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IMPLICIT ASYMPTOTIC PRESERVING SCHEMES FOR

SEMICONDUCTOR BOLTZMANN EQUATION IN THE

DIFFUSIVE REGIME

JIA DENG

Abstract. We design several implicit asymptotic-preserving schemes for the linear semiconductor

Boltzmann equation with a diffusive scaling, which lead asymptotically to the implicit discretiza-
tions of the drift-diffusion equation. The constructions are based on a stiff relaxation step and

a stiff convection step obtained by splitting the system equal to the model equation. The one

space dimensional schemes are given with the uniform grids and the staggered grids, respectively.
The uniform grids are considered only in two space dimension. The relaxation step is evolved

with the BGK-penalty method of Filbet and Jin [F. Filbet and S. Jin, J. Comp. Phys. 229(20),
7625-7648, 2010], which avoids inverting the complicated nonlocal anisotropic collision operator.

The convection step is performed with a suitable implicit approximation to the convection term,

which gives a banded matrix easy to invert. The von-Neumman analysis for the Goldstein-Taylor
model show that the one space dimensional schemes are unconditionally stable. The heuristic

discussions suggest that all the proposed schemes have the correct discrete drift-diffusion limit.

The numerical results verify that all the schemes are asymptotic-preserving. As far as we know,
they are the first class of asymptotic-preserving schemes ever introduced for the Boltzmann e-

quation with a diffusive scaling that lead to an implicit discretization of the diffusion limit, thus

significantly relax to stability condition.

Key words. linear semiconductor Boltzmann equation, implicit asymptotic-preserving scheme,

drift-diffusion limit, BGK-penalty method, time-splitting

1. Introduction

The semiconductor Boltzmann equation, serving as the mathematical model for
the highly integrated semiconductor, has a diffusive scaling characterized by the
Knudsen number δ (which denotes the ratio of the mean free path of the particle over
a typical length) when the electric potential is weak. As δ → 0+, the semiconductor
Boltzmann equation leads asymptotically to the drift-diffusion equation, which is
usually satisfactory for the region having both δ � 1 and the initial solution around
the local equilibrium state. In practical applications, it is often found that δ varies
with very different scale of magnitude within one computational domain and the
initial data is in the nonlocal equilibrium state. For the sake of accuracy and
efficiency, one usually uses either the domain decomposition type methods [3, 4, 9,
18, 27, 28] or the asymptotic-preserving (AP) schemes [5, 11, 14, 15, 16, 20, 21] to
describe the device.

The domain decomposition type methods have the idea of discretizing the kinetic
equation in the rarefied regime (where δ is big) and the drift-diffusion equation in
the diffusive regime (where δ � 1). Such methods generally face the difficulty of
determining the locations and the coupling conditions of the interfaces. The AP
schemes, on the other hand, solve in the whole computational domain the kinetic
equations and hence avoid the problems of interfaces. Specifically, as summarized
in [11], an AP scheme possesses the discrete analogy of the continuous asymptotic
limit when δ → 0+ even with coarse grids ∆t, ∆x� δ2 (where ∆t is the time step
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2 J. DENG

and ∆x is the space step). A scheme that allows the use of coarse grids should be
AP. For kinetic equation with a diffusive scaling, the previous AP schemes need
∆t = O(∆x2) due to the explicit convection term [5, 11, 14, 15, 16, 20, 21] and
typically have the following features [15]:

• The numerical stability is independent of δ. Even in the worst case, it is
merely restricted to the parabolic condition ∆t ∼ O(∆x2).
• Given ∆t and ∆x, the scheme becomes a good explicit solver for the limiting

drift-diffusion equation when δ → 0+.
• The collision term, though implicit, can be implemented explicitly.

In this paper, we are interested in deriving the implicit AP schemes for the linear
semiconductor Boltzmann equation with a diffusive scaling, which improve the first
two features above. Specifically, these schemes allow ∆t = O(∆x) instead of ∆t =
O(∆x2) even in the diffusive regime. Moreover, they are good implicit solvers for
the limiting drift-diffusion equation as δ → 0+ without the electric field, i.e., ∆t
can be arbitrary for stability. The constructions are based on the BGK-penalty
method and a suitable implicit approximation to the convection terms, which have
been decoupled through splitting a stiff relaxation step from a stiff convection step.
The BGK-penalty method, having the effect of solving the implicit complicated
collision term explicitly, was first introduced by Filbet and Jin [7] for a class of
hyperbolic system with stiff relaxation source term and the classical Boltzmann
equation. The method only requires that the source term has the unique and stable
local equilibrium state, and has been applied to the Boltzmann type equations with
either the hydrodynamic limit [6, 10, 17] or the diffusive limit [5]. The implicit
scheme in the convection step gives the banded matrix easy to invert. Additionally,
the velocity discretization is done with the moment method, which has been proved
to be stable and convergent in [24].

The paper is arranged as follows. In the next section, we introduce some ba-
sic facts about the linear semiconductor Boltzmann equation and its drift-diffusion
limit. There we generalize δ to δ = δ(~x) ∈ C1(Ω), and rewrite the model equa-
tion into an equivalent system with respect to the even and odd parities as was
done in [14, 16]. The schemes in this paper are actually based on this system.
Moreover, the boundary conditions are simply assumed to be periodic. In section
3, we consider one space dimension and derive the implicit AP schemes with the
uniform and staggered grids, respectively. For the sake of simplification, we denote
the scheme using the uniform grids with IMUG and the other using the staggered
grids with IMSG. To construct IMUG and IMSG, we split the system in a suitable
way to obtain a stiff relaxation step and a stiff convection step. In the relaxation
step, we handle the complicated nonlocal anisotropic collision operator with the
BGK-penalty method, which allows the implicit scheme in this step implemented
explicitly. The convection step is discretized by a suitable implicit approximation
to the convection term, which gives a banded matrix easy to invert and meanwhile
allows ∆t = O(∆x) rather than ∆t = O(∆x2) as in previous approaches. By a com-
parison, IMSG helps to minimize the bandwith of the matrix in the convection step,
while, IMUG has the benefit of easy generalization to the higher space dimension.
Through the von-Neumman analysis, IMUG and IMSG are unconditionally stable
for the Goldstein-Taylor model. Furthermore, the heuristic discussions suggest that
both the one space dimensional schemes are consistent implicit discretiztations of
drift-diffusion equation in the asymptotic sense. In section 4 where the electric
potential is absent, we extend IMUG to two space dimension and discuss its as-
ymptotic property heuristically. In section 5, the moment method for the velocity
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discretization [25] is introduced. Finally, we numerically verify the performance of
the schemes in section 6. Our numerical results confirm the AP properties of all
the schemes.

