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Abstract. In this paper, by using a semimartingale approximation of a fractional stochas-
tic integration, the global Harnack inequalities for stochastic retarded differential equa-
tions driven by fractional Brownian motion with Hurst parameter 0 < H <1 are estab-
lished. As applications, strong Feller property, log-Harnack inequality and entropy-
cost inequality are given.
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1 Introduction

Under a curvature condition, Wang [1] established the following type dimension-free
Harnack inequality for diffusion semigroups on a Riemannian manifold M:

(Pf)*(y) < (Pf™) (x)eDPv?  £>0,£>0,a>1, x,ye M,

where c(t) >0 is explicitly determined by « and the curvature lower bound. This type of
inequality has been studied extensively, see, for example, Aida and Kawabi [2] and Aida
and Zhang [3] for infinite dimensional diffusion processes; Wang [4] for stochastic gener-
alized porous media equations; Rockner and Wang [5] for generalizes Mehler semigroup;
Abdelhadi et.al. [6] and Wang and Yuan [7] for stochastic functional equation; Liu [8] for
stochastic evolution equations with monotone drifts; Ouyang [9] for Ornstein-Uhnelbeck
processes and multivalued stochastic evolution equations etc.
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The Harnack inequality has various applications, see for instance, [5,10-12] for strong
Feller property and contractivity properties; [2, 3] for short times behaviors of infinite
dimensional diffusions; [13-15] for heat kernel estimates and entropy-cost inequalities.
[1,5,16] established Harnack inequalities using the method of derivative formula. In
order to establish the Harnack inequality for diffusions with curvature unbounded be-
low, the approach of coupling and Girsanov transformations are developed in [17]. This
method works also for infinite dimensional SPDE provided the noise is additive and
non-degenrate, see e.g. [4,9,18,19] for Harnack inequalities for several different classes
of SPDE.

On the other hand, one solution for many SDEs is a semimartingale as well a Markov
process. However, many objects in real world are not always such processes since they
have long-range aftereffects. Since the work of Mandelbrot and Van Ness [20], there has
been an increased interest in stochastic models based on the fractional Brownian motion
than Brownian motion. A fractional Brownian motion (fBm) of Hurst parameter H < (0,1)
is a centered Gaussian process B = { BH(t),t >0} with the covariance function

Ru(ts) =E(BHBH) = % (PH M |1 sPH).

When H =1/2 the fBm becomes the standard Brownian motion, and the fBm B neither
is a semimartingale nor a Markov process if H#1/2. However, the fBm BH H>1/2isa
long-memory process and presents an aggregation behavior. The long-memory property
make fBm as a potential candidate to model noise in mathematical finance (see [21]);
in biology (see [22]); in communication networks (see, for instance [23]); the analysis of
global temperature anomaly [24] and electricity markets [25] etc.

Very recently, using derivative formula, the local Harnack inequalities in the sense
that |x—y/| is bounded by a constant for the following stochastic differential equations

dX(t)=b(X(t))dt+dB"(t), X(0)=x,

driven by fractional Brownian motion with Hurst parameter 1/2 <H <1 were established
by Fan in [26]. Subsequently, using the approach of coupling and Girsanov transforma-
tions to fractional Brownian motion with Hurst parameter 1/2<H <1, the global Harnack
inequalities for the following stochastic differential equations

dX(t)=b(t,X(t))dt+o(t)dB(t), X(0)=x,

driven by fractional Brownian motion with Hurst parameter 1/2 < H <1 were estab-
lished by Fan in [27]. Furthermore, using Malliavin calculus, Fan [28] established Bismut
derivative formulae for the following stochastic differential equations

dX(t)=b(X(t))dt+o(t)dB7(t), X(0)=x,
and functional stochastic differential equations

dX(t)=b(X;)dt+o(t)dB(t), Xo=¢,
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driven by fractional Brownian motions with Hurst parameter 1/2 < H <1. As applica-
tions, the global Harnack type inequalities are presented.

However, in [28] the condition that b is Fréchet differentiable such that Vb is bounded
and Lipschitz continuous seems to be relatively strong. On the other hand, as far as
I know, in the case that 1/2 < H <1, using the approach of coupling for the segment
process and Girsanov transformations, in virtue of irregularity of the operator K, it is
very difficult to obtain the Harnack inequality. In [20], Mandelbrot et al. have given a
representation of B! of the form:

t
B = mlM) (u(t)+/0 (t—s)"dW,),

where « = H—1/2, U(t) is a stochastic process of absolutely continuous trajectories, and
WtH = fot (t—s)*dW; is called a fBm of the Liouville form (LfBm). Because a LfBm shares
many properties of a fBm (except that it has non-stationary increments) and for simplicity
we use W/! standing for B} throughout this paper. In this paper, motivating mainly
by [29], using a semimartingale approximation of a fractional stochastic integration, we
desire to establish the global Harnack inequality for the segment process to the following
stochastic functional differential equations

{dX(t):b(X(t))dt—l—F(Xt)dt+a(t)thH,

ongl

driven by fractional Brownian motion with Hurst parameter 0 < H <1. As applications,
strong Feller property, log- Harnack inequality and entropy-cost inequality are derived.

