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1 Introduction

Recently, the theory for stochastic differential equations (without delay) driven by a frac-
tional Brownian motion (fBm) has been studied intensively (see e.g. [1–6] and the refer-
ences therein).

As for the stochastic functional differential equations driven by a fBm, even much
less has been done, as far as we know, there exists only a few papers published in this
field. In [7], the authors studied the existence and regularity of the density by using the
Skorohod integral based on Malliavin calculus. In [8], Neuenkirch et al. studied the prob-
lem by using rough path analysis. In [9], Ferrante and Rovira studied the existence and
convergence when the delay goes to zero by using the Riemann-Stieltjes integral. Using
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also the Riemann-Stieltjes integral, [10] proved the existence and uniqueness of mild so-
lution in infinite dimensional space. In infinite dimensional space, [11] have discussed
the existence, uniqueness and exponential asymptotic behavior of mild solutions by us-
ing Wiener integral. Very recently, [12] first investigated the following neutral stochastic
functional differential equations driven by a fractional Brownian motion under the global
Lipschitz and linear growth condition

{

d[x(t)+g(t,x(t−r(t)))]= [Ax(t)+ f (t,x(t−ρ(t)))]dt+σ(t)dBH (t), 0≤ t≤T,

x(t)= ϕ(t), t∈ [−τ,0].
(1.1)

Where A is the infinitesimal generator of an analytic semigroup of bounded linear oper-
ators, (S(t))t≥0, in a Hilbert space X, BH is a Q-fractional Brownian motion on a real and
separable Hilbert space Y, r, ρ : [0,T]→ [0,τ] (τ > 0) are continuous, f , g : [0,T]×X → X,
σ : [0,T]→L0

2(Y,X) are appropriate functions and ϕ∈C([−τ,0];L2(Ω,X)). Here L0
2(Y,X)

denotes the space of all Q-Hilbert-Schmidt operators from Y into X (see Section 2).

Unfortunately, for many practical situations, the nonlinear terms do not obey the
global Lipschitz and linear growth condition, even the local Lipschitz condition. Moti-
vated by the above papers, in this paper, we aim to extend the existence and uniqueness
of mild solutions to cover a class of more general neutral stochastic functional differen-
tial equations driven by a fractional Brownian motion with Hurst parameter 1/2<H<1
under a non-Lipschitz condition, with the Lipschitz condition being regarded as a special
case, and a weakened linear growth condition.

The rest of this paper is organized as follows. In Section 2, we introduce some nota-
tions, concepts, and basic results about fractional Brownian motion, Wiener integral over
Hilbert spaces and we recall some preliminary results about analytic semigroups and
fractional power associated to its generator. In Section 3, the existence and uniqueness of
mild solutions are proved.

2 Preliminaries

In this section we collect some notions, conceptions and lemmas on Wiener integrals with
respect to an infinite dimensional fractional Brownian motion. In addition, we also recall
some basic results about analytical semi-groups and fractional powers of their infinitesi-
mal generators which will be used throughout the whole of this paper.

Let (Ω,F ,P) be a complete probability space. Consider a time interval [0,T] with
arbitrary fixed horizon T and let {βH(t), t ∈ [0,T]} be the one-dimensional fractional
Brownian motion with Hurst parameter H∈ (1/2,1). This means by definition that βH is
a centered Gaussian process with covariance function:

RH(t,s)=E(βH
t βH

s )=
1

2
(t2H+s2H−|t−s|2H).
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Moreover βH has the following Wiener integral representation:

βH(t)=
∫ t

0
KH(t,s)dβ(s),

where β={β(t) : t∈ [0,T]} is a Wiener process, and KH(t,s) is the kernel given by

KH(t,s)= cHs
1
2−H

∫ t

s
(u−s)H− 3

2 uH− 1
2 du

for t> s, where cH =
√

H(2H−1)/β(2−2H,H− 1
2) and β(·,·) denotes the Beta function.

We put KH(t,s)=0 if t≤ s.