2. Linear Semiconductor Boltzmann Equation and its Drift-Diffusion
Limit

Consider the electron in the semiconductor. In the situation of parabolic energy
band, the dimensionless semiconductor Boltzmann equation has the form of [5]

(1) ∂tf + ~v · ∇~xf +∇~xΦ · ∇~vf =
Q(f)

δ
.

Here the one-particle distribution f(~x,~v, t) describes the probability of electron
appearing at position ~x = (x, y, z) ∈ Ω ⊂ R3 with velocity ~v = (v1, v2, v3) ∈ R3 at
time t ∈ R+. The electric potential Φ = Φ(~x) is given explicitly and assumed to
be weak, which suggests that the Boltzmann equation has a diffusive scaling. The
Knudsen number δ has been generalized to δ = δ(~x) ∈ C1(Ω). In the case of low
density approximation, the nonlinear collision operator Q is reduced to the linear
form

Q(f)(~v) =
∫
R3 σ(~v,~v′)f(~v′)d~v′M(~v)− λ(~v)f(~v) ,

M(~v) = 1
π3/2 exp(−|~v|2) , λ(~v) =

∫
R3 σ(~v,~v′)M(~v′)d~v′ ,

whereM(~v) is the global Maxwellian, λ(~v) is the collision frequency, and σ(~v,~v′) is
the cross section. In this paper, we assume that σ have been regularized and fulfills

• Rotation invariant: ∀R ∈ SO(3), it holds σ(R~v,R~v′) = σ(~v,~v′). Here
SO(3) denotes the special orthogonal transformation group.
• Symmetric: ∀ ~v,~v′ ∈ R 3, it holds σ(~v,~v′) = σ(~v′, ~v).
• Bounded: ∃ σ0, σ1 > 0, such that σ0 ≤ σ(~v,~v′) ≤ σ1.

To rescale (1), let ε = max~x∈Ω δ(~x) and

(2) t ′ = εt , ~x ′ = ~x , ~v ′ = ~v .

Inserting (2) into (1), the linear semiconductor Boltzmann equation with a diffusive
scaling is obtained as

(3) ∂tf +
1

ε
(~v · ∇~xf − ~E · ∇~vf) =

Q(f)

εδ
,

where the subscripts have been omitted and the electric field ~E = −∇~xΦ is defined.
Given the even and odd parities [14, 15, 16]

r(~x,~v, t) =
1

2
[f(~x,~v, t) + f(~x,−~v, t)],

j(~x,~v, t) =
1

2ε
[f(~x,~v, t)− f(~x,−~v, t)] ,

(4)

it is straightforward that (3) equals to

∂tr + ~v · ∇~xj − ~E · ∇~vj =
Q(r)

εδ
,

∂tj +
~v · ∇~xr − ~E · ∇~vr

ε2
= −λj

εδ
.

(5)

In the above, the properties r(~v) = r(−~v), j(~v) = −j(−~v), and the rotation invari-
ance including the symmetry of σ(~v,~v ′) are used. As is known, the mass density ρ
and the bulk momentum ~u = (u1, u2, u3) relate to f through

ρ(~x, t) =
∫
R3 f(~x,~v, t)d~v, ~u(~x, t) =

∫
R3 ~vf(~x,~v, t)d~v .
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Considering (4), it is clear that

ρ(~x, t) =
∫
R3 r(~x,~v, t)d~v, ~u(~x, t) = ε

∫
R3 ~vj(~x,~v, t)d~v .

To study the drift-diffusion limit of system (5), we simplify δ(x) = ε and present
some standard properties of Q [1, 22].

Theorem 2.1. Denote the Hilbert space H = L2
(
R3; d~v/M(~v)

)
and the norm

‖·‖H =
√
< ·, · >H with

< f, g >H=

∫
R3

fgM−1d~v , ∀f , g ∈ H .

Then it holds that

(i) −Q is bounded and self-adjoint.
(ii) KerQ=Span{M(~v)}⊂ H, RanQ=KerQ⊥.

(iii) Let ~h = ~h(~v) ∈ R3 be the unique solution to Q(~h) =M(~v)~v in RanQ. Then
~h is an odd function of ~v and there exists a positive number µ such that∫
R3 ~v ⊗ ~hd~v = −µI3×3. µ is called the mobility.

When ε� 1, suppose f has the following asymptotic expansion

f = f0 + εf1 + ε2f2 + · · · ,
and accordingly,

r = r0 + εr1 + ε2r2 + · · · ,
j = j0 + εj1 + ε2j2 + · · · .

(6)

Inserting (6) into (5) and equating the different powers of ε, thus

O(ε−2) : Q(r0) = 0 , −λj0 = ~v · ∇~xr0 − ~E · ∇~vr 0 ,(7a)

O(ε−1) : Q(r1) = 0 , −λj1 = ~v · ∇~xr 1 − ~E · ∇~vr 1 ,(7b)

O(ε 0) : Q(r2) = ∂tr0 + ~v · ∇~xj0 − ~E · ∇~vj0 ,(7c)

O(ε 1) : Q(r3) = ∂tr1 + ~v · ∇~xj1 − ~E · ∇~vj1 .(7d)

Applying the second property in Theorem 2.1 to (7a), there establish r0 = ρ0M , r 1 =
ρ 1M and

−λj0 = ~vM · (∇~xρ0 + 2ρ 0
~E) , −λj1 = ~vM · (∇~xρ1 + 2ρ 1

~E) .

The solvability of (7c) suggests∫
R3

(∂tr0 + ~v · ∇~xj0 − ~E · ∇~vj0)d~v = 0 ,

where∫
R3

(~v · ∇~xj0 − ~E · ∇~vj0)d~v = −∇~x ·
[∫

R3

~v ⊗ ~vM
λ

d~v · (∇~xρ0 + 2ρ 0
~E)

]
= −∇~x · µ(∇~xρ0 + 2ρ0

~E) .

(8)

The mobility µ in (8) is defined by the third property in Theorem 2.1. Treating
(7d) in the same manner as (7c) and setting ρ̃ = ρ 0 + ερ 1, thus ρ̃ satisfies the
following drift-diffusion equation

(9) ∂tρ̃−∇~x · (µ∇~xρ̃+ 2µρ̃ ~E) = 0 .

