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1 Introduction

In this paper we consider coupled nonlinear diffusion equations of the form

(um)t =∆u+a1uα1 , (vn)t =∆v−a2vβ1 , (x,t)∈Ω×(0,T), (1.1)

∂u

∂η
=uα2 vp,

∂v

∂η
=uqvβ2 , (x,t)∈∂Ω×(0,T), (1.2)

u(x,0)=u0(x), v(x,0)=v0(x), x∈ Ω̄, (1.3)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, the parameters

m,n,p,q,a1,a2 are positive, αi,βi ≥ 0 (i = 1,2), u0 and v0 are positive functions satisfying
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the compatibility conditions on Ω̄. The diffusion in (1.1) may be fast or slow, e.g., when
m > 1 or 0 < m < 1 for the component u. There are positive and negative sources for u
and v respectively, together with coupled nonlinear boundary condition (1.2) describing
the nonlinear radiation laws in heat propagations. The critical exponent to the semilinear
case (m=n=1) of (1.1)-(1.3) was studied by Zheng, Liang and Song [1]. They introduced
the matrix equation

(

α2−µ p
q β2−γ

)(

ρ1

ρ2

)

=

(

1
1

)

with

µ=1−
( α1−1

2

)

+
, γ=1+

( β1−1

2

)

+
,

and obtained that the critical exponent of (1.1)-(1.3) is just (1/ρ1,1/ρ2)= (0,0). We refer
also to, e.g., Zheng et al. [2, 3], Bedjaouit and Souplet [4] for the results on parabolic
equations with inner absorptions.

The scalar case was studied by Filo [5], and Deng et al. [6]. For the scalar nonlinear
diffusion equation with positive source

(um)t =∆u+a1uα, (x,t)∈Ω×(0,T), (1.4)

∂u

∂η
=b1uβ, (x,t)∈∂Ω×(0,T), (1.5)

u(x,0)=u0(x), x∈ Ω̄, (1.6)

with m>0, α,β≥0, a1,b1 >0, Song and Zheng [7] proved the following result:

Proposition 1.1. The solutions of (1.4)-(1.6) blow up in a finite time for large initial value pro-
vided (i) α>m, a1 >0, or (ii) 0<m≤1, β>m, b1 >0, or (iii) m>1, β> (m+1)/2, b1 >0.

Andreu et al. [8] and Li et al. [9] studied the scalar case with absorption, i.e.,

(un)t =∆u−a2uβ1 , (x,t)∈Ω×(0,T), (1.7)

∂u

∂η
=uβ2 , (x,t)∈∂Ω×(0,T), (1.8)

u(x,0)=u0(x), x∈ Ω̄, (1.9)

with a2,n>0, βi ≥0 (i=1,2), and obtained the blow-up criterion:

Proposition 1.2. The solutions of (1.7)-(1.9) blow up in a finite time for large initial data if

(i) n≥1 with β1≤n, β2 > (n+1)/2 or β1 >n, β2 > (β1+1)/2; or

(ii) 0<n<1 with β2 >1, β2 > (β1+1)/2, or n< β2≤1, β2 > β1.

Recently, Zheng and Wang [10] established the critical exponent for the nonlinear
diffusion system with inner absorptions and nonlinear boundary conditions.
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Definition 1.1. A vector function (u,v), defined everywhere on Ω̄×(0,T] and a.e. on Ω̄×{0},
is called a subsolution (supersolution) of (1.1)-(1.3) in QT =Ω×(0,T) if it satisfies:

(i) u,v∈L∞(QT);

(ii) u(x,0)≤ (≥)u0(x),v(x,0)≤ (≥)v0(x) a.e. on Ω̄;

(iii) for every t∈ [0,T] and every ψ1,ψ2∈C(Q̄T)∩C2,1(Ω̄×(0,T))∩V(QT),

∫

Ω

umψ1−um
0 ψ10dx≤(≥)

∫ t

0

∫

Ω

(um(ψ1)τ +u∆ψ1+a1uα1ψ1)dxdτ

+
∫ t

0

∫

∂Ω

(uα2 vpψ1−
∂ψ1

∂η
u)dSdτ, (1.10)

