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Abstract. We establish conditions of the nonexistence of weak solutions of the Dirich-
let problem for nonlinear elliptic equations of arbitrary even order with some right-
hand sides from L™ where m > 1. The conditions include the requirement of a certain
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1 Introduction

In the well-known work [1], a theory of entropy solutions for nonlinear elliptic second-
order equations with L!-data was developed. According to the results of this work, if ()
is a bounded open set of R" (1 >2), 1 < p <n, and coefficients of the equations under
consideration grow with respect to the gradient of unknown function u as |[Vu|f~! and
satisfy natural coercivity and strict monotonicity conditions, then the Dirichlet problem
in Q) for these equations has a unique entropy solution for every L!-right-hand side. In
addition, if p>2—1/n, the entropy solution is a weak solution. At the same time in [1] it
was shown that if 1 <p<2—1/n, the Dirichlet problem for the equation —A,u+u= f in
Q) does not have weak solutions for some f € L'(Q).
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In connection with the above, now we note the following two cases where the Dirich-
let problem for equations of the class under consideration has a weak solution for every
right-hand side in L™ (Q)) (see in [2, Theorems 1.5.5 and 1.5.6]):

(@p=2-1/n,m>1;

(b)yp<2—1/n,m=n/(np—n+1).

In the present article, we give two nonexistence results. The first one concerns the
above-mentioned Dirichlet problem for second-order equations. We prove that if p <
2—1/nand 1<m<n/(np—n+1), then for some f € L™ (Q}) the problem with the datum f
does not have weak solutions (see Theorem 3.3). The second result concerns the Dirichlet
problem in the same open set () for a class of 2/-order equations whose coefficients admit
the growth of rate p—1>0 with respect to the derivatives of order / of unknown function.
We establish that under the conditions n>2,2<I<n, p<2—I/nand 1<m<n/(np—n+1I)
for some f€L"(Q)) the problem with the datum f does not have weak solutions (see The-
orem 4.1). We remark that the proof of these results given in Sections 3 and 4 respectively
is based on the use of an assertion which establishes a relation between the parameters

n, 1, p and m of an operator acting from L™(Q) into (W"?(Q))* (see Proposition 2.3 in
Section 2).

We note that a condition of the nonexistence of weak solutions of the Dirichlet prob-
lem for high-order equations with L'-data was established in the recent article [3].

As far as the solvability of nonlinear elliptic high-order equations with L!-right-hand
sides is concerned, to our knowledge, there are no results on this subject in the general
case. Some results on the existence of entropy and weak solutions of the Dirichlet prob-
lem for nonlinear elliptic high-order equations with coefficients satisfying a strengthened
coercivity condition and L'-data were obtained for instance in [4] and [5]. In this connec-
tion see also [2, Chapter 2] where a theory of the existence and properties of entropy
and weak solutions of the Dirichlet problem for nonlinear fourth-order equations with
strengthened coercivity and data from L! and classes close to L! is presented.

2 Auxiliary assertions

Letn€IN, n>2, and let () be a bounded open set of IR".

Propositon 2.1. Let m>1,1€IN, p>1, and let H:L"(Q) — (W"?(Q))* be an operator such
that

fEL"(Q),peCH(Q) = (Hfg)= [ fodx. 21)
Then WP(Q) © L/ (m=1) ().

Proof. First of all we observe that the operator H is linear. In fact, let f,g € L"(Q)) and
a,BE€R. We fix an arbitrary function ¢ € W' (Q) and a sequence {¢;} CCP(Q) such that
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@x — @ strongly in W"P(Q)). Now, taking an arbitrary k€ IN, by virtue of (2.1), we have

<H<af+ﬁg),qvk>=/Q(vchrﬁg)(pkdxza/ﬂfqvkderﬁ/ngpkdx
=a(Hf, ) +B(HE, ¢x) = («Hf +BH, ¢x).

Hence, taking into account the continuity of the functionals Hf, Hg and H(a f+fg) along
with the strong convergence of {@;} to ¢ in W'?(Q), we deduce the equality (H(af+
Bg),¢)=(a«Hf+PBHg,¢). Then, due to the arbitrariness of ¢, we get H(af+g) =aHf+
BHg. Therefore, the operator H is linear.

Now, we pass to the immediate proof of the conclusion of the proposition.