The paper is organized as follows. In Section 2, we give some preliminaries on frac-
tional Brownian motion. In Section 3, we establish the Harnack inequality, and present
some applications.

2 Preliminaries

In the last few decades, many differential ways have been introduced to constructed the
fractional stochastic calculus (see, for instance, [30]). The main difficulties in studying
fractional stochastic systems are that we cannot apply stochastic calculus developed by
It6 since fBm is neither a Markov process nor a semimartingale, except for H =1/2.
Recently, an approximate approach has been developed to avoid those difficulties (see,
[29, 31] and the references therein). Let us recall some fundamental results about this
approach.

Let (Q), F,{F:}=0,IP) be a filtered complete probability space satisfying the usual con-
dition, which means that the filtration is a right continuous increasing family and %
contains all P-null sets. For every e >0 we define

. t
W, ’82/ (t—s+e)*dW;.
0
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In [31], author proved that WtH’8 is a semimartingale with the following decomposition
t
Wi =€“Wt+/0 ¢(s)ds, 2.1)

where ¢*( fo a(s+e—u)* 1dW,. Moreover, W ¢ converges to WH in LF(Q)), p>1
umformly inte[0,T] ase—0:

E|W/"* —~W/|F <c, retH.

For f is a deterministic function in L2[0,T], from the decomposition (2.1) we have

/Off(s)dWSH/e:/Otg«f(s)dws+/Of/osaf(s)(erg_u)a_lquds

t t ot (2.2)
:/Oe”‘f(s)dws—l—/o/szxf(u)(u—i—e—s)”‘_ldudws.

As € — 0, each term in the right-hand side of (2.2) converges in L2(Q) to the same term
where ¢e=0. Then, it is ‘natural’ to define.

Definition 2.1. For f is a deterministic function in L?[0,T]. The stochastic integral of f with
respect to LfBm is defined by

/f s)dWH: —hm/f WHS—oc//ocf )= dudW,. (2.3)

Let »>0 be fixed, and let L=C([—r,0|;R) be equipped with the uniform norm |||/« =
SUp_,4<l¢(t)|- We consider the following functional stochastic differential equation
driven by fractional Brownian motion on RR,

{dX(t):b(X(t))dH—F(Xt)dH—a(t)thH, 0

Xo=¢,
where € L, for each t >0, X; € L is fixed as X;(u) =X (t+u),u € [—r,0].
The aim of the paper is to consider the Harnack inequality for the equation (2.4). We

define
Pf(&):=Ef(X{), te[0,T], fEB(L), (2.5)

where Xf is the solution to the equation (2.2) and %, (L) denotes the set of all bounded
measurable functions on L.

3 Harnack inequality

Let us start with the following hypotheses:
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(H1) |b(x) —b(y)| <Ki|x—y|,Vx,y €R, where K; >0 is a constant;

(H2) F is globally Lipschitz on £, i.e. for some K, >0,
[F(x)—F(y)|<Kellx—yllo,  Vxy€eL, t€[0,T].

(H3) o(-) is reversible and the inverse is bounded, i.e. for any t € R, there exists a
constant M >0 such that [c~!| < M.

Remark 3.1. For ¢ is a deterministic function in L?[0,T]. Using the same arguments as
in [32], we can easily prove that there exists a unique strong solution to equation (2.4)
under the assumption (H1) and (H2).

Now, we aim to establish Harnack inequality for Pr.

Theorem 3.1. Let T>r, 0<H <1. If (H1)-(H3) hold, then the operator Pr satisfies that for any
p>1, &,y € L and nonnegative f € By(L),

(Prf ()7 < Prf? @exp | Egp(Tr G, G1)

where

o(T,r,H,E,n) :yi?Spr(T,r,s,H,C,iy),

K1|¢(0) =7(0)| }ZTHH

_ . _ Kis _
pUT5 1) = M-{ Kallg =y -+ Kae o l20) = 0) + HEZEIN Y

Proof. The proof will be divided into three steps.
Step 1. As in [6] we shall employ a coupling argument. Let

e
Gx)= M\x\ ifx #0,
0, ifx=0.