∫

Ω

vnψ2−vn
0 ψ20dx≤(≥)

∫ t

0

∫

Ω

(vn(ψ2)τ +v∆ψ2−a2vβ1 ψ2)dxdτ

+
∫ t

0

∫

∂Ω

(vβ2 uqψ2−
∂ψ2

∂η
v)dSdτ, (1.11)

where V(QT) = {ψ : ψt,|∇ψ|,∆ψ ∈ L2(QT),ψ≥ 0}. Furthermore, (u,v) is called a weak
solution of (1.1)-(1.3) in QT if it is both a subsolution and a supersolution of (1.1)-(1.3) in
QT.

By the standard technique (see, e.g., Theorems 2.1 and 3.1, pp. 118-123 in [11]), we
have the following proposition:

Proposition 1.3. (i) (Local existence and continuation) There is some T∗
> 0 such that there

exists a nonnegative weak solution (u,v) of (1.1)-(1.3) in QT for each T < T∗. Moreover, if
T∗

<+∞, then
limsup

t→T∗

(‖u(·,t)‖∞ +‖v(·,t)‖∞)=∞.

(ii) (Comparison principle) Let (u,v) and (ū,v̄) be nonnegative sub and supersolutions of
(1.1)-(1.3) in QT respectively. Then (u,v)≤ (ū,v̄) a.e. on Q̄T if

(u(x,0),v(x,0))≤ (ū(x,0),v̄(x,0))

with u,v≥δ(or ū,v̄≥δ) for some δ>0.

Remark 1.1. It is observed that every classical subsolution (supersolution) of (1.1)-(1.3)
is also a weak subsolution (supersolution). In the sequel, we will use explicit classical
positive sub and supersolutions instead of those in Definition 1.1.

There are four kinds of nonlinear mechanisms in the model (1.1)-(1.3): nonlinear dif-
fusion, nonlinear absorption, nonlinear reaction, and nonlinear boundary flux. We are
interested in the interactions among them. To represent the critical exponent for (1.1)-
(1.3), we introduce the following characteristic algebraic system [2, 3, 10]:

(

α2−µ p
q β2−γ

)(

ρ1

ρ2

)

=

(

1
1

)

, (1.12)
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namely,

ρ1 =
p−β2+γ

pq−(µ−α2)(γ−β2)
, ρ2 =

q−α2+µ

pq−(µ−α2)(γ−β2)
(1.13)

with

µ=
1+m

2
, γ=

1+n

2
+

( β1−n

2

)

+
for m,n≥1; (1.14)

µ=m, γ=n+
(

β1−n
)

+
−

( β1−1

2

)

+
for 0<m,n<1; (1.15)

µ=m, γ=
1+n

2
+

( β1−n

2

)

+
for 0<m<1, n≥1; (1.16)

µ=
1+m

2
, γ=n+

(

β1−n
)

+
−

( β1−1

2

)

+
for m≥1, 0<n<1. (1.17)

Remark 1.2. Clearly, all the eight exponents m, n, p, q, αi, βi (i =1,2) from the nonlinear
terms of (1.1)-(1.3) are included in (1.12), and the classification for m,n > 0 is complete.
We will use the signs of 1/ρ1,1/ρ2 (rather than those of ρ1,ρ2 themselves) to describe the
critical properties of solutions. Here, we have to define (1/ρ1,1/ρ2)= (0,0) by the limit
of (1/ρ1,1/ρ2) as

pq−(µ−α2)(γ−β2)→0 with p 6= β2−γ, q 6=α2−µ.

Clearly, if q=α2−µ, p 6=β2−γ, then ρ1 =1/q, ρ2 =0. For p=β2−γ, q=α2−µ, define, e.g.,

ρ1 =ρ2 =
1

p+q

to satisfy (1.12).

Now state the main results of the paper.

Theorem 1.1. If α1 > m, then the solutions of (1.1)-(1.3) will blow up in a finite time for large
initial data.