We will denote by H the reproducing kernel Hilbert space of the fBm. In fact H is the
closure of set of indicator functions {I[0,t], t∈ [0,T]} with respect to the scalar product

〈I[0,t], I[0,s]〉H=RH(t,s).

The mapping I[0,t]→βH(t) can be extended to an isometry between H and the first Wiener

chaos and we will denote by βH(ϕ) the image of ϕ by the previous isometry.

We recall that for ψ,ϕ∈H their scalar product in H is given by

〈ψ,ϕ〉H=H(2H−1)
∫ T

0

∫ T

0
ψ(s)ϕ(t)|t−s|2H−2dsdt.

Let us consider the operator K∗
H from H to L2([0,T]) defined by

(K∗
H)(s)=

∫ T

s
ϕ(r)

∂K

∂r
(r,s)dr.

We refer to [13] for the proof of the fact that K∗
H is an isometry between H and L2([0,T]).

Moreover for any ϕ∈H, we have

βH(ϕ)=
∫ T

0
(K∗

H ϕ)(t)dβ(t).

It follows from [13] that the elements of H may be not functions but distributions of
negative order. In order to obtain a space of functions contained in H, we consider the
linear space |H| generated by the measurable functions ψ such that

‖ψ‖2
|H| :=αH

∫ T

0

∫ T

0
|ψ(s)||ψ(t)||s−t|2H−2dsdt<∞,

where αH = H(2H−1). The space |H| is a Banach space with the norm ‖ψ‖|H| and we
have the following conclusions [13].
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Lemma 2.1.

L2([0,T])⊆ L1/H([0,T])⊆|H|⊆H,

and for any ψ∈L2([0,T]), we have

‖ψ‖2
|H|≤2HT2H−1

∫ T

0
|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the space of
bounded linear operator from Y to X. For the sake of convenience, we shall use the same
notation to denote the norms in Y, X and L(Y,X). Let Q∈L(Y,X) be an operator defined
by Qen=λnen with finite trace trQ=∑

∞
n=1λn<∞ where λn≥0 (n=1,2···) are non-negative

real numbers and {en} (n= 1,2···) is a complete orthonormal basis in Y. We define the
infinite dimensional fBm on Y with covariance Q as

BH(t)=BH
Q (t)=

∞

∑
n=1

√

λnenβH
n (t),

where βH
n are real, independent fBm. This process is a Y-valued Gaussian, it starts from

0, has zero mean and covariance:

E〈BH(t),x〉〈BH(s),y〉=R(s,t)〈Q(x),y〉, for all x,y∈Y and t,s∈ [0,T].

In order to define Wiener integrals with respect to the Q-fBm, we introduce the space
L0

2 :=L0
2(Y,X) of all Q-Hilbert-Schmidt operators ψ :Y→X. We recall that ψ∈L(Y,X) is

called a Q-Hilbert-Schmidt operator, if

‖ψ‖2
L0

2
:=

∞

∑
n=1

‖
√

λnψen‖
2
<∞,

and that the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
= ∑

∞
n=1〈ϕen,ψen〉 is a

separable Hilbert space.
Now, let φ(s),s∈ [0,T] be a function with values in L0

2(Y,X). The Wiener integral of φ
with respect to BH is defined by

∫ t

0
φ(s)dBH(s)=

∞

∑
n=1

∫ t

0

√

λnφ(s)endβH
n (s)=

∞

∑
n=1

∫ t

0

√

λnK∗
H(φen)(s)dβn(s), (2.1)

where βn is the standard Brownian motion used to present βH
n .

Now we end this subsection by stating the following result in [12].

