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1 Introduction

In the well-known work [1], a theory of entropy solutions for nonlinear elliptic second-
order equations with L1-data was developed. According to the results of this work, if Ω

is a bounded open set of R
n (n > 2), 1 < p < n, and coefficients of the equations under

consideration grow with respect to the gradient of unknown function u as |∇u|p−1 and
satisfy natural coercivity and strict monotonicity conditions, then the Dirichlet problem
in Ω for these equations has a unique entropy solution for every L1-right-hand side. In
addition, if p>2−1/n, the entropy solution is a weak solution. At the same time in [1] it
was shown that if 1< p62−1/n, the Dirichlet problem for the equation −∆pu+u= f in
Ω does not have weak solutions for some f ∈L1(Ω).
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In connection with the above, now we note the following two cases where the Dirich-
let problem for equations of the class under consideration has a weak solution for every
right-hand side in Lm(Ω) (see in [2, Theorems 1.5.5 and 1.5.6]):

(a) p>2−1/n, m>1;

(b) p<2−1/n, m>n/(np−n+1).

In the present article, we give two nonexistence results. The first one concerns the
above-mentioned Dirichlet problem for second-order equations. We prove that if p <

2−1/n and 1<m<n/(np−n+1), then for some f ∈Lm(Ω) the problem with the datum f
does not have weak solutions (see Theorem 3.3). The second result concerns the Dirichlet
problem in the same open set Ω for a class of 2l-order equations whose coefficients admit
the growth of rate p−1>0 with respect to the derivatives of order l of unknown function.
We establish that under the conditions n>2, 26l<n, p<2−l/n and 1<m<n/(np−n+l)
for some f ∈Lm(Ω) the problem with the datum f does not have weak solutions (see The-
orem 4.1). We remark that the proof of these results given in Sections 3 and 4 respectively
is based on the use of an assertion which establishes a relation between the parameters

n, l, p and m of an operator acting from Lm(Ω) into (
◦

W l,p(Ω))∗ (see Proposition 2.3 in
Section 2).

We note that a condition of the nonexistence of weak solutions of the Dirichlet prob-
lem for high-order equations with L1-data was established in the recent article [3].

As far as the solvability of nonlinear elliptic high-order equations with L1-right-hand
sides is concerned, to our knowledge, there are no results on this subject in the general
case. Some results on the existence of entropy and weak solutions of the Dirichlet prob-
lem for nonlinear elliptic high-order equations with coefficients satisfying a strengthened
coercivity condition and L1-data were obtained for instance in [4] and [5]. In this connec-
tion see also [2, Chapter 2] where a theory of the existence and properties of entropy
and weak solutions of the Dirichlet problem for nonlinear fourth-order equations with
strengthened coercivity and data from L1 and classes close to L1 is presented.

2 Auxiliary assertions

Let n∈N, n>2, and let Ω be a bounded open set of R
n.

Propositon 2.1. Let m>1, l∈N, p>1, and let H : Lm(Ω)→ (
◦

W l,p(Ω))∗ be an operator such
that

f ∈Lm(Ω), ϕ∈C∞
0 (Ω)=⇒〈H f ,ϕ〉=

∫

Ω
f ϕdx. (2.1)

Then
◦

W l,p(Ω)⊂ Lm/(m−1)(Ω).

Proof. First of all we observe that the operator H is linear. In fact, let f ,g ∈ Lm(Ω) and

α,β∈R. We fix an arbitrary function ϕ∈
◦

W l,p(Ω) and a sequence {ϕk}⊂C∞
0 (Ω) such that
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ϕk→ ϕ strongly in W l,p(Ω). Now, taking an arbitrary k∈N, by virtue of (2.1), we have

〈H(α f +βg),ϕk〉=
∫

Ω
(α f +βg)ϕk dx=α

∫

Ω
f ϕk dx+β

∫

Ω
gϕk dx

=α〈H f ,ϕk〉+β〈Hg,ϕk〉= 〈αH f +βHg,ϕk〉.