As a conclusion, there exist |~u| ∼ O(ε) , r− ρM∼ O(ε2) , ρ− ρ̃ ∼ O(ε2) in the case
of ε � 1. For more about the transport equation in the diffusive regime, we refer
to [1, 2, 12, 13, 23].
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3. Fully Discrete Schemes in One Space Dimension

In one space dimension, (5) is reduced to

∂tr + v1∂xj − E∂v1j =
Q(r)

εδ
,(10a)

∂tj +
v1∂xr − E∂v1r

ε2
= −λj

εδ
.(10b)

The splitting for (10a)-(10b) consists of

• Relaxation Step:

∂tr =
Q(r)

εδ
+ E∂v1j ,(11a)

∂tj =
E(∂v1r + 2v1r)

ε2
,(11b)

• Convection Step:

∂tr + v1∂xj = 0 ,(12a)

∂tj +
v1∂xr + 2v1Er

ε2
= −λj

εδ
.(12b)

The term 2v1Er in (11b) ensures the consistence of the relaxation step with the
drift-diffusion limit (9), which is the necessary condition for AP . We discretize
(11a)-(12b) with the uniform grids and the staggered grids, respectively. In the
relaxation step, we employ the BGK-penalty method for the collision term in (11a),
where a penalty operator B is introduced following

B(r) = L(ρM− r) , L ≈ ‖DQ(ρM)‖H .(13)

Here DQ(ρM) denotes the Fréchet derivative of Q and L is a constant. In the
convection step, we treat (12a)-(12b) implicitly and apply the central difference
method to operator ∂x.

Without the loss of generality, we restrict the computational domain to [ 0, 1 ]
and chose the grid points xi = i∆x, x i± 1

2
= x i ± ∆x

2 , ∆x = 1/N , N ∈ Z+,

i = 0, 1, · · · , N − 1. Besides, we define

θ(x) =
1

L∆t+ εδ(x)
, θ̃(x) =

1

λ∆t+ εδ(x)
, γ(x) =

δ(x)

ε
, α1 =

∆t

∆x
,

d(x) = v2
1α

2
1γ(x)θ̃(x) , c(x) = v2

1α1∆tγ(x)θ̃(x) .

(14)

and

∆xj i = j i+ 1
2
− j i− 1

2
, ∆2xr i = r i+1 − r i−1 .

3.1. Implicit AP Scheme Based on the Uniform Grids (IMUG). We sim-
ply denote the scheme using the uniform grids with IMUG. Let the values of the
parities at x i be

(15) r ni =
1

∆x

∫ x
i+1

2

x
i− 1

2

r(x,~v, tn)dx , j ni =
1

∆x

∫ x
i+1

2

x
i− 1

2

j(x,~v, tn)dx ,

The difficulty in the relaxation step is caused by the numerical stiffness contained
in the collision term. On one hand, a standard explicit scheme for (11a) requires
∆t ∼ O(εδ), which is expensive for εδ � 1. On the other hand, an implicit scheme
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for the collision operator is hard to generalize. For example, an explicit-implicit
(IMEX) scheme for (11a) is given by

r ∗i − r ni
∆t

=
Q(r ∗i )

εδ i
+ E i∂v1j

n
i .(16)

When Q is nonlinear, we have to solve the algebraic system iteratively. While, the
BGK-penalty method proposed by Filbet and Jin [7] can ensure this step with an
explicit form and a uniform stability condition, simultaneously. The method has
the idea of removing the numerical stiffness from Q to B firstly, and then solves Q
explicitly. Specifically, we rewrite (11a) into

∂tr =
Q(r)− B(r)

εδ
+
B(r)

εδ
+ E∂v1j ,(17)

where the first term on the RHS contains less or even none stiffness compared to
the second term owing to L ≈ ‖DQ(ρM)‖H, and thus can be solved explicitly.
The first order IMEX for (17) and (11b) is

r ∗i − r ni
∆t

=
Q(r ni )− B(r ni )

εδ i
+
B(r ∗i )

εδ i
+ E i∂v1j

n
i ,(18a)

j ∗i − j ni
∆t

=
E i(∂v1r

∗
i + 2v1r

∗
i )

ε2
.(18b)

From (18a), first note ρ ∗i = ρni , and then use the simple form (13) of B, thus

r ∗i = r ni + ∆tθ iQ(r ni ) + ε∆tδ iθ iE i∂v1j
n
i ,(19a)

j ∗i = j ni +
∆tE i

ε2
(∂v1r

∗
i + 2v1r

∗
i ) .(19b)

In the convection step, the fully implicit scheme applied to (12a)-(12b) has the form
of

r n+1
i − r ∗i

∆t
+
v1(j n+1

i+1 − j
n+1
i−1 )

2∆x
= 0 ,(20a)

jn+1
i − j∗i

∆t
+
v1(rn+1

i+1 − r
n+1
i−1 )

2ε2∆x
+

2v1E ir
n+1
i

ε2
= −λj

n+1
i

εδ i
.(20b)

From (20b), one gets

jn+1
i = εδ iθ̃ i j

∗
i −

v1α 1γ iθ̃ i
2

(rn+1
i+1 − r

n+1
i−1 )− 2v1∆tγ iθ̃ iE ir

n+1
i .(21)

Inserting (21) into (20a), one obtains

− d i+1

4
r n+1
i+2 − c i+1E i+1r

n+1
i+1 +

(
1 +

d i+1

4
+
d i−1

4

)
rn+1
i + c i−1E i−1r

n+1
i−1

− d i−1

4
rn+1
i−2 = r∗i − εv1∆t∆ 2xδ iθ̃ ij

∗
i .

(22)

With r n+1
i solved from (22), j n+1

i is finally calculated through (21). Clearly, (22)
gives the banded matrix easier to invert compared to (16).

3.2. Stability Analysis. To analyze the stability of IMUG, we assume δ(x) = ε
and consider the Goldstein-Taylor model in one space dimension [8, 26]

∂f1

∂t
+

1

ε

∂f1

∂x
=
f−1 − f1

ε2
,

∂f−1

∂t
− 1

ε

∂f−1

∂x
=
f1 − f−1

ε2
,
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where the one dimensional velocity variable is given by v 1 = ±1, and the phase dis-
tributions f±1 denote f1 = f(x, 1, t) , f−1 = f(x,−1, t), respectively. The parities
are reduced to

r =
f1 + f−1

2
, j =

f 1 − f−1

2ε
,

which leads

∂tr + ∂xj = 0 , ∂tj +
∂xr

ε2
= − j

ε2
.(23)

Treating (23) with IMUG, one gets

r n+1
i − r ni

∆t
+
j n+1
i+1 − j

n+1
i−1

2∆x
= 0 ,

j n+1
i − j ni

∆t
+
r n+1
i+1 − r

n+1
i−1

2ε2∆x
= −j

n+1
i

ε2
.(24)

Applying the fourier transform to the spatial variable in (24) and setting β = k∆x,
one obtains

r̂ n+1 + (iα1 sinβ)ĵ n+1 = r̂ n , i
α1 sinβ

ε2
r̂ n+1 +

(
1 +

∆t

ε2

)
ĵ n+1 = ĵ n ,

which equals[
r̂ n+1

ĵ n+1

]
=

1

1 + ∆t
ε2 +

α2
1 sin2 β
ε2

[
1 + ∆t

ε2 −iα1 sinβ

−iα1 sin β
ε2 1

] [
r̂ n

ĵ n

]
.(25)

By a direct calculation, the two eigenvalues of the matrix on the RHS in (25) are

ξ± =
1 + ∆t

2ε2 ±
∆t
2ε2

√
1− 4ε2 sin2 β

∆x2

1 + ∆t
ε2 +

α2
1 sin2 β
ε2

.