Theorem 1.2. If 1/ρ1 >0 or 1/ρ2 >0 with α1≤m, then the solutions of (1.1)-(1.3) will blow up
in finite time for large initial data.

Theorem 1.3. If 1/ρ1,1/ρ2 <0 with α1≤m, then the solutions of (1.1)-(1.3) are global.

Theorem 1.4. Assume (1/ρ1,1/ρ2) = (0,0) with α1 ≤ m. (i) If α2 > µ, then the solutions of
(1.1)-(1.3) will blow up in finite time for large initial data. (ii) If α2 < µ, then the solutions of
(1.1)-(1.3) are global.

Remark 1.3. Notice from (1.13) and Remark 1.2 that 1/ρ1 = 0 is equivalent to 1/ρ2 = 0
and that (1/ρ1,1/ρ2)= (0,0) with pq >0 excludes the possibility of α2 = µ. Therefore, in
Theorems 1.1-1.4, the classification for the nonlinear parameters is complete. We know
from Theorems 1.2-1.4 that the critical exponent of (1.1)-(1.3) can be simply stated as
(1/ρ1,1/ρ2)=(0,0) under the nontrivial case of α1≤m.
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Remark 1.4. The previous results for nonlinear parabolic equations [1,12,13] are covered
by the above theorems when taking special parameters. For example, let α1 = β1 = 0,
a1 = a2 =0 to get the results in [12, 13], and take m=n=1 to reach those in [1].

Remark 1.5. Since the source is positive for u and negative for v in (1.1)-(1.3), the roles
of the two components are unequal. This is quite different from that considered in [10],
where both of the two components u and v possess negative source terms. In addition, it
was known that blow-up or not of the solutions in the critical case to that problem will
be determined by the coefficients of absorption terms [10]. However, this does not occur
for our problem (1.1)-(1.3) by Theorem 1.4 due to the effects of the positive source for the
component u.

This paper is arranged as follows. In the next section, we will verify the blow-up
conditions in Theorems 1.1 and 1.2. Then Theorem 1.3 will be proven in Section 3 to fix
the conditions for global solutions. Section 4 deals with the critical situation stated in
Theorem 1.4, for which the arguments for Theorems 1.2 and 1.3 will be applied directly.

2 Blowing up of solutions

In this section, we will prove the blow-up of solutions under the conditions of Theorems
1.1 and 1.2. We first treat the more trivial blow-up case of α1 >m.

Proof of Theorem 1.1. Introduce a scalar problem of the form

(Um)t =∆U+a1Uα1 , (x,t)∈Ω×(0,T), (2.1)

∂U

∂η
=0, (x,t)∈∂Ω×(0,T), (2.2)

U(x,0)=u0(x), x∈ Ω̄ (2.3)

with a1 >0, α1 >m. By Proposition 1.1 (i), U blows up in a finite time for large initial data,
while (U,0) is just a pair of subsolutions to the problem (1.1)-(1.3).

The assumption α1 > m implies that the component u in (1.1)-(1.3) can blow up in a
finite time without the help of v. So, we will always assume α1≤m in the sequel.

We need the eigenvalue problem related to (1.1)-(1.3) throughout the rest of the paper.
Let ϕ0 be the first eigenfunction of

∆ϕ+λϕ=0 in Ω, ϕ=0 on ∂Ω (2.4)

with the first eigenvalue λ0, normalized by ‖ϕ0‖∞ =1, ϕ0 >0 in Ω. It is well known that
there exist positive constants ci (i=1, 2, 3) such that

|∇ϕ0|≤ c1 on Ω̄, c2≤−
∂ϕ0

∂η
≤ c3 on ∂Ω. (2.5)
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Denote

Ω1 ={x∈Ω :dist(x,∂Ω)< ε}, Ω2 =Ω\Ω̄1. (2.6)

It is easy to see that there exist some ε, c4∈ (0,1) such that

|∇ϕ0|≥ c2/2 on Ω̄1, ϕ0≥ c4 on Ω̄2. (2.7)

Furthermore, let h0 be the solution of the linear problem

∆h=λh = |∂Ω|/|Ω| in Ω, ∂h/∂η =1 on ∂Ω (2.8)

with infΩ̄ h0(x)=0, sup
Ω̄

h0(x)= c5, |Ω| and |∂Ω| being the Lebesgue measures of Ω and
∂Ω, respectively.