Hence, taking into account the continuity of the functionals H f , Hg and H(α f+βg) along
with the strong convergence of {ϕk} to ϕ in W l,p(Ω), we deduce the equality 〈H(α f +
βg),ϕ〉= 〈αH f +βHg,ϕ〉. Then, due to the arbitrariness of ϕ, we get H(α f +βg)=αH f +
βHg. Therefore, the operator H is linear.

Now, we pass to the immediate proof of the conclusion of the proposition.

We fix an arbitrary function ϕ∈
◦

W l,p(Ω) and define the functional F : Lm(Ω)→R by

〈F, f 〉= 〈H f ,ϕ〉, f ∈Lm(Ω).

Owing to the linearity of the operator H, the functional F is linear.
Let us show that the functional F is continuous. To this purpose we fix a sequence

{ϕk}⊂C∞
0 (Ω) such that

‖ϕk−ϕ‖W l,p(Ω)→0, (2.2)

and for every k∈N define the functional Fk : Lm(Ω)→R by

〈Fk, f 〉= 〈H f ,ϕk〉, f ∈Lm(Ω).

Due to the linearity of the operator H, for every k∈N the functional Fk is linear. Moreover,
using (2.1), we establish that if k∈N and f ,g∈Lm(Ω), then

|〈Fk, f 〉−〈Fk,g〉|6 (max
Ω

|ϕk|)(measΩ)(m−1)/m‖ f −g‖Lm(Ω).

This implies that for every k∈N the functional Fk is continuous on Lm(Ω). Finally, it is
obvious that for every function f∈Lm(Ω) the sequence of the numbers 〈Fk, f 〉 is bounded.
The given properties of the functionals Fk and the theorem on uniform boundedness (see,
for instance [6, Charter 2]) allow us to conclude that there exists M>0 such that for every
k∈N and for every f ∈Lm(Ω),

|〈Fk, f 〉|6M‖ f‖Lm(Ω).

Hence, using the definition of the functionals Fk along with (2.2), we infer that

∀ f ∈Lm(Ω), |〈H f ,ϕ〉|6M‖ f‖Lm(Ω).

Therefore, the functional F is continuous.
Thus, F∈ (Lm(Ω))∗. Then there exists a function ψ∈ Lm/(m−1)(Ω) such that for every

f ∈Lm(Ω),

〈F, f 〉=
∫

Ω
ψ f dx.
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This and the definition of the functional F imply that

∀ f ∈Lm(Ω), 〈H f ,ϕ〉=
∫

Ω
ψ f dx. (2.3)

Let us show that ϕ=ψ a. e. in Ω. Indeed, let f ∈Lm(Ω)∩Lp/(p−1)(Ω). Since f ∈Lm(Ω),
by (2.1), for every k∈N we have

〈H f ,ϕk〉=
∫

Ω
f ϕk dx. (2.4)

Moreover, taking into account that f ∈ Lp/(p−1)(Ω) and using Hölder’s inequality, for
every k∈N we get

∣

∣

∣

∣

∫

Ω
f ϕk dx−

∫

Ω
f ϕdx

∣

∣

∣

∣

6‖ f‖Lp/(p−1)(Ω)‖ϕk−ϕ‖Lp(Ω). (2.5)

From (2.4), (2.5) and (2.2) it follows that

〈H f ,ϕk〉→
∫

Ω
f ϕdx. (2.6)

On the other hand, by virtue of (2.2) and the continuity of the functional H f , we obtain

〈H f ,ϕk〉→〈H f ,ϕ〉. (2.7)

From (2.3), (2.6) and (2.7) we derive that
∫

Ω
f (ϕ−ψ)dx=0. (2.8)

Hence, owing to the arbitrariness of the function f in Lm(Ω)∩Lp/(p−1)(Ω), we get that
ϕ=ψ a. e. in Ω. Then, since ψ∈Lm/(m−1)(Ω), we have ϕ∈Lm/(m−1)(Ω).

Thus, we conclude that
◦

W l,p(Ω)⊂ Lm/(m−1)(Ω).

Propositon 2.2. Let l∈N, l<n, 1< p<n/l and t>np/(n−lp). Then
◦

W l,p(Ω)\Lt(Ω) 6=∅.