If ξ± ∈ R, then

|ξ±| ≤
1 + ∆t

2ε2 + ∆t
2ε2

1 + ∆t
ε2 +

α2
1

ε2 sin2 β
=

1 + ∆t
ε2

1 + ∆t
ε2 +

α2
1 sin2 β
ε2

≤ 1 .

If ξ± ∈ C, then

|ξ±|2 =
1 + ∆t2

4ε4 + ∆t
ε2 + ∆t2

4ε4

(
4ε2 sin2 β

∆x2 − 1
)

(
1 + ∆t

ε2 +
4α2

1

ε2 sin2 β
)2 =

1

1 + ∆t
ε2 +

α2
1 sin2 β
ε2

≤ 1 .

As a conclusion, the two eigenvalues always satisfy |ξ±| ≤ 1, and thus IMUG is
unconditionally stable for any ∆t, ∆x, ε > 0.

3.3. Implicit AP Scheme Based on the Staggered Grids (IMSG). To min-
imize the bandwith of the matrix in the convection step, we reformulate the scheme
using the staggered grids. Define

r ni =
1

∆x

∫ x
i+1

2

x
i− 1

2

r(x,~v, tn)dx , j ni+ 1
2

=
1

∆x

∫ xi+1

x i

j(x,~v, tn)dx .

Applying IMSG to (11a)-(12b), one gets

• Relaxation Step:

r ∗i − r ni
∆t

=
Q(r ni )− B(r ni )

εδ i
+
B(r ∗i )

εδ i
+
E i− 1

2
∂v1j

n
i− 1

2

+ E i+ 1
2
∂v1j

n
i+ 1

2

2
,

j ∗
i+ 1

2

− j n
i+ 1

2

∆t
=
E i(∂v1r

∗
i + 2v1r

∗
i ) + E i+1(∂v1r

∗
i+1 + 2v1r

∗
i+1)

2ε2
,

(26)
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• Convection Step:

r n+1
i − r ∗i

∆t
+
v1(j n+1

i+ 1
2

− j n+1
i− 1

2

)

∆x
= 0 ,(27a)

jn+1
i+ 1

2

− j∗
i+ 1

2

∆t
+
v1(rn+1

i+1 − r
n+1
i )

ε2∆x
+
v1E ir

n+1
i + E i+1r

n+1
i+1

ε 2
= −

λjn+1
i+ 1

2

εδ i+ 1
2

,(27b)

where the mid-point formula are applied. For example, the term E∂v1r at x i+ 1
2

is

approximated by

E i+ 1
2
∂v1r i+ 1

2
=
E i∂v1r i + E i+1∂v1r i+1

2
.

From (26), one obtains

r ∗i = r ni + ∆tθ iQ(r ni ) +
ε∆tδ iθ i

2
(E i− 1

2
∂v1j

n
i− 1

2
+ E i+ 1

2
∂v1j

n
i+ 1

2
) ,(28a)

j ∗i+ 1
2

= j ni+ 1
2

+
∆t

2ε 2
[E i(∂v1r

∗
i + 2v 1r

∗
i ) + E i+1(∂v1r

∗
i+1 + 2v 1r

∗
i+1)] .(28b)

Through (27b), one gets

jn+1
i+ 1

2

= ε(δθ̃j∗)i+ 1
2
− v1α 1(γθ̃)i+ 1

2
(rn+1
i+1 − r

n+1
i )

− v1∆t(γθ̃)i+ 1
2
(Eir

n+1
i + Ei+1r

n+1
i+1 ) ,

(29)

which leads (27a) to

− (d i+ 1
2

+ c i+ 1
2
E i+1)r n+1

i+1 + ( 1 + d i+ 1
2

+ d i− 1
2
− c i+ 1

2
E i + c i− 1

2
E i)r

n+1
i

− (d i− 1
2
− c i− 1

2
E i−1)r n+1

i−1 = r ∗i − εv1∆t∆ x(δθ̃j ∗) i .

(30)

With r n+1
i solved from (30), j n+1

i+ 1
2

is then calculated according to (29). Compared

with the five-point scheme (22), the three-point scheme (30) has a smaller bandwith.
Applying IMSG to system (23), one can justify the uniform stability as well as
IMUG. We omit the simple details.

3.4. The Asymptotic Property. While we can not prove a general AP property
for either scheme, here we can compare the limiting behavior of the two schemes in
the asymptotic sense. We still assume δ(x) = ε. As ε → 0+, if IMUG approaches
the local Maxwellian, i.e., r n+1

i = ρn+1
i M+O(ε2), then (21) gives

jn+1
i = − v1M

2λ∆x
∆2xρ

n+1
i − 2v1M

λ
E iρ

n+1
i +O(ε2) .

Applying these to (20a) and ignoring O(ε2) term, one gets

ρn+1
i M− r ∗i

∆t
− v2

1M
λ

ρn+1
i+2 − 2ρn+1

i + ρn+1
i−2

4∆x2
− v2

1M
λ

E i+1ρ
n+1
i+1 − E i−1ρ

n+1
i−1

∆x
= 0 .

(31)

Integrating (31) with ~v over R3 and using the property ρ ∗i = ρni in the relax-
ation step, (31) is actually the five-point scheme for the drift-diffusion equation (9).
Similarly, IMSG has the discrete diffusion limit as

ρn+1
i M− r ∗i

∆t
− v2

1M
λ

ρn+1
i+1 − 2ρn+1

i + ρn+1
i−1

∆x2
− v2

1M
λ

E i+1ρ
n+1
i+1 − E i−1ρ

n+1
i−1

∆x
= 0 ,

which is three-point scheme for (9). Three point scheme is clearly better than five-
point one for the drift-diffusion equation, since the latter needs twice as many grid
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points as the former to achieve the same error. On the other hand, in contrast
with IMUG, it is not straightforward to extend IMSG to two space dimension,
when the scheme should possess not only the compact stencil (three point scheme
in each space dimension) but also the AP property. For example, to evolve r,
one would need ri,k, ji±1/2,k and ji,k±1/2, whereas, it becomes confusing where to
discretize j, at (i± 1/2, k) or (i, k ± 1/2)? One might approximate these by the
points corresponding to the integer indices, but one will lose the compactness of
the stencil. If one does not do that, it seems one needs to involve both ji±1/2,k and
ji,k±1/2 by two equations for j. Then what about AP? The situation is even more
intricate when the electric field and the Knudsen number are not constant. How
to do it needs a very careful study. Anyway it is not straightforward and left to a
future work.

