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Abstract. We consider the Cauchy problem for a class of nonlinear degenerate parabolic
equation with forcing. By using the vanishing viscosity method it is possible to con-
struct a generalized solution. Moreover, this solution is a Lipschitz function on the
spatial variable and Hölder continuous with exponent 1/2 on the temporal variable.
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1 Introduction

In this paper we consider the Cauchy problem for nonlinear degenerate parabolic equa-
tion

ut=u∆u−γ|∇u|2+ f (t,u), (x,t)∈R
N×R+, (1.1)

u(x,0)=u0(x)∈C(RN)∩L∞(RN), (1.2)

where γ is a nonnegative constant. Eq. (1.1) arises in severals applications of biology
and physics, see [1, 2]. Eq. (1.1) is of degenerate parabolic type: parabolicity it is loss at
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points where u=0, see [1,3] for a most detailed description. In [4] a weak solution for the
homogeneous equation (1.1) is constructed by using the vanishing viscosity method [5],
the regularity of the weak solutions for the homogeneous Cauchy problem (1.1)-(1.2) was
studied by the author in [6] and an extension for the inhomogeneous case is given in [7].
In this paper we extend the above results for the inhomogeneous case, this extension is
interesting from physical viewpoint, since the Eq. (1.1) is related with non-equilibrium
process in porous media due to external forces. We obtain the following main theorem,

Theorem 1.1. If γ≥
√

2N−1, |∇(u
1+ α

2
0 )|≤M, where M is a positive constant such as

α2+(γ+1)α+
N

2
≤0,

then the viscosity solutions of the Cauchy problem (1.1)-(1.2) satisfies

|∇(u1+ α
2 )|≤M. (1.3)

We principally followed the ideas of the authors in [6, 7], where the particular reaction
therm Kum was considered.

2 Preliminaries

We begin this section with the definition of solutions in weak sense.

Definition 2.1. A function u∈ L∞(Ω)
⋂

L2
loc([0,+∞);H1

Loc(R
N)), is called a weak solution of

(1.1)-(1.2) if it satisfies the following conditions:

(i) u(x,t)≥0 , a.e in Ω.

(ii) u(x,t) satisfies the following relation
∫

RN

u0ψ(x,0)dx+
∫∫

Ω

(uψt−u∇u·∇ψ−(1+γ)|∇u|2ψ− f (t,u)ψ)dxdt=0, (2.1)

for any ψ∈C1,1(Ω) with compact support in Ω.

For the construction of a weak solution to the Cauchy problem (1.1)-(1.2), we use the
viscosity method: we add the term ǫ∆u in the Eq. (1.1) and we consider the following
Cauchy problem

ut=u∆u−γ|∇u|2+ f (t,u)+ǫ∆u, u∈Ω, (2.2)

u(x,0)=u0(x), x∈R
N , (2.3)

where γ≥0. The existence of solutions for (2.2)-(2.3) follows by the Maximum principle
and vanishing viscosity method ensures the convergence of the weak solutions when
ǫ→0 to the Cauchy problem (1.1)-(1.2).

Definition 2.2. The weak solution for the Cauchy problem (1.1)-(1.2) constructed by the vanish-
ing viscosity method is called viscosity solution.
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3 Estimates of Hölder

In this section we are going to proof the main theorem of this paper. We begin with some
a priori estimates for the function u.

Proof. Let

w=
1

2

N

∑
i=1

u2
xi

. (3.1)

Deriving with respect t in (3.1) and replacing in (1.1) we have

wt=
N

∑
i=1

uxi

[

uxi
∆u+u

(

N

∑
j=1

uxixjxj

)

−2γwxi
+ fuuxi

]

.

By other hand

∆w=
1

2

N

∑
j=1

(

N

∑
i=1

u2
xi

)

xjxj

=
1

2

[

N

∑
j=1

(2ux1
ux1xj

)xj
+

N

∑
j=1

(2ux2 ux2xj
)xj

+···+
N

∑
j=1

(2uxN
uxNxj

)xj

]

,

∆w=
N

∑
i,j=1

u2
xixj

+
N

∑
i,j=1

uxi
uxixjxj

, (3.2)

thereby,

wt=2w∆u+u∆w−u
N

∑
i,j=1

u2
xixj

−2γ
N

∑
i=1

uxi
wxi

+2 fuw. (3.3)

Set,

z= g(u)w. (3.4)