Let process (Y (t))¢>0 solve the equation

=

{ Y(t)=b(Y(t))dt+F(X;)dt+y-G(X(t) =Y (t))dt+o(t)dBH(¢),
Y(0)=1(0),

and which we extend by Y (t) =#(t) for t €[—r,0). Note that
d(X(£) =Y () = (b(X(#)) =b(Y(#)))dt =7 G(X(£) =Y (¢))dt.

Thus applying the Tanaka formula to | X(t) —Y (¢)|, we have

d|X(#) =Y (£)| =sgn(X(t) =Y (1)) d(X(£) =Y (t))
=sgn(X () =Y (£)) (b(X(£)) =b(Y(£)))dt —-[X(t) = Y(£) |"dE.

(3.2)
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In view of (H1), for all >0 we get
d|X(5) =Y ()| <K |X(t)=Y(t)|dt—y- | X(t)=Y(t)[*dt.
This implies that
d (e R IX () =Y (1)) < —ye M |X () - Y (1) dt

Then, by virtue of the above inequality and the chain rule, we have that

d (e-KlfyXu)—Y(t)y)l*g: (1) (e 11x(1) - Y (1)) d G O]

_8)6—K1t(1—8)dt,

<-(1
(e’K“!X(t) =Y (t) !) T (!C(O) —n(0)[' = Kll(l—eK”(”))> R

Thus,
1/(1—¢)
’X(t) —Y(t) ’ < ekit |(§(0) _17(0) |178 T (1 _efK]t(lfe)) .
K .
Hence, for s € (r,T], choosing

_ Ki|g(0)—y(0)|"*

T=Ts= (1—e-Kall-6)—7)) >0.

This implies X(t)=Y(t) forall t>s—r and X;=Y; in C forall t >s.
Step 2. Let

u(t)=F(X;)—F(Y;)+v-G(X(t)—Y(t)), Wﬁ:/otal(v)u(v)dwrwﬁ.

Note that
[u(t)| <Ko || X = Yi|loo+v|X(H) =Y ()"
Thus, we have

(D) <K[|g=1leo + Kz sup [X(v) =Y (0)|+7[X(£) =Y (£)[".

0<v<t

Finally, letting e — 0, we obtain by (3.3)

K11¢(0) =5 (0)]

[u(£)] <K2[|g 1|0 +Kae"1*|£(0) — 17 (0) [ + (1—e K6

89

(3.3)

(3.4)
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According to integral representation of fractional Brownian motion we deduce for any
te|0,T]

0t = [0 o)u(o)do+ W
= [ @ut)do+ [ (-0)aw ()
= [[(t-0" (¢ @ule) (t-0) *do+dW (o))

::/Ot(t—v)“dW(v). (3.5)

Now, let

Re(t):exp{—/Ota_l(v)u(v)(t—v)_"‘dW(v)—%/Ot (¢ @u(o)(t—0)*) do].

We want to show that (V~VtH Jo<t<t is an FV "_fractional Brownian motion with Hurst pa-
rameter H € (0,1) under the new probability Q(dw) = R.(t)IP(dw). Due to [33], it suffices
to show that EF R, (T) =1. Notice that

/T (a’l(v)u(v)(T—v)’”‘de

0

K11¢(0)=7(0)]| }2' T2
(1—e KGn) [ "H—2H

=:2|lc" ) ewp(T,7,5,H,,17). (3.6)

gHU1|\w-{K2||§—17|\00+K2e1<15]§(0)—;7(0)]4-

As a consequence, we get

Eexp[%/oT (U’l(v)u(v)(T—v)’”‘de] <explp(T,r,s,H,E,1)]. (3.7)

Using the well-known Novikov criterion, one can have EFR.(T) =1.
Step 3. From step 2, we can rewrite (3.2) in the following form

{dY(t):b(Y(t))dt+F(Yf)dt+0(t)dWﬁ,
Yo=1,

where (WH)o<;<1 is an FV "_fractional Brownian motion with Hurst parameter H under
the new probability R(T)P. By the uniqueness of the solution and X7 =YT, a.s., we have

Prf(n) =E2f(Y]) = Ef(X5) =E"Re(T) f(X]). (3.8)
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Applying the Holder’s inequality to (3.8), we obtain

p

(Prf ()" <Prf?(8)-(ER(T)71)""1. (3.9)
Now we will estimate moments of R¢(T).
Denote a =p/(p—1) and Mr=— OTafl(v)u(v)(t—v)*”‘de. Since (R¢())o<t<T is a