4. Fully Discrete Scheme in Two Space Dimension with Φ(~x) = 0

Without loss of generality, we simply assume δ(x) = ε. Consequently, system
(5) in two space dimension and Φ(~x) = 0 is reduced to

∂tr + v1∂xj + v2∂yj =
Q(r)

ε2
, ∂tj +

v1∂xr + v2∂yr

ε2
= −λj

ε2
.(32)

We extend IMUG to (32). The splitting for (32) consists of

• Relaxation Step:

∂tr =
Q(r)

ε2
, ∂tj = 0 ,(33)

• Convection Step:

∂tr + v1∂xj + v2∂yj = 0 , ∂tj +
v1∂xr + v2∂yr

ε2
= −λj

ε2
.(34)

Let the computational domain be Ω = [ 0, 1 ]× [ 0, 1 ] and the grid points be x i =
i∆x , y l = l∆y, ∆x = ∆y = 1/N , N ∈ Z+, i , l = 0, 1, · · · , N − 1. The values of the
parities are defined at (x i, y l) through

r ni ,l =
1

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
l+1

2

y
l− 1

2

r(x, y,~v, tn)dxdy ,

j ni ,l =
1

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
l+1

2

y
l− 1

2

j(x, y,~v, tn)dxdy .

Considering (33)-(34), IMUG takes the form of

• Relaxation Step:

r ∗i, l − r ni, l
∆t

=
Q(r ni, l)− B(r ni, l)

ε2
+
B(r ∗i, l)

ε2
, j ∗i, l = j ni, l ,

• Convection Step:

r n+1
i, l − r ∗i, l

∆t
+
v1(j n+1

i+1, l − j
n+1
i−1, l)

2∆x
+
v2(j n+1

i, l+1 − j
n+1
i, l−1)

2∆y
= 0 ,(35a)

j n+1
i, l − j ∗i l

∆t
+
v1(r n+1

i+1, l − r
n+1
i−1, l)

2ε2∆x
+
v2(r n+1

i, l+1 − r
n+1
i, l−1)

2ε2∆y
= −

λj n+1
i, l

ε2
.(35b)

Let

α2 = ∆t/∆y , d̃1 = v2
1α

2
1θ̃ , d̃2 = v2

2α
2
2θ̃ , d̃3 = v1v2α1α2θ̃ ,
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where θ̃(~x) and θ(~x) given by (14) have been reduced to the constants θ̃ = (λ∆t+
ε2)−1 and θ = (L∆t+ ε2)−1, respectively. The relaxation step gives r ∗i and j ∗i as

r ∗i, l = r ni, l + ∆tθQ(r ni, l) , j ∗i, l = j ni l .(36)

While, (35b) in the convection step suggests

j n+1
i, l = ε2θ̃j ∗i, l −

v1α1θ̃

2
∆2xr

n+1
i, l −

v2α2θ̃

2
∆2yr

n+1
i, l ,(37)

which leads (35a) to

(
1 +

d̃1

2
+
d̃2

2

)
r n+1
i, l −

d̃1

4
(r n+1
i+2, l + r n+1

i−2,l)−
d̃2

4
(r n+1
i, l+2 + r n+1

i,l−2)−

d̃3

2
(r n+1
i+1,1+1 − r

n+1
i−1,l+1 − r

n+1
i+1,l−1 + r n+1

i−1,l−1) = g ∗i,l ,

(38)

with

g ∗i,l = r ∗i,l −
ε2v1α1θ̃

2
∆2xj

∗
i,l −

ε2v2α2θ̃

2
∆2yj

∗
i,l .

Here, the discrete operators ∆2x and ∆2y are defined by

∆2xr i, l = r i+1, l − r i−1, l , ∆2yr i, l = r i, l+1 − r i, l−1 .

Note, the system (38) is actually not difficult to solve due to its sparse and banded
coefficient matrix.

4.1. The Asymptotic Property. When ε → 0+, if r n+1
i,l = ρn+1

i,l M + O(ε2).

Applying (37) to (35a) and ignoring O(ε2) term, one obtains the discrete diffusion
limit

ρn+1
i,l M− r ∗i,l

∆t
− v2

1M
λ

ρn+1
i+2,l − 2ρn+1

i,l + ρn+1
i−2,l

4∆x2
− v2

2M
λ

ρn+1
i, l+2 − 2ρn+1

i, l + ρn+1
i,l−2

4∆y2

− v1v2M
λ

ρn+1
i+1,1+1 − ρ

n+1
i−1,l+1 − ρ

n+1
i+1,l−1 + ρn+1

i−1,l−1

2∆x∆y
= 0 .

(39)

Integrating (39) with ~v over R3 and using the property ρ ∗i,l = ρni,l in the relaxation
step, one gets an implicit discretization for the diffusion equation.

5. Velocity Discretization

The moment method for velocity discretization mainly uses one dimensional
Hermite polynomial hm1(v 1), v 1 ∈ R, m1 ∈ Z+

0 , which satisfies

h−1(v) = 0, h0(v) = π−1/4,(40a)

hm1+1(v) = v

√
2

m1 + 1
hm1

(v)−
√

m1

m1 + 1
hm1−1(v) , m1 ≥ 0,(40b)

h′m1
(v) =

√
2m1 hm1−1(v).(40c)

Introducing the triple index m = (m1,m2,m3), m1,m2,m3 ∈ Z+
0 and setting

[24, 25]
hm(~v) = hm1

(v1)hm2
(v2)hm3

(v3) , v 1 , v 2 , v 3 ∈ R ,
the series {hm(~v)M(~v)}m forms an orthonormal basis of the Hilbert space H. As
was done in [14, 19], we factor the Maxwellian from the parities

r = ϕ(~x,~v, t)M(~v), j = ψ(~x,~v, t)M(~v),(41)



IMPLICIT AP SCHEMES FOR SEMICONDUCTOR BOLTZMANN EQUATION 11

where

ϕ =
∑

0≤m≤M ϕm(~x, t)hm(~v), ψ =
∑

0≤m≤M ψm(~x, t)hm(~v) .(42)

For the sake of numerical implementations, the orthonormal basis in (42) has been
truncated for a specified triple index M = (M1,M2,M3), M1,M2,M3 ∈ Z+. Addi-
tionally, the relation 0 ≤m ≤M denotes 0 ≤ m i ≤Mi , i = 1, 2, 3. From (41), one
has

∇~vr =M∇~vϕ− 2~vϕM, ∇~vj =M∇~vψ − 2~vψM.