It is observed that the assumption 1/ρ1 or 1/ρ2 >0 with α1≤m in Theorem 1.2 comes
from the following three cases only:

(a) β2 >γ;

(b) α2 >µ, β2 ≤γ;

(c) α2≤µ,β2≤γ with pq> (µ−α2)(γ−β2).

We will prove Theorem 1.2 via six lemmas. The first one deals with the case (a), and
the other five will treat both (b) and (c).

Lemma 2.1. Under the condition (a), the solutions of (1.1)-(1.3) blow up in a finite time for large
initial data.

Proof. Let (u,v) be a solution of (1.1)-(1.3), U solve (2.1)-(2.3). Due to Theorem 1.1, we can
assume u≥U≥δ>0. Consider the scalar problem

(Vn)t =∆V−a2Vβ1 , (x,t)∈Ω×(0,T), (2.9)

∂V

∂η
=δqVβ2 , (x,t)∈∂Ω×(0,T), (2.10)

V(x,0)=v0(x), x∈ Ω̄. (2.11)

We know that v≥V by the comparison principle.

Clearly, the condition β2 >γ implies that at least one of the following holds:

(i) n≥1 with β1≤n, β2 > (n+1)/2 or β1 >n, β2 > (β1+1)/2;

(ii) (ii) 0<n<1 with β2 >1, β2 > (β1+1)/2, or n< β2≤1, β2 > β1.

By Proposition 1.2, V blows up in a finite time with large initial data.

Lemma 2.2. Assume m,n≥ 1, β1 > n with one of (b) and (c). Then the solutions of (1.1)-(1.3)
will blow up in a finite time for large initial data.



J. Wang, M. Tian and L. Hong / J. Part. Diff. Eq., 22 (2009), pp. 11-31 17

Proof. Notice α1≤m, β1 >n≥1 implies µ=(1+m)/2, γ=(1+β1)/2 by (1.14). Construct

u(x,t)=
A

(1−ct)K
e
− aϕ(x)

(1−ct)K1 , v(x,t)= B
[

ϕB
β1−1

2 +(1−ct)L
]− 2

β1−1

for (x,t)∈ Ω̄×[0,1/c), where ϕ = Mϕ0, a = A
m−1

2 , K1 = 1 for m = 1, K1 =((m−1)K+1)/2
for m>1, and A, B, M, K, L, c are positive constants to be determined. We have

(um)t≤
AmKmc

(1−ct)Km+1
e
− maϕ(x)

(1−ct)K1 ,

∆u=
Aaλ0 ϕ

(1−ct)K+K1
e
− aϕ(x)

(1−ct)K1 +
Aa2|∇ϕ|2

(1−ct)K+2K1
e
− aϕ(x)

(1−ct)K1 .

We know from (2.5)-(2.7) that for x∈Ω1,

∆u≥
Aa2M2c2

2

4(1−ct)K+2K1
e
− aϕ(x)

(1−ct)K1 ,

and for x∈ Ω̄2,

∆u≥
Aaλ0Mc4

(1−ct)K+K1
e
−

aϕ(x)

(1−ct)K1 ,

(um)t≤
AmKmc

(m−1)ac4(1−ct)Km+1−K1
e
− aϕ(x)

(1−ct)K1 , m>1,

where the fact ye−y≤e−1 for y>0 is used. By choosing

c≤min
{λ0Mc4

K
,
M2c2

2

4K

}

for m=1;

c≤min
{ (m−1)λ0Mc2

4

Km
,
M2c2

2

4Km

}

for m>1,

we get

(um)t≤∆u+a1uα1 in Ω×(0,1/c). (2.12)