Lemma 2.2. If ψ : [0,T]→L0
2(Y,X) satisfies

∫ T
0 ‖ψ(s)‖2

L0
2
ds<∞ then the above sum in (2.1) is

well defined as a X-valued random variable and we have

E

∥

∥

∥

∥

∫ t

0
ψ(s)dBH(s)

∥

∥

∥

∥

2

≤2Ht2H−1
∫ t

0
‖ψ(s)‖2

L0
2
ds.
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Now we turn to state some notations and basic facts about the theory of semi-groups
and fractional power operators. Let A : D(A)→X be the infinitesimal generator of an an-
alytic semigroup, (S(t))t≥0, of bounded linear operators on X. For the theory of strongly
continuous semigroup, we refer to Pazy [14]. We will point out here some notations and
properties that will be used in this work. It is well known that there exist M≥1 and λ∈R

such that ‖S(t)‖≤Meλt for every t≥0. If (S(t))t≥0 is a uniformly bounded and analytic
semigroup such that 0∈ ρ(A), where ρ(A) is the resolvent set of A, then it is possible to
define the fractional power (−A)α for 0<α≤1, as a closed linear operator on its domain
D(−A)α. Furthermore, the subspace D(−A)α is dense in X, and the expression

‖h‖α =‖(−A)αh‖

defines a norm in D(−A)α. If Xα represents the space D(−A)α endowed with the norm
‖·‖α , then the following properties are well known (cf. Pazy [14, Theorem 6.13]).

Lemma 2.3. Suppose that the preceding conditions are satisfied.

(1) Let 0<α≤1. Then Xα is a Banach space.

(2) If 0<β≤α then the injection Xα →֒Xβ is continuous.

(3) For every 0<β≤1 there exists Mβ>0 such that

‖(−A)βS(t)‖≤Mβt−βe−λt, t>0, λ>0.

We also need the following Lemma 2.4.

Lemma 2.4. (Caraballo [15], Lemma 1) For u,v∈X, and 0< c<1,

‖u‖≤
1

1−c
‖u−v‖2+

1

c
‖v‖2.

3 Existence and uniqueness

In this section we study the existence and uniqueness of mild solution for Eq. (1.1). For
this equation we assume that the following conditions hold.

(H1) A is the infinitesimal generator of an analytic semigroup, S(t)t≥0, of bounded linear
operators on X. Further, to avoid unnecessary notations, we suppose that 0∈ρ(A),
and that, see Lemma 2.3,

‖S(t)‖≤M and ‖(−A)1−βS(t)‖≤
M1−β

t1−β
,

for some constants M, Mβ and every t∈ [0,T].
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(H2) The function f satisfies the following non-Lipschitz condition: for any x,y∈X and
t≥0,

‖ f (t,x)− f (t,y)‖2 ≤κ(‖x−y‖2),

where κ is a concave nondecreasing function from R
+ to R

+ such that κ(0) = 0,
κ(u)>0 and

∫

0+ du/κ(u)=∞, e.g., κ∼uα, 1/2<α<1. We further assume that there
is an M′

>0 such that sup0≤t≤T‖ f (t,0)‖≤M′ .

(H3) There exist constants 1/2< β≤1, K1 ≥0 such that the function g is Xβ-valued and
satisfies for any x,y∈X and t≥0,

‖(−A)βg(t,x)−(−A)βg(t,y)‖≤K1‖x−y‖,

and

‖(−A)−β‖K1<1.

We further assume that g(t,0)≡0 for t≥0 and the function (−A)β is continuous in
the quadratic mean sense:

lim
t→s

E‖(−A)βg(t,x(t))−(−A)βg(s,x(s))‖2 =0.

(H4) The function σ : [0,+∞)→L0
2(Y,X) satisfies

∫ T

0
‖σ(s)‖2

L0
2
ds<∞, ∀ T>0.

Definition 3.1. A X-valued process x(t) is called a mild solution of (1.1) if

x∈C([−τ,T],L2(Ω,X)), for t∈ [−τ,0], x(t)= ϕ(t), and for t∈ [0,T],

satisfies

x(t)=S(t)(ϕ(0)+g(0,ϕ(−r(0))))−g(t,x(t−r(t)))

−
∫ t

0
AS(t−s)g(s,x(s−r(s)))ds+

∫ t

0
S(t−s) f (s,x(s−ρ(s)))ds

+
∫ t

0
S(t−s)σ(s)dBH(s) P−a.s.

Lemma 3.1. ([16, Theorem 1.8.2]) Let T > 0 and c > 0. Let κ : R
+ → R

+ be a continuous
nondecreasing function such that κ(t)> 0 for all t> 0. Let u(·) be a Borel measurable bounded
nonnegative function on [0,T], and let υ(·) be a nonnegative integrable function on [0,T]. If

u(t)≤ c+
∫ t

0
υ(s)κ(u(s))ds, for all 0≤ t≤T.