As an example, we discretize ∂v1r only. Using the property (40c), one gets

∂v1ϕ =
∑

0≤m≤M−e 1

√
2(m1 + 1)ϕm+e1

hm(~v) ,(43)

where e1 = (1, 0, 0). Expanding ϕm following

ϕm =
∫
R3 ϕ(~v ′)hm(~v ′)e−|~v

′|2d~v′ =
∑

0≤l≤M ϕ(~v l)hm(~v l)ωl ,

and applying it to (43), thus

∂v1ϕ(~v) =
∑

0≤l,m≤M−e1

√
2(m1 + 1)hm(~v)hm+e1

(~v l)ωlϕ(~v l) .

Here, vlii denotes the li-th root of the one-dimensional Mi+1-th order Hermite
polynomial hMi+1(v i) with 0 ≤ li ≤ Mi , i = 1, 2, 3, the associated weight ωl has
the form of

ωl =

3∏
i=1

1

(Mi + 1)h2
Mi

(vlii )
.(44)

Finally, the collision term is evaluated by

Q(r)(~v) = M(~v)

∫
R3

σ(~v,~v′)ϕ(~v ′)M(~v′)d~v ′ − λ(~v)r(~v)

= π−3/2M(~v)
∑

0≤l≤M

σ(~v,~v l)ϕ(~v l)ωl − λ(~v)r(~v) ,

with the collision frequency

λ(~v) =
∫
R3 σ(~v,~v ′)M(~v ′)d~v ′ = π−3/2

∑
0≤l≤M σ(~v,~v l)ωl .

6. Numerical Experiments

In this section, we apply IMUG and IMSG to several transport problems, where
the boundary conditions are assumed to be periodic and the cross sections are given
as

σRTA(~v,~v ′) = 1 ,

σEPI(~v,~v ′) =M(~v)δ̃(|~v| 2 − |~v ′| 2 + 1) +M(~v ′)δ̃(|~v| 2 − |~v ′| 2 − 1) ,

σMIX =
1

2
(σRTA + σEPI) ,

σ CON (~v,~v ′) =M(~v)δ̃ ∗(|~v| 2 − |~v ′| 2 + 1) +M(~v ′)δ̃ ∗(|~v| 2 − |~v ′| 2 − 1) ,

with δ̃(x) = exp(−|x| 2) and δ̃ ∗(x) = exp(−|x|). Here σRTA and σEPI denote the
relaxation time approximation and the electron-phonon interactions, respectively
[22, 14]. The velocity discretization is done with the moment method introduced in
section 5. Since the numerical tests show that the differences between the solutions
using larger M and the results using M = (16, 16, 16) are comparable, hence, we
only give the results with M = (16, 16, 16).
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6.1. One Space Dimension. Consider the physical domain Ω = [ 0 , 1 ]. The
norm ‖·‖ in one space dimension is calculated through

‖r‖ = ∆x

N−1∑
i=0

M∑
m

∣∣ϕ(xi, ~v
m, t)

∣∣ωm ,

where r = ϕM∈ H and ωm is given by (44).

6.1.1. Accuracy. We verify the accuracy of IMUG and IMSG through Example 1-
Example 3, where the reference solutions in Example 2- Example 3 are calculated
by the diffusive relaxation schemes [5] being uniformly stable under ∆t ∼ O(∆x2).

Example 1. Convergence rates of IMUG and IMSG. Consider the constant Knud-
sen number δ(x) = ε, the cross section σMIX , and the electric field E(x) =
cos(2πx). The non-equilibrium initial conditions are given by

r(x,~v, 0) = [2 + cos(2πx)](e−v1 + ev1)M(~v) ,

j(x,~v, 0) = ε−1[2 + cos(2πx)](e−v1 − ev1)M(~v) .
(45)

The relative error e∆t at time T > 0 is defined by

(46) e∆t(T ) = max
T>0

‖r∆t(T )− r2∆t(T )‖
‖r2∆t(0)‖

.

Here, r∆t is obtained with ∆x and ∆t, while, r2∆t is solved with ∆x and 2∆t. We
present the numerical results in Fig. 1, where ∆x = 10−3 and ∆t = ∆x/2k with
k = 2, 3, 4, 5, 6, 7. There, we plot log10 e∆t at T = 0.08 for ε = 1, 10−1, 10−2,
2 × 10−3, respectively. As a conclusion, both IMUG (which gives Fig. 1(a)) and
IMSG (which gives Fig. 1(b)) are first order accurate with respect to ∆t.

(a) IMUG (b) IMSG

Figure 1. Convergence rates of one space dimensional schemes
in Example 1. The cross section is σMIX , the electric field is
E(x) = cos(2πx), and the non-equilibrium initial conditions are
given by (45). In both Fig. 1(a) and Fig. 1(b), log10(e∆t) are
plotted at T = 0.08 with ∆x = 10−3 and ∆t = ∆x/2k, k =
2, 3, 4, 5, 6, 7.

Example 2. Time evolutions of macroscopic observables by IMUG. Consider the
varied Knudsen number

δ(x) = ε 0e
−100(x−0.5)2 , ε 0 = 10−1, 10−3 .
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the cross section σRTA + σEPI , and the electric field E(x) = sin(2πx). When
ε 0 = 10−1, the initial conditions are in the local equilibrium state

(47) r(x,~v, 0) = |cos(2πx)| , j(x,~v, 0) = 0 .

When ε 0 = 10−3, the initial conditions are away from the local equilibrium state

r(x,~v, 0) = Cρ|cos(2πx)|(e−v1 + ev1)M(~v) ,

j(x,~v, 0) = Cρε
−1|cos(2πx)|(e−v1 − ev1)M(~v) ,

(48)

with

Cρ =

[∫
R3

(e−v1 + ev1)M(~v)d~v

]−1

.

The numerical results are shown in Fig. 2-Fig. 3, where the dash lines denote the
initial macroscopic observables generated from (47) and (48) correspondingly. The
solid lines are the reference solutions calculated by the diffusive relaxation scheme
based on the time-unsplitting technique using ∆x = 1/400 ,∆t = ∆x2/4. The
approximate solutions ”.”, ”◦”, ”*” are solved by IMUG using ∆x = 1/50 ,∆t =
∆x/10.