Proof. We fix y∈Ω, and let v :Ω→R be the function such that v(y)=0 and v(x)= |x−y|−1

if x∈Ω\{y}. It is easy to verify that the following assertions hold:

0<γ<n=⇒v∈Lγ(Ω), (2.9)

and

γ>n=⇒v /∈ Lγ(Ω). (2.10)

Next, let B be a closed ball in R
n with center y such that B ⊂ Ω. We fix a function

ϕ∈C∞
0 (Ω) such that 06 ϕ61 in Ω and ϕ=1 in B.
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Now we set λ=n/t and w=vλ ϕ. We have

w∈Lp(Ω)\Lt(Ω). (2.11)

In fact, since t > p, then λp < n. This along with the obvious estimate wp 6 vλp in Ω

and (2.9) implies that w∈ Lp(Ω). Clearly, wt = vn in B, and, by (2.10), v /∈ Ln(Ω). Then
w /∈Lt(Ω). Thus, inclusion (2.11) holds.

Let us show that w∈
◦

W l,p(Ω). To this purpose for every j∈N we define the function
wj : Ω→R by

wj(x)=(|x−y|2+1/j)−λ/2 ϕ(x), x∈Ω.

Obviously, {wj} ⊂C∞
0 (Ω). Moreover, wj → w in Ω\{y} and for every j ∈N, wj 6w in

Ω\{y}. Therefore, taking into account the inclusion w∈Lp(Ω), we get

wj→w, strongly in Lp(Ω). (2.12)

Using Leibniz’ formula of differentiation of the product of two functions, we establish
that there exists C>0 such that for every j∈N and for every n-dimensional multi-index
α, |α|6 l,

|Dαwj|
p
6Cv(λ+l)p, in Ω\{y}. (2.13)

Since t > np/(n−lp), we have (λ+l)p < n. Then, by (2.9), v(λ+l)p ∈ L1(Ω). From this

and (2.13) it follows that the sequence {wj} is bounded in
◦

W l,p(Ω). Then, by virtue of

the reflexivity of the space
◦

W l,p(Ω), there exist an increasing sequence {jk} ⊂N and a

function u∈
◦

W l,p(Ω) such that wjk→u weakly in
◦

W l,p(Ω). This and (2.12) imply that w=u

a.e. in Ω. Therefore, w∈
◦

W l,p(Ω). The result obtained and (2.11) lead to the conclusion of
the proposition.

Propositon 2.3. Let m> 1, l ∈N, l < n, 1< p< n/l, and let H : Lm(Ω)→ (
◦

W l,p(Ω))∗ be an
operator such that

f ∈Lm(Ω), ϕ∈C∞
0 (Ω)=⇒〈H f ,ϕ〉=

∫

Ω
f ϕdx.

Then
1

m
6

p−1

p
+

l

n
. (2.14)

Proof. Suppose that inequality (2.14) is not valid. Then m/(m−1)>np/(n−lp). Hence,
by Proposition 2.2,

◦
W l,p(Ω)\Lm/(m−1)(Ω) 6=∅. (2.15)

On the other hand, by Proposition 2.1,
◦

W l,p(Ω)⊂Lm/(m−1)(Ω). However, this contradicts
inequality (2.15). The contradiction obtained proves that inequality (2.14) is valid.
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3 Existence and nonexistence of solutions of second-order

equations

Let 1 < p < n, c1,c2 > 0, g ∈ Lp/(p−1)(Ω), g > 0 in Ω, and let for every i ∈ {1,··· ,n}, ai :
Ω×R

n →R be a Carathéodory function. We shall suppose that for almost every x ∈Ω

and for every ξ∈R
n,

n

∑
i=1

|ai(x,ξ)|6 c1|ξ|
p−1+g(x), (3.1)

n

∑
i=1

ai(x,ξ)ξi > c2|ξ|
p. (3.2)

Moreover, we shall assume that for almost every x∈Ω and for every ξ,ξ′∈R
n, ξ 6= ξ′ ,

n

∑
i=1

[ai(x,ξ)−ai(x,ξ′)](ξi−ξ′i)>0. (3.3)

For every f ∈L1(Ω) by (Pf ) we denote the following problem:

−
n

∑
i=1

∂

∂xi
ai(x,∇u)= f in Ω,

u=0 on ∂Ω.