Similarly, for v with L≥max{(β1−1)/2(β1−n),1}, we have

(vn)t≤
2BnLnc

β1−1

[

ϕB
β1−1

2 +(1−ct)L
]

−2β1
β1−1

[

MB
β1−1

2 +1
]

2(β1−n)
β1−1 − 1

L
,

∆v=
2B

β1+1
2 λ0ϕ

(β1−1)[ϕB
β1−1

2 +(1−ct)L]
β1+1
β1−1

+
2(β1+1)Bβ1 |∇ϕ|2

(β1−1)2[ϕB
β1−1

2 +(1−ct)L]
2β1

β1−1

,

a2vβ1 =
a2Bβ1

[ϕB
β1−1

2 +(1−ct)L]
2β1

β1−1

.
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With (2.5)-(2.7), we know for x∈Ω1 that

1

2
∆v−a2vβ1 ≥

Bβ1

[ϕB
β1−1

2 +(1−ct)L]
2β1

β1−1

[ (β1+1)M2c2
2

4(β1−1)2
−a2

]

,

and for x∈ Ω̄2 that

1

2
∆v−a2vβ1 ≥

Bβ1

[ϕB
β1−1

2 +(1−ct)L]
2β1

β1−1

(λ0M2c2
4

β1−1
−a2

)

.

By choosing

M2 =max
{

a2(β1−1)/λ0c2
4,4a2(β1−1)2/(β1+1)c2

2

}

,

c≤
(β1−1)Bβ1−na2

2Ln
[

MB
β1−1

2 +1
]

2(β1−n)
β1−1 − 1

L

,

we get

(vn)t≤∆v−a2vβ1 in Ω×(0,1/c). (2.13)

On the boundary ∂Ω×(0,1/c), we find

∂u

∂η
≤

aAMc3

(1−ct)K+K1
,

∂v

∂η
≤

2B
β1+1

2 Mc3

(β1−1)(1−ct)
L(β1+1)

β1−1

, (2.14)

uα2 vp =
Aα2 Bp

(1−ct)
Kα2+

2Lp
β1−1

, uqvβ2 =
AqBβ2

(1−ct)
Kq+

2Lβ2
β1−1

. (2.15)

Since the condition (b) implies α2 > (m+1)/2≥1, β2≤ (β1+1)/2, we have

K+K1 <α2K+
2Lp

β1−1
,

L(β1+1−2β2)

β1−1
<Kq

for large K, and

A>max
{

(aMc3)
1

α2−1 ,
( 2Mc3

β1−1
B

β1+1
2 −β2

)1/q}

, B≥1

for large A.
For the condition (c), due to the fact that

pq>

( m+1

2
−α2

)( β1+1

2
−β2

)

≥
(

1−α2

)( β1+1

2
−β2

)

with α2≤
m+1

2
, β2≤

β1+1

2
,
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we know

(aMc3)
1
p A

1−α2
p < B<

( β1−1

2Mc3

)

1
β1+1

2 −β2 A

q
β1+1

2 −β2 ,

K+K1 <α2K+
2Lp

β1−1
,

L(β1+1−2β2)

β1−1
<Kq,

provided that A, B, K, L are sufficiently large. In summary, for both (b) and (c), we obtain
from (2.14)-(2.15) that

∂u

∂η
≤uα2 vp,

∂v

∂η
≤uqvβ2 on ∂Ω×(0,1/c). (2.16)

Letting u0(x)≥ u(x,0), v0(x)≥ v(x,0), we understand from (2.12), (2.13) and (2.16) that
(u,v) is a blow-up subsolution of (1.1)-(1.3).

Lemma 2.3. Assume 0<m, n<1, β1>n with one of (b) and (c). Then the solutions of (1.1)-(1.3)
will blow up in a finite time for large initial data.