56 Z. Li and J. Luo / J. Partial Diff. Eq., 27 (2014), pp. 50-63

Then

u(t)≤ J−1

(

J(c)+
∫ t

0
υ(s)ds

)

,

holds for all such t∈ [0,T] that

J(c)+
∫ t

0
υ(s)ds∈Dom(J−1),

where

J(r)=
∫ r

0
ds/κ(s), on r>0,

and J−1 is the inverse function of J. In particular, if, moreover, c=0 and
∫

0+ ds/κ(s)=∞, then
u(t)=0 for all t∈ [0,T].

To complete our main results, we need to prepare several lemmas which will be utilize in
the sequel.

Note that g(t,0)≡0 and

‖(−A)βg(t,x)−(−A)βg(t,y)‖≤K1‖x−y‖.

Then we easily get that ‖(−A)βg(t,x)‖2 ≤K2
1‖x‖2. Thus, by [12, Theorem 5], we can in-

troduce the following successive approximating procedure: for each integer n=1,2,3,··· ,

xn(t)=S(t)[ϕ(0)+g(0,ϕ(−r(0)))]−g(t,xn(t−r(t)))

−
∫ t

0
AS(t−s)g(s,xn(s−r(s)))ds+

∫ t

0
S(t−s) f (s,xn−1(s−ρ(s)))ds

+
∫ t

0
S(t−s)σ(s)dBH(s) (3.1)

and for n=0,

x0(t)=S(t)ϕ(0), t∈ [0,T].

While for n=1,2,··· ,

xn(t)= ϕ(t), t∈ [−τ,0].

Lemma 3.2. Let the hypothesis (H1)-(H4) hold. Then there is a positive constant C1, which is
independent of n≥1, such that for any t∈ [0,T]

E sup
0≤t≤T

‖xn(t)‖2 ≤C1. (3.2)
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Proof. For 0≤ t≤T, it follows easily from (3.1) that

E sup
0≤t≤T

‖xn(t)+g(t,xn(t−r(t)))‖2

≤4E sup
0≤t≤T

‖S(t)[ϕ(0)+g(0,ϕ(−r(0)))]‖2

+4E sup
0≤t≤T

∥

∥

∥

∥

∫ t

0
AS(t−s)g(s,xn(s−r(s)))ds

∥

∥

∥

∥

2

+4E sup
0≤t≤T

∥

∥

∥

∥

∫ t

0
S(t−s) f (s,xn−1(s−ρ(s)))ds

∥

∥

∥

∥

2

+4E sup
0≤t≤T

∥

∥

∥

∥

∫ t

0
S(t−s)σ(s)dBH(s)

∥

∥

∥

∥

2

=:4(I1+ I2+ I3+ I4). (3.3)

Note from [14] that (−A)−β for 0< β≤1 is a bounded operator. Employing the assump-
tion (H3), it follows that

I1≤2

[

E sup
0≤t≤T

‖S(t)ϕ(0)‖2+E sup
0≤t≤T

‖S(t)(−A)−β(−A)βg(0,ϕ(−r(0)))‖2

]

≤2(1+K2
1‖(−A)−β‖2)‖ϕ‖2

C. (3.4)

Applying the Hölder’s inequality and taking into account Lemma 2.3 as well as (H3), and
the fact that 1/2<β<1, we obtain

I2=E sup
0≤t≤T

∥

∥

∥

∥

∫ t

0
(−A)1−βS(t−s)(−A)βg(s,xn(s−r(s)))ds

∥

∥

∥

∥

2

≤
T2β−1

2β−1
M2

1−βE sup
0≤t≤T

∫ t

0
‖(−A)βg(s,xn(s−r(s)))‖2ds

≤
T2β−1

2β−1
M2

1−βK2
1E sup

0≤t≤T

∫ t

0
‖xn(s−r(s))‖2ds. (3.5)