After take twice derivatives with respect xi in (3.4) we have

wxi
=(g−1)xi

z+g−1zxi
(3.5)

wxixi
=(g−1)xixi

z+2(g−1)xi
zxi

+g−1zxixi
. (3.6)

From Eqs. (3.2), (3.5)-(3.6), we have that,

∆w=
N

∑
i=1

wxixi
=

N

∑
i=1

[

(g−1)xixi
z+2(g−1)xi

zxi
+g−1zxixi

]

,

Deriving two times with respect xi in (3.4) we have

(g(u)−1)xi
=−g−2g′uxi

(3.7)
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(g(u)−1)xixi
=

(

2g2′−gg′′

g4

)

gu2
xi
− g′

g2
uxixi

, (3.8)

then,

∆w=

(

2g2′−gg′′

g4

)

g
N

∑
i=1

u2
xi

z− g′

g2

N

∑
i=1

uxixi
z−2g−2g′

N

∑
i=1

uxi
zxi

+g−1
N

∑
i=1

zxixi

= g−1
N

∑
i=1

zxixi
−2g−2g′

N

∑
i=1

uxi
zxi

+2

(

2g′−gg′′

g4

)

gwz− g′

g2
z

N

∑
i=1

uxixi
,

∆w= g−1∆z−2g−2g′
N

∑
i=1

uxi
zxi

+2

(

2g2′−gg′′

g4

)

z2− g′

g2
z∆u. (3.9)

From (3.3)-(3.5), (3.9), we obtain

zt =u∆z−(2g−1ug′+2γ)
N

∑
i=1

uxi
zxi

+(2 fu+g′g−1 f (t,u))z

+

(

4ug2′

g3
− 2ug′′

g2
+

2γg′

g2

)

z2+2z∆u−ug(u)
N

∑
i,j=1

u2
xixj

. (3.10)

By choosing g(u)=uα, and since

N

∑
i,j=1

u2
xixj

≥ 1

N
(∆u)2, (3.11)

replacing g in (3.10)-(3.11) we have

zt ≤u∆z−2(α+γ)
N

∑
i=1

uxi
zxi

+(2 fu+αu−1 f (t,u))z

+2α(α+1+γ)u−α−1z2+2z∆u− uα+1

N
(∆u)2. (3.12)

For γ≥
√

2N−1, if α satisfies

α2+(γ+1)α+
N

2
≤0, (3.13)

where α2+(γ+1)α≤−N/2, then,

2α(α+γ+1)u−α−1z2+2z∆u− uα+1

N
(∆u)2≤0. (3.14)
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Therefore from (3.12) and (3.14) we have

zt ≤u∆z−2(α+γ)
N

∑
i=1

uxi
zxi

+(2 fu+αu−1 f (t,u))z. (3.15)

By an application of the maximum principle in (3.15) we have

|z|∞ ≤|z0|∞.

Now, from (3.1), (3.4), with g(u)=uα, since the initial data (1.2) satisifes

|∇(u
1+ α

2
0 )|≤M,

with M a positive constant and α satisfies (3.13), we have

|∇(u1+ α
2 )|2=

∣

∣

∣

∣

∣

N

∑
i=1

(u1+ α
2 )xi

ei

∣

∣

∣

∣

∣

2

=
N

∑
i=1

[

(u1+ α
2 )xi

]2
=

N

∑
i=1

[(

1+
α

2

)

u
α
2 uxi

]2

=
(

1+
α

2

)2
uα

N

∑
i=1

u2
xi
=2
(

1+
α

2

)2
uαw=2

(

1+
α

2

)2
z,

therefore
|∇(u1+ α

2 )|≤M.

4 Hölder continuity of u(x,t)

Now using the main theorem, we have the following corollary about the regularity of the
viscosity solution u(x,t) to the Cauchy problem (1.1)-(1.2).

Corollary 4.1. Let f be a continuous function such that

| f (t,w)|≤ k|w|m , (4.1)

where w is a real value function and m, k non-negative constants. Under conditions of the The-
orem 3.1 the viscosity solution u(x,t) of the Cauchy problem (1.1)-(1.2) is Lipschitz continuous
with respect to x and locally Hölder continuous with exponent 1/2 with respect to t in Ω.

Proof. From there exists α∈R with α2+(γ+1)α+ N
2 ≤0, with α<0, or,

−
√

(γ+1)2−2N

2
− γ+1

2
≤α≤−γ+1

2
+

√

(γ+1)2−2N

2
<0.