Proof. By (1.15), divide the condition 0<m, n<1, β1 >n into two subcases: (i) β1 >1 with
µ=m, γ=(β1+1)/2; (ii) n< β1≤1 with µ=m, γ= β1. Construct

u(x,t)=
A

(1−ct)K
ehAm−1(1−ct)K(1−m)−1

,

v(x,t)= B
[

ϕB
β1−1

2 +(1−ct)L
]− 2

β1−1
for (i),

v(x,t)=
B

(1−ct)L
ehBβ1−1(1−ct)−L(β1−1)

for (ii),

with ϕ= Mϕ0, h= Mh0, and A, B, M, K, L, c>0 to be determined. We first consider the
subcase (i). We have with β1 >1, K >1/(1−m) that

(um)t≤
AmKmc

(1−ct)Km+1
ehAm−1(1−ct)K(1−m)−1

,

∆u≥
Amλh M

(1−ct)Km+1
ehAm−1(1−ct)K(1−m)−1

,

and consequently,

(um)t≤∆u+a1uα1 in Ω×(0,1/c) (2.17)

if 0< c<λh M/(Km). Similar to Lemma 2.2, we have

(vn)t≤∆v−a2vβ1 in Ω×(0,1/c) (2.18)
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with

M2 =max
{

a2(β1−1)/λ0c2
4,4a2(β1−1)2/(β1+1)c2

2

}

,

c≤
(β1−1)Bβ1−na2

2Ln[MB
β1−1

2 +1]
2(β1−n)

β1−1 − 1
L

, L≥max
{

(β1−1)/2(β1−n),1
}

.

Moreover, for (x,t)∈∂Ω×(0,1/c),

∂u

∂η
≤

MAmeMc5

(1−ct)Km+1
,

∂v

∂η
≤

2B
β1+1

2 Mc3

(β1−1)(1−ct)
L(β1+1)

β1−1

, (2.19)

uα2 vp≥
Aα2 Bp

(1−ct)
Kα2+

2Lp
β1−1

, uqvβ2 ≥
AqBβ2

(1−ct)
Kq+

2Lβ2
β1−1

. (2.20)

Under the condition (b) with α2 > m, β2 ≤ (β1+1)/2, or the condition (c) with α2 ≤ m,

β2≤ (β1+1)/2 by pq> (m−α2)(
β1+1

2 −β2), it holds that

(MeMc5)
1
p A

m−α2
p < B<

( β1−1

2Mc3

)

1
β1+1

2 −β2 A

q
β1+1

2 −β2 ,

K >
β1+1−2β2

q(β1−1)
L, L>

(β1−1)q

2pq−(m−α2)(β1+1−2β2)

for A, B, K, L sufficiently large. Consequently, we obtain from (2.19)-(2.20) that

∂u

∂η
≤uα2 vp,

∂v

∂η
≤uqvβ2 on ∂Ω×(0,1/c). (2.21)

With u0(x)≥u(x,0), v0(x)≥v(x,0), we know from (2.17), (2.18) and (2.21) that (u,v) is a
blowing up subsolution of (1.1)-(1.3).

Next consider the subcase (ii), where n<β1≤1 with µ=m, γ=β1. Similarly to subcase
(i), we can get for u that

(um)t≤∆u+a1uα1 in Ω×(0,1/c). (2.22)

For v, a simple calculation shows that

(vn)t≤
BnLnc

(1−ct)Ln+1
ehBβ1−1(1−ct)−L(β1−1)

,

∆v≥
Bβ1λh M

(1−ct)Lβ1
ehBβ1−1(1−ct)−L(β1−1)

,

∆v−a2vβ1 ≥
Bβ1

(1−ct)Lβ1
(λh M−a2)ehBβ1−1(1−ct)−L(β1−1)

,
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and thus,

(vn)t≤∆v−a2vβ1 in Ω×(0,1/c) (2.23)

provided that

L>
1

β1−n
, 0< c≤

Bβ1−n

Ln
(λhM−a2).