We fix an arbitrary function ¢ € Wiy (Q)) and define the functional F:L"(Q)) — R by
(F.fy=(Hf,¢),  feLl™(Q).

Owing to the linearity of the operator H, the functional F is linear.
Let us show that the functional F is continuous. To this purpose we fix a sequence
{@r} CCF(QY) such that

o= @llwiri) =0, (2.2)
and for every k€N define the functional F: L™ (Q)) — R by

<Fk/f>:<Hf/¢k>/ fELm(Q)

Due to the linearity of the operator H, for every k€N the functional F; is linear. Moreover,
using (2.1), we establish that if k€ N and f,g€ L™(Q)), then

[(Fi f) — (Fiug)| < (max |g|) (meas Q) ™D/ f gl -

This implies that for every k € IN the functional Fy is continuous on L™ ((}). Finally, it is
obvious that for every function f € L™ (Q2) the sequence of the numbers (F, f) is bounded.
The given properties of the functionals F; and the theorem on uniform boundedness (see,
for instance [6, Charter 2]) allow us to conclude that there exists M >0 such that for every
k€N and for every f € L™(Q)),

[ (B )| < M fll (-

Hence, using the definition of the functionals F; along with (2.2), we infer that

VfeL™(Q),  [Hf,@)| <M fllLn(e)-

Therefore, the functional F is continuous.
Thus, F € (L™ (Q))*. Then there exists a function ¢ € L™/ ("=1)(()) such that for every
feLl™(Q),

(F.f)= [ wfdx.
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This and the definition of the functional F imply that
VFEL™(Q),  (Hf.g)= [ yfdx. (2.3)

Let us show that =1 a.e. in Q. Indeed, let f€ L"(Q)NLF/(P~1)(Q). Since f€L"(Q),
by (2.1), for every k€ IN we have

(Hfpi)= | fouds. (24)

Moreover, taking into account that f € LP/(P=1)(Q) and using Holder’s inequality, for
every k€N we get

[ fords= [ Fods| <11l ool (25)

From (2.4), (2.5) and (2.2) it follows that
(Hf,p0) = [ fodx. (26)
On the other hand, by virtue of (2.2) and the continuity of the functional H f, we obtain
(Hf,¢x) = (Hf, ). (27)

From (2.3), (2.6) and (2.7) we derive that
| flo=p)dx=0. (28)

Hence, owing to the arbitrariness of the function f in L"(Q)NLP/ (P~ (Q), we get that
@=1 a.e. in Q. Then, since p € L"/ ("~ (QQ), we have g € L™/ ("1 (()).

Thus, we conclude that W-P(Q) c L™/ ("=1(Q). O
Propositon 2.2. Let [€N, I<n,1<p<n/land t >np/(n—Ip). Then I/C{ﬂ'F’(Q)\Lf(Q) #D.

Proof. We fix y€Q), and let v:QQ— R be the function such that v(y)=0 and v(x)=|x—y| !
if xe O\ {y}. Itis easy to verify that the following assertions hold:

O0<y<n=vel’(Q), (2.9)
and
y2n=v¢L"(Q). (2.10)

Next, let B be a closed ball in R” with center y such that B C (). We fix a function
peCP(Q) such that 0< ¢ <1in Q and ¢=1in B.
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Now we set A=n/t and w=1v"¢. We have
weLP(Q)\LI(Q). (2.11)

In fact, since > p, then Ap < n. This along with the obvious estimate w? < v*? in Q
and (2.9) implies that w € LP(Q)). Clearly, w' =v" in B, and, by (2.10), v ¢ L"(Q)). Then
w¢ L' (Q). Thus, inclusion (2.11) holds.