Definition 3.1. Let f ∈L1(Ω). A weak solution of problem (Pf ) is a function u∈
◦

W1,1(Ω) such
that:

(i) for every i∈{1,··· ,n}, ai(x,∇u)∈L1(Ω);

(ii) for every function ϕ∈C∞
0 (Ω),

∫

Ω

{ n

∑
i=1

ai(x,∇u)Di ϕ

}

dx=
∫

Ω
f ϕdx.

Let us recall some known results on the solvability of problem (Pf ) in the case where
f ∈Lm(Ω) with m>1.

For every λ∈ [1,n) we set λ∗=nλ/(n−λ).
If f ∈ Lp∗/(p∗−1)(Ω), in view of conditions (3.1)-(3.3) and Sobolev inequality and ac-

cording to well known results of the theory of monotone operators (see for instance [7,

Chapter 2]), there exists a weak solution of problem (Pf ) which belongs to
◦

W1,p(Ω).
Now consider the case where f ∈Lm(Ω) with m lying in the interval (1,p∗/(p∗−1)).

Theorem 3.1. Let p>2−1/n, 1<m<p∗/(p∗−1), and let f ∈Lm(Ω). Then there exists a weak

solution of problem (Pf ) which belongs to
◦

W1,(p−1)m∗
(Ω).
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This result was proved in [8]. In this connection we observe that actually the con-
clusion of Theorem 3.1 holds if in the conditions of the theorem we assume that the
inequality p> 2−1/n is satisfied instead of the inequality p > 2−1/n (see [2, Theorem
1.5.5].

Theorem 3.2. Let p< 2−1/n, n/(np−n+1)6m< p∗/(p∗−1), and let f ∈ Lm(Ω). Then

there exists a weak solution of problem (Pf ) which belongs to
◦

W1,(p−1)m∗
(Ω).

This result was established by the first author in [2, Theorem 1.5.6]. The same conclu-
sion as in the given theorem under the conditions p6 2−1/n and n/(np−n+1)<m<

p∗/(p∗−1) has already been obtained in [9].
The main result of this section given in the following theorem shows that the condi-

tion on m in Theorem 3.2 cannot be weakened.

Theorem 3.3. Let p<2−1/n, and let

1<m<
n

np−n+1
. (3.4)

Then there exists f ∈Lm(Ω) such that problem (Pf ) does not have weak solutions.

Proof. Let us suppose that for every f ∈ Lm(Ω) there exists a weak solution of problem

(Pf ). Therefore, if f ∈Lm(Ω), then there exists a function u f ∈
◦

W1,1(Ω) such that for every

i∈{1,··· ,n}, ai(x,∇u f )∈L1(Ω), and for every function ϕ∈C∞
0 (Ω),

∫

Ω

{ n

∑
i=1

ai(x,∇u f )Di ϕ

}

dx=
∫

Ω
f ϕdx. (3.5)

We set p1=1/(2−p). Since 1<p<2−1/n, we have 1<p1<n. Using (3.1), we establish
that for every f ∈Lm(Ω) and for every i∈{1,··· ,n}, ai(x,∇u f )∈Lp1/(p1−1)(Ω). Taking this

fact into account, for every f ∈Lm(Ω) we define the functional G f :
◦

W1,p1(Ω)→R by

〈G f ,ϕ〉=
∫

Ω

{ n

∑
i=1

ai(x,∇u f )Di ϕ

}

dx, ϕ∈
◦

W1,p1(Ω).

It is easy to see that for every f ∈Lm(Ω), G f ∈ (
◦

W1,p1(Ω))∗.

Now let H : Lm(Ω)→(
◦

W1,p1(Ω))∗ be the operator such that for every f ∈Lm(Ω), H f =
G f . By virtue of (3.5), for every f ∈Lm(Ω) and for every ϕ∈C∞

0 (Ω) we have

〈H f ,ϕ〉=
∫

Ω
f ϕdx.