IP martingale, by (3.7) we have
ER.(T)* —EexplaM; — %oc(M)T]

:]Eexp[aMT— %aZ(Mﬁ—l—%zx(a—l)(Mﬁ]

<expla(a—1)p(T,r,H,G,1)]. (3.10)
Substituting (3.10) into (3.9), we get the desired result. The proof is complete now. O

Remark 3.2. In [26], Fan established Harnack inequality for equation (2.4) of high dimen-
sions and multiplicative noise in one-dimension without delay by using the method of
derivative formula. However, the Harnack inequality established in [26] is local in the
sense that |[x—y| is bounded by a constant. The Harnack inequality established in our
Theorem 3.1 is global. Furthermore, in our Theorem 3.1, the condition that

Vb(x)—Vb(y) <K|x—y|, Vx,yeR,

is not required. Incidentally, when the condition Vb(x)—Vb(y) < K|x—y| is dropped
even in high dimensions, Fan [27] also established global Harnack inequality for equation
(2.4) without delay by using the approach of coupling and Girsanov transformations to
fractional Brownian motion with Hurst parameter 1/2 < H <1.

For the operator Pr,T >0, defined in (2.5), it is called strongly Feller if Pr maps B} (L)
into C,(L) for each t >0. Here C,(L) is the space of all bounded continuous functions on
L. In general, the operator Pr,T>0, given in (2.5) might not have strongly Feller property
for all T > 0. However, as a direct application of the Harnack type inequalities derived
above, by Proposition 3.1 of [4] we get the strong Feller property on Pr .

Corollary 3.1. Under the same conditions as in Theorem 3.1, the operator Pr, T >0, given in
(2.5) is eventual strongly Feller in the sense that Prf(-) is a bounded continuous function on L
for each f € By (L) and T > r. Moreover, we have the following estimate,

[Prf (&)= Prf(n)| < flleo[20(T,r,H, &) 2explo(T,r,H,&,1)] (3.11)
for every T >r, &,y € L and f € By(L).

As an immediate application of Theorem 3.1, by Corollary 1.2 of [34], we may also
establish the following result on log-Harnack inequality.
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Corollary 3.2. Under the same conditions as in Theorem 3.2, we have the following log-Harnack
inequality,

Pr(logf) () <logPrf(¢)+p(T,r,H,G,1)
forany ¢, ne L, T>rand f € By(L) satisfying infzcz|f ()] > 1.

To state further application of Theorem 3.2, let us introduce another assumption and
some notations.
(H4): let u be a probability measure on £ such that for some K >0,

w(Prf)<Ku(f),  Vfe (L),
Note that if y is Pr-invariant, then (H4) holds.
Remark 3.3. The measure y satisfying (H4) always exist. For instance (see [35]),
Z:: 21 VxeLl,
where (P} (x,-))n>1 is defined recursively as follows
PrixA)i=Prla(x),  PR(xA)i= [ PPl (xdy)Pr(y,4),  n>2.
L

Let “(u,v) denote the set of all couplings of y and v, where y and v are two given
probability on £, and W} (,v) be the L>-Wasserstein distance between them, i.e.

Wip)= in [ [ lx—ylm(dndy)

where §(x,y) = ||x —y||c is a distance on L.

Corollary 3.3. Assume that (H1) and (H2) hold and y satisfies (H4) (K=1). Then the following
entropy-cost inequality holds for each T >r and f € B, (L) with u(f)=

u(PrflogPrf) <p'(T,r, HYW; (1, fu),

where P3 is the adjoint operator of Pr in L(p) and

Ki ) 2 T2—2H

/ — -1 KlT
o' (T,r,H)=|oc |\w<1<2+1<ze T kT ) 220

Proof. By Corollary 3.2 for P;f, we have

Pr(logP;f)(&) < logPr(P1f)(n)+po(T,r,H,¢,n)
<logPr(Pif)(n)+p (T,r,H)|E-nl%,  VEneLl.  (3.12)
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Integrating both sides of (3.14) with respect to € ¢(y, f1), we get

(P fogPif) < (logPr(Pf)) +¢/ (T H) [ [ lE=nlZm(dzdn).
Note that, the Jensen’s inequality and the hypotheses imply

u(logPr(Prf)) <logu(Pr(Prf)) <logu(Prf)=logu(fPrl)=logu(f)=0.
So, we get

n(PiflogPif) <p/(Tr,H) inf [ [ le—y|2(de,dy).
e (wfu)JLIL

The proof is complete. d
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