(a) Mass Density (b) Bulk Momentum

Figure 2. Time evolutions of ρ and u1 in Example 2 with the

varied Knudsen number δ(x) = e−100(x−0.5)2/10, the cross section
σRTA + σEPI , the electric field E(x) = sin(2πx), and the initial
conditions (47) in the local equilibrium state. The solid lines are
the reference solutions calculated by the diffusive relaxation scheme
based on the time-unsplitting technique using ∆x = 1/400, ∆t =
∆x2/4. The approximate solutions ”.”, ”◦”, ”*” are solved by
IMUG with ∆x = 1/50 ,∆t = ∆x/10.

Example 3. Time evolutions of macroscopic observables by IMSG. Consider δ(x) =
ε with ε = 5 × 10−1, 2 × 10−2, the cross section σRTA + σCON , the electric field

E(x) = e−50(x−0.5)2 , and the initial data in the local equilibrium state given by

(49) r(x,~v, 0) =M(~v) , j(x,~v, 0) = 0 .

We present the numerical results in Fig. 4, where the dash lines denote the ini-
tial macroscopic observables generated by (49). The solid lines are the reference
solutions calculated by the diffusive relaxation scheme based on the time-splitting
technique using ∆x = 1/400 ,∆t = ∆x2/4. The approximate solutions ”.”, ”+”,
”◦”, ”*” are solved by IMSG using ∆x = 1/50 ,∆t = ∆x/10.
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(a) Mass Density (b) Bulk Moentum

Figure 3. Time evolutions of ρ and u1 in Example 2 with the

varied Knudsen number δ(x) = e−100(x−0.5)2/1000, the cross sec-
tion σRTA + σEPI , the electric field E(x) = sin(2πx), and the
non-equilibrium initial conditions (48). The solid lines are the ref-
erence solutions solved by the diffusive relaxation scheme based
on the time-unsplitting technique using ∆x = 1/400, ∆t = ∆x2/4.
The approximate solutions ”.”, ”◦”, ”*” are solved by IMUG using
∆x = 1/50 ,∆t = ∆x/10.

6.1.2. The AP Property. From right figures in Fig. 2-Fig. 4, both IMUG and
IMSU give the bulk momentum u 1 fulfilling |u1| ∼ O(ε), which coincides with
the asymptotic analysis in section 2. Next, we verify another two properties, i.e.,
r − ρM ∼ O(ε2) and ρ − ρ̃ ∼ O(ε2), for IMUG and IMSG in the situation of
δ(~x) = ε. The numerical results are shown in Example 4-Example 5.

Example 4. Given δ(x) = ε with ε = 10−k and k = 1 , 2 , 3 , 4 , 5 , 6.

Case 1 Consider the cross section σMIX , the constant electric field E(x) = 1, and
the initial data in the non-equilibrium state

r(x,~v, 0) = e−50(x−0.5)2(e−v1 + ev1)M(~v) ,

j(x,~v, 0) =
e−50(x−0.5)2

ε
(e−v1 − ev1)M(~v) .

(50)

Case 2 Consider the cross section σRTA + σCON , the varied electric field E(x) =
exp[−50(x− 0.5)2], and the initial data in the local equilibrium state

r(x,~v, 0) = 1.0 + | sin(2πx)| , j(x,~v, 0) = 0 .(51)

We present the numerical results in Fig. 5- Fig. 6, where ∆x = 1/25 ,∆t = ∆x.
In Fig. 5, we consider Case 1 and plot log10 ‖r − ρM‖ at T = 2.0. In Fig. 6, we
calculate log10 ‖r − ρM‖ at T = 6.0 for Case 2. In the two figures, Fig. 5(a) and
Fig. 6(a) are calculated by IMUG, while, Fig. 5(b) and Fig. 6(b) are solved by IMSG.
As a conclusion, both IMUG and IMSG give the relations ‖r − ρM‖ ∼ O(ε2).

Example 5. We consider the same conditions as Example 3. We compare the
approximate solutions ρ generated by IMUG and IMSG with the reference solution
ρ̃ given by the implicit discretization of the drift-diffusion equation (9)

ρ̃n+1
i − ρ̃ni

∆t
− µ

ρ̃n+1
i+1 − 2ρ̃n+1

i + ρ̃n+1
i−1

∆x2
− µ

E i+1ρ̃
n+1
i+1 − E i−1ρ̃

n+1
i−1

∆x
= 0 .(52)
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(a) ε = 5× 10−1

(b) ε = 2× 10−2

Figure 4. Time evolutions of ρ and u1 in Example 3. The con-
stant Knudsen number δ(x) = ε, the cross section σRTA + σ CON ,

the electric field E(x) = e−50(x−0.5)2 , and the initial data (49) in
the local equilibrium state. The solid lines are solved using the d-
iffusive relaxation scheme based on the time-splitting method with
∆x = 1/400, ∆t = ∆x2/4. ”.”, ”+”, ”◦”, ”*” are solved using
IMSG with ∆x = 1/50 ,∆t = ∆x/10. Left: Mass density. Right:
Bulk momentum.

Here, the mobility µ is calculated through

(53) µ =
∑

0≤m≤M

(vm1
1 )2ωm

λ(~vm)
,

and the initial data

(54) ρ̃ 0
i =

M∑
m

ϕ(x i, ~v
m, 0)ωm .

The numerical results are shown in Fig. 7, where the solid lines are given by
IMUG and the dash lines are solved by IMSG. They describe the time evolutions of
‖ρ− ρ̃‖ 1 with

(55) ‖ρ− ρ̃‖1 = ∆x

N−1∑
i=0

|ρ(xi, t)− ρ̃(x i, t)| .

In Fig. 7, we solve ρ with ∆x = 1/50 ,∆t = ∆x/10 and ρ̃ with ∆x = 1/200 ,∆t =
∆x2. According to Fig. 7(a), the drift-diffusion equation can not describe the system
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(a) IMUG (b) IMSG

Figure 5. AP property of one space dimensional scheme in Ex-
ample 4. The constant Knudsen number δ(x) = ε, the cross section
σMIX , the electric field E(x) = 1, the non-equilibrium initial data
(50), and the mesh ∆x = 1/25 ,∆t = ∆x. Both log10 ‖r − ρM‖ in
(a) and (b) are obtained at T = 2.0.

(a) IMUG (b) IMSG

Figure 6. AP property of one space dimensional scheme in Ex-
ample 4 with the constant Knudsen number δ(x) = ε, the cross
section σRTA+σCON , the electric field E(x) = exp[−50(x−0.5)2],
the initial data (51) in the local equilibrium state, and the mesh
∆x = 1/25 ,∆t = ∆x. Both log10 ‖r − ρM‖ in (a) and (b) are
obtained at T = 6.0.

accurately when ε is big. While, Fig. 7(b) suggests that both IMUG and IMSG can
give the relation ‖ρ− ρ̃‖1 ∼ O(ε2).