Let us show that w e Vi/l'P(Q). To this purpose for every j € N we define the function
wj(x)=(lx—y>+1//) " ?p(x), x€Q.
Obviously, {w;} C C§°(Q)). Moreover, w; — w in Q\{y} and for every j€ N, w; <w in
Q\{y}. Therefore, taking into account the inclusion w € LF(Q)), we get

w;— w, strongly in L7 (QY). (2.12)

Using Leibniz’ formula of differentiation of the product of two functions, we establish
that there exists C > 0 such that for every j €N and for every n-dimensional multi-index
st DR P <Co™P, in O\ {y). (2.13)
Since t >np/(n—Ip), we have (A+1)p < n. Then, by (2.9), v*+)P € L1(Q)). From this
and (2.13) it follows that the sequence {w;} is bounded in T/(ifl'?’(ﬂ). Then, by virtue of
the reflexivity of the space I;VI'P(Q), there exist an increasing sequence {jy} C IN and a
function ue W' (Q)) such that w;j, —u weakly in Wi (Q). This and (2.12) imply that w=u

a.e. in Q. Therefore, w € W/ (Q). The result obtained and (2.11) lead to the conclusion of
the proposition. O

Propositon 2.3. Let m>1,1€N, l<n, 1<p<n/l, and let H: L"(Q) — (W"P(Q))* be an
operator such that

feL"(Q),peCR(Q) = (Hf,¢) = | fodx.

Then . 1 1
iy (2.14)
m- p n

Proof. Suppose that inequality (2.14) is not valid. Then m/(m—1) >np/(n—Ip). Hence,
by Proposition 2.2,

WP (Q)\ L™ (D(Q) £ 0. (2.15)

On the other hand, by Proposition 2.1, W/ (Q) € L™/ (=1 (Q)). However, this contradicts
inequality (2.15). The contradiction obtained proves that inequality (2.14) is valid. O
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3 Existence and nonexistence of solutions of second-order
equations

Let1<p<mn, c,c20>0,9€ L”/(”_l)(ﬂ), ¢>01in Q, and let for every i € {1,---,n}, a;:

OxR" — R be a Carathéodory function. We shall suppose that for almost every x € ()
and for every {€R",

Dai(m’)l <algl+g(x), 3.1)

=

Y ai(x,5)& > calg)”. (3.2)

i=1

Moreover, we shall assume that for almost every x € Q) and for every &,&' € R", { £,

[ai(x,6) —ai(x,&")] (5i— i) >0. (3.3)

M:

N
Il
—_

For every f € L'(Q)) by (Ps) we denote the following problem:

"9
l;a—xl (x,Vu)=f in Q,
u=0 on dQ).

Definition 3.1. Let f € L'(Q)). A weak solution of problem (Py) is a function u € Wil (Q) such
that:

(i) for every i€ {1,---,n}, a;(x,Vu) € L}(Q);
(ii) for every function ¢ € C5°(Q)),

/Q { g”i(xrv”)Dqu}dx = /Qf(de‘

Let us recall some known results on the solvability of problem (Ps) in the case where
feL™(Q) withm>1.

For every A €[1,n) weset A*=nA/(n—A\).

If feLP/(P"-1)(Q), in view of conditions (3.1)-(3.3) and Sobolev inequality and ac-
cording to well known results of the theory of monotone operators (see for instance [7,

Chapter 2]), there exists a weak solution of problem (Py) which belongs to W (Q).
Now consider the case where f € L™ (Q)) with m lying in the interval (1,p*/(p*—1)).

Theorem 3.1. Let p>2—1/n, 1<m<p*/(p*—1), and let f€L™(QY). Then there exists a weak
solution of problem (Ps) which belongs to W(P=Dm"(0y).
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This result was proved in [8]. In this connection we observe that actually the con-
clusion of Theorem 3.1 holds if in the conditions of the theorem we assume that the
inequality p >2—1/n is satisfied instead of the inequality p >2—1/n (see [2, Theorem
1.5.5].

Theorem 3.2. Let p<2—1/n, n/(np—n+1)<m<p*/(p*—1), and let f € L"™(Q). Then
there exists a weak solution of problem (Py) which belongs to wLr=1m (@),

This result was established by the first author in [2, Theorem 1.5.6]. The same conclu-
sion as in the given theorem under the conditions p <2—1/n and n/(np—n+1) <m <
p*/(p*—1) has already been obtained in [9].

The main result of this section given in the following theorem shows that the condi-
tion on m in Theorem 3.2 cannot be weakened.

Theorem 3.3. Let p<2—1/n, and let

l<m< (3.4)

np—n+1"
Then there exists f € L™ (Q) such that problem (Pf) does not have weak solutions.

