuT1 (10, — Ty, (1) ) dx.

|n| 2}

Then
X, Uy, Vi,)|dx
/{Whﬂ}‘g( )|
g/ (%, uy, Vuy) Ty (uy— Ty (uy) )dx
{lunl=h}

< _
< /{ o T = T )
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1 1
< (P—_—I-P—,) [ fl |21, ()| T1 (= Ty () 1,p() =0, as h—oo.

Thus, for all ¢ >0, there exists h(e) >0 such that
I3
XUy, Vi) |de< <. 3.31
[{un>h(€)} 0t Vi) x5 &30

On the other hand, for any measurable subset D C (), we have

/D lg(x, 1, Vuy)|dx

< / b(h) (c(x) + |V Ty (1) [P ) dx + 19(%, 1, Vit ) dx.
D {unl >h(e)}

There exists B(e) >0 such that

b(h)/D(c(x)—|— IV T (1) |P™))dx < for meas(D) < B(e).

€
2/
Thus
/ |g(x,uy, Vuy,)|dx<e, with meas(D) < B(e).
D

By Vitali convergence theorem we deduce that g (x,u,, Vu,)—g(x,u,Vu) strongly in L}(Q).
Now, taking ¢ € D(Q)) as test function in (3.28), we have

[ e, Vun) - Vodx+ [ g(xun, Vi) gdx=< fug>.
@) @)

By letting n tends to oo, we obtain

/a(x,u,Vu)Vq)dx—l—/g(x,u,Vu)qodx:<pt,qo>, VoeD(Q).
0 0
We have show that

uewy 1, Vq(-)€B,.y; g(xu,Vu)eL(Q),
N
< N-1’

/Qa(x,u,Vu)Vq)dx-l—/Qg(x,u,Vu)godx:<y,go>, VoeD(O),

a(x,u,Vu)e L'®(Q), for 1<r(x)

thus u is the weak solution of problem (3.23). O

Exemple 3.1. We consider the following functions

a(x,u,Vu)=|Vu|P® 2Ty, and g(x,u,Vu)=(1+|Vu|P®))|uP*) 2y,
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It is clear that a(x,u,Vu) and g(x,u,Vu) verifies (3.6)-(3.9) and (3.24)-(3.25) respectively,
then by Theorem 3.2 for all u € M(Q) there exists a weak solution of the problem

_div<|vu|P(x)—2Vu)+<1+|Vu|p(x))|”’p(x)_2”:% in ), (3.32)
U=0, on 0Q).
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