6.1.3. Two Space Dimension. Consider the physical domain Ω = [ 0 , 1 ]×[ 0 , 1 ]
and the cross section σMIX only. We numerically test IMUG in section 4 through
Example 6 -Example 8, where ∆t ∼ O(∆x). The norm ‖·‖ in two space dimension
is approximated by

‖r‖ = ∆x∆y

N−1∑
i=0

N−1∑
l=0

M∑
m

∣∣ϕ(xi, yl, ~v
m, t)

∣∣ωm , ∀r = ϕM∈ H .
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(a) ε = 5× 10−1 (b) ε = 2× 10−2

Figure 7. Comparisons between the one space dimensional
schemes and the drift-diffusion equation in Example 5 with the con-
stant Knudsen number δ(x) = ε, the cross section σRTA + σCON ,
the electric field E(x) = exp[−50(x − 0.5)2], and the initial da-
ta (49) in the local equilibrium state. ρ is generated by r with
∆x = 1/50 ,∆t = ∆x/10. ρ̃ is obtained from the implicit scheme
(52) for the drift-diffusion equation (9) using ∆x = 1/200 ,∆t =
∆x2.

It can be seen that the numerical results coincide with the diffusion equation, which
support the AP property of the scheme.

Example 6. Consider ε = 10−k with k = 2, 3, 4, 5, 6, and the initial conditions in
the non-equilibrium state

r(x, y,~v, 0) = C̃ρ
∣∣ cos(2πx) cos(2πy)

∣∣(e−v1−v2 + ev1+v2)M(~v) ,

j(x, y,~v, 0) = C̃ρε
−1
∣∣ cos(2πx) cos(2πy)

∣∣(e−v1−v2 − ev1+v2)M(~v) ,
(56)

with

C̃ρ =

(∫
R3

(e−(v1+v2) + ev1+v2)M(~v)d~v

)−1

.

We present the numerical results in Fig. 8, where log10 ‖r − ρM‖ are solved at
T = 0.1 with ∆x = 1/50 ,∆t = ∆x/2k, k = 0, 1, 2, 3, 4, 5. According to Fig. 8(a),
there exist a uniform constant ε0 > 0. When 0 < ε ≤ ε0, ‖r − ρM‖ is nearly
independent of ε. From Fig. 8(b), ‖r − ρM‖ decays with ε = 10−2. Both Fig. 8(a)
and Fig. 8(b) imply that IMUG is uniformly stable for ε ≤ 10−2 with ∆t = ∆x.

Example 7. Consider ε = 2k × 10−3 with k = −1, 0, 1, 2, 3, and the initial condi-
tions around the local equilibrium state

r(x,~v, 0) = [ 1 + ε cos(2πx) cos(2πy)e−(v21+v22) ]M(~v) . j(x,~v, 0) = 0 .(57)

The numerical results are shown in Fig. 9, where ∆x = ∆y = 1/50, ∆t = ∆x/8.
The numerical results suggest that IMUG gives the relation ‖r − ρM‖ ∼ O(ε).

Example 8. Consider ε = 3 × 10−2 , 10−3, and the initial conditions (57) in the
non-equilibrium state. The numerical results are shown in Fig. 10-Fig. 13, where
∆x = 1/80 ,∆t = ∆x/10. In Fig. 10-Fig. 12, we describe the time evolutions of
the mass density and the first component of the bulk momentum. Clearly, there
establishes |u1| ∼ O(ε). In Fig. 13, we depict the time evolutions of ‖r − ρM‖
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(a) (b)

Figure 8. AP property of two space dimensional scheme in Ex-
ample 6 with constant Knudsen number δ(~x) = ε, the cross section
σMIX , the electric potential Φ(~x) = 0, and the non-equilibrium
initial data (57). Fig. 8(a) gives log10 ‖r − ρM‖ at T = 0.1 with
ε ≤ 1e− 2 and ∆x = 1/50. Fig. 8(b) describes the time evolutions
of log10 ‖r − ρM‖ with ε = 1e− 2 and ∆x = 1/50 ,∆t = ∆x.

(a) log10 ‖r − ρM‖ at T = 0.025 (b) log10 ‖r − ρM‖ at T = 0.1

Figure 9. AP property of two space dimensional scheme in Ex-
ample 7 with constant Knudsen number δ(~x) = ε, the cross section
σMIX , the electric potential Φ(~x) = 0, the initial conditions (57)
around the local equilibrium state, and the mesh ∆x = 1/50 ,∆t =
∆x/8.

(which is denoted by the solid lines) and ‖ρ− ρ̃‖1 (which is denoted by the dash
lines), where ρ̃ is solved by

ρ̃n+1
i,l − ρ̃ni,l

∆t
− µ

ρ̃n+1
i+2,l − 2ρ̃n+1

i,l + ρ̃n+1
i−2,l

4∆x2
− µ

ρ̃n+1
i,l+2 − 2ρ̃n+1

i,l + ρ̃n+1
i,l−2

4∆y2
= 0 .(58)

Here µ and ρ̃ 0 are calculated in the same manner as (53) and (54), respectively.
The discrete norm ‖·‖1 in the two space dimension is approximated by

‖ρ− ρ̃‖1 = ∆x∆y

N−1∑
i=0

N−1∑
l=0

|ρ(xi, yl, t)− ρ̃(x iyl, , t)| .
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The dash lines in Fig. 13 represent log10 ‖ρ− ρ̃‖1, where log10 ‖ρ− ρ̃‖1 at T=0 is
numerically set as log10 ‖ρ− ρ̃‖1 = 10−14. As a conclusion, the system tends to the
global equilibrium state and the mass density ρ evolves towards ρ̃.

(a) Mass density ρ (b) The first component u1 of bulk momen-
tum

Figure 10. Initial conditions generated by (56) of two space di-
mensional system in Example 8.

7. Conclusion

This paper designs the asymptotic-preserving schemes leading to the implic-
it discretizations of the drift-diffusion equation. The constructions are based on
the BGK-penalty method and a suitable implicit approximation to the convec-
tion terms, which are decoupled with the correlations among the velocity variables
through splitting the system into a stiff relaxation step and a stiff convection step.
The BGK-penalty method has the effect of implementing the complicated nonlocal
anisotropic collision operator explicitly and meanwhile ensuring the uniform stabil-
ity of the scheme. The implicit scheme to the convection step gives the banded ma-
trix easy to invert and meanwhile allows ∆t = O(∆x). Through the von-Neumman
analysis for the Goldstein-Taylor model, the one space dimensional schemes are
unconditionally stable. According to the heuristic discussions, all the proposed
schemes are consistent with the implicit discretization of the drift-diffusion equa-
tion. Finally, the numerical results support the AP property of the schemes in this
paper.
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