Proof. Let us suppose that for every f € L™ (Q)) there exists a weak solution of problem

(Py). Therefore, if f € L™ (Q)), then there exists a function uf € Wil (Q)) such that for every
ie{1,---,n},a;(x,Vus) € L}(Q), and for every function ¢ € C°(Q2),

n
/ {Zai(x,Vuf)Diq)}dx:/ fedx. (3.5)
ol 0
We set p1=1/(2—p). Since 1<p<2—1/n, we have 1<p; <n. Using (3.1), we establish
that for every f€L™(Q) and for every i€ {1,--- ,n}, a;(x,Vus) € LM /(n=1)(Q)). Taking this
fact into account, for every f € L™(Q)) we define the functional Gy: Wi (Q) = Rby

(Gf,go>:/0{Zai(x,Vuf)Digo}dx, peWH1(Q).
i—1

It is easy to see that for every f € L™ (Q), Gf€ (Vi/lfpl (Q))*.

Now let H:L™(Q)) — (T/Ovl'f’l (Q)))* be the operator such that for every f€L™(Q)), Hf =
Gy. By virtue of (3.5), for every f € L"(Q) and for every ¢ € Cg°(Q)) we have

(Hf¢)= /Q fodx.
Then, applying Proposition 2.3, we get the inequality
l < pP1— 1 + 1

A -

m p1 n

Hence, by the definition of p;, we obtain that m>n/(np—n+1). However, this contradicts
(3.4). The contradiction obtained proves that the conclusion of the theoremis valid. [
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4 Nonexistence of solutions of high-order equations

Suppose that n>2, and let I €IN, 2 <] <n. We shall use the following notation: A is the
set of all n-dimensional multi-indices « such that |a| =1; R} is the space of all functions
EA—R;ifue L}OC(Q) and the function u has the weak derivatives D*u, a € A, then V;u:
O — R} is the mapping such that for every x€ ) and for every a € A, (V;u(x))o=D"u(x).

Letp>1,c>0and he LV (P~D(Q), h>0in Q. Let for every a €A, A :QxR'—Rbea
Carathéodory function. We shall assume that for almost every x €() and for every ¢ € R},

Y lAn(x2)<e ) [GalP +h(x). (4.1)
xEA xEA

For every f € L'(Q)) by (Pf) we denote the following problem:
Y (-1)D*Ay(x, Viu)=f in Q,

anEN

D*u=0 |a|<I—1, on Q.

Definition 4.1. Let f € L'(Q)). A weak solution of problem (Py) is a function u € W' (Q) such
that:

(i) for every a € A, Ay(x,Viu) € L1(Q);
(ii) for every function ¢ € C°(Q}),

/Q{ ZA,X(x,Vlu)D”‘go}dx:/Qfgodx.

aEN
Theorem 4.1. Let p<2—1/n, and let

n

Then there exists f € L™(Q)) such that problem (Py) does not have weak solutions.
Proof. Let us suppose that for every f € L™ (()) there exists a weak solution of problem

(Pf). Therefore, if f € L™ (Q2), then there exists a function u¢ € Wi (Q)) such that for every
€N, Ay(x,Vius) € L}(Q), and for every function ¢ € C3*(Q)),

/Q{a;\Aa(x,Vzuf)D”‘q)}dx:/Qf(pdx. (4.3)

We set py=1/(2—p). Since 1 <p <2—1/n, we have 1 < p; <n/l. Using (4.1), we
establish that for every f€ L™ (Q)) and for every a € A, Ay (x,V)uy) cLP/(m=1(Q)). Taking

this fact into account, for every f € L™ (Q)) we define the functional I;: W"?1(Q)) - R by

(If,go>:/0{ ) Aa(x,V;uf)D”‘q)}dx, q)eT/(ifl"”(Q).

aeN
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It is obvious that for every f € L"(Q), I € (V(i/l"’l (Q))*.

(
Now let H:L™(Q)) —>(T/(ifl'f’1 (Q2))* be the operator such that for every f€L™(Q), Hf=I.
In view of (4.3), for every f € L™(Q) and for every ¢ € C{°(Q2) we have

(Hf,9)= /Q fodx.
Then, applying Proposition 2.3, we get the inequality

lgpl_l_i_i_
m p1n

Hence, taking into account the definition of p;, we obtain that m >n/(np—n+1I). How-
ever, this contradicts (4.2). The contradiction obtained proves that the conclusion of the
theorem is valid. O
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