Since α<0, taking α 6=−2, we have the estimate,

|∇(u1+ α
2 )|=

∣

∣

∣
(1+

α

2
)u

α
2 ∇u

∣

∣

∣
=
∣

∣

∣
1+

α

2

∣

∣

∣
u

α
2 |∇u|≤M.
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Now, as u≥0, we have that

|∇u|≤
∣

∣

∣
1+

α

2

∣

∣

∣

−1
u− α

2 M≤M1, in Ω, (4.2)

since u is bounded.
Using the value mean theorem, we have

u(x1,t)−u(x2,t)=∇u(x1+θ(x2−x1),t)·(x1−x2), (4.3)

for any θ∈ (0,1). From (4.2)-(4.3) we have,

|u(x1,t)−u(x2,t)|≤|∇u(x1+θ(x2−x1),t)||x1−x2|≤M1|x1−x2|, ∀(x1,t),(x2,t)∈Ω.

Therefore u(x,t) is a Lipschitz continuous with respect to the spatial variable. For Hölder
continuity of u(x,t) with respect to the temporary variable, we are going to use the ideas
developed in [8]. Let uǫ(x,t)∈C2.1(Ω)

⋂

C(Ω)
⋂

L∞(Ω) the classical solution to the Cauchy
problem problem (1.1)-(1.2), namely,

{

ut=u∆u−γ|∇u|2+ f (t,u), in Ω,

u(x,0)=u0(x)+ǫ, in R
N.

We have that
∣

∣

∣

∣

∣

∇(u0+ǫ)1+ α
2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1+
α

2

)

(u0+ǫ)
α
2 ∇u0

∣

∣

∣

∣

∣

≤
∣

∣

∣
1+

α

2

∣

∣

∣
(u0)

α
2 |∇u0|=

∣

∣

∣

∣

∣

∇
(

u
1+ α

2
0

)

∣

∣

∣

∣

∣

≤M.

Then, the conditions of Theorem 3.1 holds. Thereby

∣

∣

∣
∇(u0+ǫ)1+ α

2

∣

∣

∣
≤M.

Since uǫ is a classical solution, u is also a weak solution of the Cauchy problem (2.2)-
(2.3). Hence, using the same arguments in the proof of Theorem 3.1, we have that uǫ is a
Lipschitz continuous with respect to the spatial variable, with constant M, namely

|uǫ(x1,t)−uǫ(x2,t)| ≤ M|x1−x2|, ∀ (x1,t),(x2,t)∈Ω. (4.4)

The following argument is due to [7], let

L(z)=uǫz−γ|uǫ|2+ f (t,z)−zt

be the parabolic differential operator. Then z=uǫ satisfies L(z)=0, therefore

uǫ∆z−zt =γ|∇uǫ|2− f (t,uǫ), in B2R(0)×(0,T], (4.5)
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where B2R(0) is the open ball centered in 0, with radius 2R in R
N . Noticing that

uǫ ∈C2,1(B2R(0)×(0,T]).

Therefore uǫ and ∇uǫ are bounded in B2R(0)×(0,T], so exists a constant µ>0 such that

N

∑
i=1

uǫ(x,t)=Nuǫ(x,t)≤µ, γ|∇uǫ(x,t)|≤µ, ∀(x,t)∈B2R(0)×(0,T],

and by the condition (4.1) we have

| f (t,uǫ)|≤ k|uǫ |m ≤ k(
µ

N
)m.

From (4.4), we have also

|z(x1,t)−z(x2,t)|≤M|x1−x2|, ∀ (x,t)∈B2R(0))×(0,T].

From the main theorem in [8] (page 104), there exists a positive constant δ (which depends
only of µ and R) and a positive constant K, which depends only of µ, R and M, such that

|z(x,t)−z(x,t0)|≤K|t−t0|
1
2 ,

for all (x,t),(x,t0)∈BR(0)×(0,T] with |t−t0|<δ. That is,

|uǫ(x,t)−uǫ(x,t0)|≤K|t−t0|
1
2 ,

for all (x,t),(x,t0)∈BR(0)×(0,T] with |t−t0|<δ. Whenever K is independent of ǫ, taken
ǫց0, we obtain

|u(x,t)−u(x,t0)|≤K|t−t0|
1
2 ,

for all (x,t),(x,t0)∈BR(0)×(0,T] with |t−t0|<δ.
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