On the other hand, in view of (H2), we obtain that

I3≤TE sup
0≤t≤T

∫ t

0
‖S(t−s)[ f (s,xn−1(s−ρ(s)))− f (s,0)+ f (s,0)]‖2 ds

≤2TM2

[

M′2T+E sup
0≤t≤T

∫ t

0
κ(‖xn−1(s−ρ(s))‖2)

]

. (3.6)

Next, by Lemma 2.2, we have

I4≤2M2HT2H−1
∫ T

0
‖σ(s)‖2

L0
2
ds<∞. (3.7)
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Since κ(u) is concave on u≥0, there is a pair of positive constants a, b such that

κ(u)≤ a+bu.

Putting (3.4)-(3.7) into (3.3) yields that, for some positive constants C2 and C3,

E sup
0≤t≤T

‖xn(t)+g(t,xn(t−r(t)))‖2 ≤C2+C3E sup
0≤t≤T

∫ t

0
‖xn(s−r(s))‖2ds

+C3E sup
0≤t≤T

∫ t

0
‖xn−1(s−r(s))‖2ds. (3.8)

While, for ‖(−A)−β‖K1<1, by Lemma 2.4,

E sup
0≤t≤T

‖xn(t)‖2≤
1

1−K1‖(−A)−β‖
E sup

0≤t≤T

‖xn(t)+g(t,xn(t−r(t)))‖2

+
1

K1‖(−A)−β‖
E sup

0≤t≤T

‖g(t,xn(t−r(t)))‖2

≤
1

1−K1‖(−A)−β‖
E sup

0≤t≤T

‖xn(t)+g(t,xn(t−r(t)))‖2

+K1‖(−A)−β‖E‖ϕ‖2
C+K1‖(−A)−β‖E sup

0≤t≤T

‖xn(t)‖2,

which further implies that

E sup
0≤t≤T

‖xn(t)‖2 ≤
1

(1−K1‖(−A)−β‖)2
E sup

0≤t≤T

‖xn(t)+g(t,xn(t−r(t)))‖2

+
K1‖(−A)−β‖

1−K1‖(−A)−β‖
E‖ϕ‖2

C.

Thus, by (3.8) we have

E sup
0≤t≤T

‖xn(t)‖2≤

[

K1‖(−A)−β‖

1−K1‖(−A)−β‖
+

2C3r

(1−K1‖(−A)−β‖)2

]

E‖ϕ‖2
C

+
C3

(1−K1‖(−A)−β‖)2

[

∫ T

0
E sup

0≤r≤s

‖xn−1(r)‖ds

+
∫ T

0
E sup

0≤r≤s

‖xn(r)‖ds

]

+
C2

(1−K1‖(−A)−β‖)2
.

Observing that

max
1≤n≤k

E sup
0≤t≤T

‖xn−1(t)‖2 ≤E‖ϕ‖2
C+ max

1≤n≤k
E sup

0≤t≤T

‖xn(t)‖2,
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we then derive that, for some positive constants C4, C5,

max
1≤n≤k

E sup
0≤t≤T

‖xn(t)‖2 ≤C4+C5E

∫ T

0
max

1≤n≤k
E sup

0≤r≤s

‖xn(s)‖2ds.

Now, an application of the well-known Gronwall’s inequality yields that

max
1≤n≤k

E sup
0≤t≤T

‖xn(t)‖2 ≤C4+eC5T.

The required assertion (3.2) is obtained since k is arbitrary.