Then, applying Proposition 2.3, we get the inequality

1

m
6

p1−1

p1
+

1

n
.

Hence, by the definition of p1, we obtain that m>n/(np−n+1). However, this contradicts
(3.4). The contradiction obtained proves that the conclusion of the theorem is valid.
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4 Nonexistence of solutions of high-order equations

Suppose that n>2, and let l∈N, 26 l<n. We shall use the following notation: Λ is the
set of all n-dimensional multi-indices α such that |α|= l; R

n
l is the space of all functions

ξ :Λ→R; if u∈L1
loc(Ω) and the function u has the weak derivatives Dαu, α∈Λ, then ∇lu :

Ω→R
n
l is the mapping such that for every x∈Ω and for every α∈Λ, (∇lu(x))α=Dαu(x).

Let p>1, c>0 and h∈L1/(p−1)(Ω), h>0 in Ω. Let for every α∈Λ, Aα :Ω×R
n
l →R be a

Carathéodory function. We shall assume that for almost every x∈Ω and for every ξ∈R
n
l ,

∑
α∈Λ

|Aα(x,ξ)|6 c ∑
α∈Λ

|ξα|
p−1+h(x). (4.1)

For every f ∈L1(Ω) by (P f ) we denote the following problem:

∑
α∈Λ

(−1)|α|Dα Aα(x,∇lu)= f in Ω,

Dαu=0 |α|6 l−1, on ∂Ω.

Definition 4.1. Let f ∈L1(Ω). A weak solution of problem (P f ) is a function u∈
◦

W l,1(Ω) such
that:

(i) for every α∈Λ, Aα(x,∇lu)∈L1(Ω);

(ii) for every function ϕ∈C∞
0 (Ω),

∫

Ω

{

∑
α∈Λ

Aα(x,∇lu)Dα ϕ

}

dx=
∫

Ω
f ϕdx.

Theorem 4.1. Let p<2−l/n, and let

1<m<
n

np−n+l
. (4.2)

Then there exists f ∈Lm(Ω) such that problem (P f ) does not have weak solutions.

Proof. Let us suppose that for every f ∈ Lm(Ω) there exists a weak solution of problem

(P f ). Therefore, if f ∈Lm(Ω), then there exists a function u f ∈
◦

W l,1(Ω) such that for every

α∈Λ, Aα(x,∇lu f )∈L1(Ω), and for every function ϕ∈C∞
0 (Ω),

∫

Ω

{

∑
α∈Λ

Aα(x,∇lu f )Dα ϕ

}

dx=
∫

Ω
f ϕdx. (4.3)

We set p1 = 1/(2−p). Since 1 < p < 2−l/n, we have 1 < p1 < n/l. Using (4.1), we
establish that for every f ∈Lm(Ω) and for every α∈Λ, Aα(x,∇lu f )∈Lp1/(p1−1)(Ω). Taking

this fact into account, for every f ∈Lm(Ω) we define the functional I f :
◦

W l,p1(Ω)→R by

〈I f ,ϕ〉=
∫

Ω

{

∑
α∈Λ

Aα(x,∇lu f )Dα ϕ

}

dx, ϕ∈
◦

W l,p1(Ω).
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It is obvious that for every f ∈Lm(Ω), I f ∈ (
◦

W l,p1(Ω))∗.

Now let H:Lm(Ω)→(
◦

W l,p1(Ω))∗ be the operator such that for every f∈Lm(Ω), H f=I f .
In view of (4.3), for every f ∈Lm(Ω) and for every ϕ∈C∞

0 (Ω) we have

〈H f ,ϕ〉=
∫

Ω
f ϕdx.

Then, applying Proposition 2.3, we get the inequality

1

m
6

p1−1

p1
+

l

n
.

Hence, taking into account the definition of p1, we obtain that m>n/(np−n+l). How-
ever, this contradicts (4.2). The contradiction obtained proves that the conclusion of the
theorem is valid.
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