Lemma 3.3. Let the condition (H1)-(H4) be satisfied. For 1/2<β≤1, we further assume that

2K2
1 M2

1−βγ−2βΓ(2β−1)

1−K1‖(−A)−β‖
+K1‖(−A)−β‖<1, (3.9)

where Γ(·) is the Gamma function and M1−β is a constant in Lemma 2.3. Then there exists a

positive constant C such that, for all 0≤ t≤T and n, m≥1,

E sup
0≤s≤t

‖xn+m(s)−xn(s)‖2 ≤C
∫ t

0
κ

(

E sup
0≤u≤s

‖xn+m−1(u)−xn−1(u)‖2

)

ds. (3.10)

Proof. From (3.1), it is easy to see that for any 0≤ t≤T

E sup
0≤s≤t

‖xn+m(s)−xn(s)+g(s,xn+m(s)−g(s,xn(s))‖2

≤2E sup
0≤s≤t

∥

∥

∥

∥

∫ s

0
AS(s−u)[g(u,xm+n(u−r(u)))−g(u,xn(u−r(u)))]du

∥

∥

∥

∥

2

+2E sup
0≤s≤t

∥

∥

∥

∥

∫ s

0
S(s−u)[ f (u,xm+n−1(u−ρ(u)))− f (u,xn−1(u−ρ(u)))]du

∥

∥

∥

∥

2

.

Following from the proof of Lemma 3.2, there exists a positive C6 satisfying

2E sup
0≤s≤t

∥

∥

∥

∥

∫ s

0
S(s−u)[ f (u,xm+n−1(u−ρ(u)))− f (u,xn−1(u−ρ(u)))]du

∥

∥

∥

∥

2

≤C6

∫ t

0
κ

(

sup
0≤u≤s

‖xm+n−1(u)−xn−1(u)‖2

)

ds,

the last inequality holds from the Jensen’s inequality. Now, by the condition (H3), Lemma
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2.3 and Hölder’s inequality,

E sup
0≤s≤t

∥

∥

∥

∥

∫ s

0
AS(s−u)[g(u,xm+n(u−r(u)))−g(u,xn(u−r(u)))]du

∥

∥

∥

∥

2

≤E sup
0≤s≤t

(
∫ s

0
‖(−A)1−βS(s−u)[(−A)βg(u,xm+n(u−r(u)))

−(−A)βg(u,xn(u−r(u)))]‖du)2

≤E sup
0≤s≤t

(

∫ s

0
K1

M1−βe−γ(s−u)

(s−u)1−β
‖xm+n(u−r(u))−xn(u−r(u))‖

)2

≤E[ sup
0≤s≤t

∫ s

0
K2

1

M2
1−βe−γ(s−u)

(s−u)1−β
du
∫ s

0
e−γ(s−u)‖xm+n(u−r(u))

−xn(u−r(u))‖2du]

≤K2
1 M2

1−βγ1−2βΓ(2β−1)E sup
0≤s≤t

∫ s

0
e−γ(s−u)‖xm+n(u−r(u))−xn(u−r(u))‖2du

≤K2
1 M2

1−βγ−2βΓ(2β−1)E sup
0≤s≤t

‖xn+m(s)−xn(s)‖2.

On the other hand, Lemma 2.4 and (H3) give that

E sup
0≤s≤t

‖xn+m(s)−xn(s)‖2

≤
1

1−K1‖(−A)−β‖
E sup

0≤s≤t

‖xn+m(s)−xn(s)+g(s,xn+m(s))−g(s,xn(s))‖2

+K1‖(−A)−β‖E sup
0≤s≤t

‖xn+m(s)−xn(s)‖2. (3.11)

So the desired assertion (3.10) follows from (3.11).

We can now state the main result of this paper.

Theorem 3.1. Under the conditions of Lemma 3.3, then Eq. (1.1) admits a unique mild solution.

Proof. Uniqueness: Denote by x(t) and x(t) the mild solutions to (1.1). In the same way as
Lemma 3.3 was done, we can show that for some K>0

E sup
0≤s≤t

‖x(s)−x(s)‖2≤K
∫ t

0
κ

(

E sup
0≤u≤s

‖x(r)−x(r)‖

)

ds.

This, together with Lemma 3.1, leads to

E sup
0≤s≤t

‖x(s)−x(s)‖2=0,
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which further implies x(t)= x(t) almost surely for any 0≤ t≤T.

Existence: Following the proof of Lemma 3.3, there exists a positive C such that, for all
0≤ t≤T and n, m≥1,

E sup
0≤s≤t

‖xn+1(s)−xm+1(s)‖2 ≤C
∫ t

0
κ

(

E sup
0≤u≤s

‖xn(u)−xm(u)‖2

)

ds.

Integrating both sides and applying Jensen’s inequality gives that

∫ t

0
E sup

0≤l≤s

‖xn+1(l)−xm+1(l)‖2ds

≤C
∫ t

0

∫ s

0
κ

(

E sup
0≤u≤l

‖xn(u)−xm(u)‖2

)

dlds

=C
∫ t

0
s
∫ s

0
κ

(

E sup
0≤u≤l

‖xn(u)−xm(u)‖2

)

1

s
dlds

≤Ct
∫ t

0
κ

(

∫ s

0
E sup

0≤u≤l

‖xn(u)−xm(u)‖2 1

s
dl

)

ds.

Then

hn+1,m+1(t)≤C
∫ t

0
κ(hn,m(s))ds,

where

hn,m(t)=

∫ t
0

Esup0≤l≤s‖xn+1(l)−xm+1(l)‖2ds

t
.

While by Lemma 3.2, it is easy to see that

sup
n,m

hn,m(t)<∞.

So letting h(t):=limsupn,m→∞hn,m(t) and taking into account the Fatou’s lemma, we yield
that

h(t)≤C
∫ t

0
κ(h(s)).

Now, applying the Lemma 3.1 immediately reveals h(t)=0 for any t∈ [0,T]. This further
means {xn(t),n∈N is a Cauchy sequence in L2. So there is a x∈L2 such that

lim
n→∞

∫ T

0
E sup

0≤s≤t

‖xn(s)−x(s)‖2ds=0.
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In addition, by Lemma 3.2, it is easy to follow that E‖x(t)‖2 ≤C1. In what follows, we
claim that x(t) is a mild solution to (1.1). On one hand, by (H3),

E‖g(t,xn(t−r(t)))−g(t,x(t−r(t)))‖2

=E‖(−A)−β[(−A)βg(t,xn(t−r(t)))−(−A)βg(t,x(t−r(t)))]‖2

≤‖(−A)−β‖2K2
1E sup

0≤s≤t

‖xn(s)−x(s)‖2 →0,

whenever n→∞. On the other hand, by (H3) and Lemma 2.3, compute for t∈ [0,T]

E‖
∫ t

0
AS(t−s)[g(t,xn(t−r(t)))−g(t,x(t−r(t)))]ds‖2

=E

∫ t

0
‖(−A)1−βS(t−s)[(−A)βg(t,xn(t−r(t)))−(−A)βg(t,x(t−r(t)))]ds‖2

≤
T2β−1

2β−1
M2

1−β

∫ T

0
E sup

0≤u≤s

‖xn(u)−x(u)‖2ds

→0, as n→∞.

While, applying (H2), the Hölder’s inequality and [17, Theorem 1.2.6] and letting n→∞,
we can also claim that for t∈ [0,T]

E

∥

∥

∥

∥

∫ t

0
S(t−s)[ f (t,xn(t−ρ(t)))− f (t,x(t−ρ(t)))]ds

∥

∥

∥

∥

2

→0.

Hence, taking limits on both sides of (3.1),

x(t)=S(t)[ϕ(0)+g(0,ϕ(−r(0)))]−g(t,x(t−r(t)))

−
∫ t

0
AS(t−s)g(s,x(s−r(s)))ds+

∫ t

0
S(t−s) f (s,x(s−ρ(s)))ds

+
∫ t

0
S(t−s)σ(s)dBH(s).

This certainly demonstrates by the Definition 3.1 that x(t) is a mild solution to (1.1) on
the interval [0,T].

Remark 3.1. If H=1/2, then BH
Q(t) is standard Q-Bm. Consequently, our results can be

reduced to some results in [18]. In other words, in this special case, we generalize [18].

Remark 3.2. In this work, we consider the existence and uniqueness of mild solutions to
SNFDEs driven by a fractional Brownian motion under a non-Lipschitz condition with
the Lipschitz condition being regarded as special case and a weakened linear growth
assumption. Therefore, some of the results in [12] are improved to cover a class of more
general SNFDEs driven by a fractional Brownian motion.
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