Moreover, on ∂Ω×(0,1/c),

∂u

∂η
≤

AmeMc5 M

(1−ct)Km+1
,

∂v

∂η
≤

Bβ1 MeMc5

(1−ct)Lβ1
, (2.24)

uα2 vp≥
Aα2 Bp

(1−ct)Kα2+Lp
, uqvβ2 ≥

AqBβ2

(1−ct)Kq+Lβ2
. (2.25)

For (b) with α2 > m, β2 ≤ β1, or (c) with pq > (m−α2)(β1−β2), α2 ≤m, and β2 ≤ β1, let
A, B, K, L be sufficiently large to get

(MeMc5)
1
p A

m−α2
p < B<

( 1

MeMc5

)
1

β1−β2 A
q

β1−β2 ,

K >
β1−β2

q
L, L>

q

pq−(m−α2)(β1−β2)
,

and hence

∂u

∂η
≤uα2 vp,

∂v

∂η
≤uqvβ2 on ∂Ω×(0,1/c) (2.26)

by (2.24)-(2.25). With u0(x)≥u(x,0), v0(x)≥v(x,0), it follows from (2.22), (2.23) and (2.26)
that (u,v) is a subsolution of (1.1)-(1.3).

Lemma 2.4. Assume 0 < m < 1, n ≥ 1, β1 > n with one of (b) and (c). Then the solutions of
(1.1)-(1.3) will blow up in a finite time for large initial data.

Proof. Notice 0<m<1, n≥1, β1 >n imply µ=m, γ= 1+β1

2 by (1.16). Construct

u(x,t)=
A

(1−ct)K
ehAm−1(1−ct)K(1−m)−1

,

v(x,t)= B
[

ϕB
β1−1

2 +(1−ct)L
]− 2

β1−1

with ϕ = Mϕ0, h = Mh0. Similar to the proof for Lemmas 2.2 and 2.3, we can show that
(u,v) is a subsolution of (1.1)-(1.3).

Lemma 2.5. Assume m ≥ 1, 0 < n < 1, β1 > n with one of (b) and (c). Then the solutions of
(1.1)-(1.3) will blow up in a finite time for large initial data.
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Proof. Clearly, it follows from (1.17) that m ≥ 1, 0 < n < 1, β1 > n imply µ = (m+1)/2,
γ=(1+β1)/2 for β1 >1, and µ=(m+1)/2, γ= β1 for n< β1≤1. Construct

u(x,t)=
A

(1−ct)K
e−

ϕ(x)
1−ct , m=1, (x,t)∈ Ω̄×[0,1/c),

u(x,t)=
A

(1−ct)K
e
−

aϕ(x)

(1−ct)K1 , m>1, (x,t)∈ Ω̄×[0,1/c),

v(x,t)= B
[

ϕB
β1−1

2 +(1−ct)L
]− 2

β1−1
, β1 >1, (x,t)∈ Ω̄×[0,1/c),

v(x,t)=
B

(1−ct)L
ehBβ1−1(1−ct)−L(β1−1)

, n< β1≤1, (x,t)∈ Ω̄×[0,1/c)

with ϕ = Mϕ0, h = Mh0. According to the arguments used for Lemmas 2.2 and 2.3, we
know that (u,v) is a blowing up subsolution of (1.1)-(1.3).

Lemma 2.6. Assume β1 ≤n with one of (b) and (c). Then the solutions of (1.1)-(1.3) will blow
up in finite time for large initial data.

Proof. We know µ = (m+1)/2, γ = (n+1)/2 for m, n≥ 1 by (1.14); µ = m, γ = n for 0 <

m, n<1; µ=m, γ=(n+1)/2 for 0<m<1, n≥1 by (1.15); µ=(m+1)/2, γ=n for m≥1,
0<n<1 by (1.17) due to α1≤m, β1≤n.

We still deal with the two subcases (b) and (c). Clearly, we can choose β0 > n≥ β1

for (b) such that α2 > µ0, β2 ≤ γ0, where µ0 = µ, γ0 = (β0+1)/2 for n ≥ 1, γ0 = β0 for
0 < n < 1. Similarly, choose β0 > n ≥ β1 with µ0,γ0 defined as above for (c) such that
pq> (µ0−α2)(γ0−β2) with α2≤µ0, β2≤γ0. Consider the auxiliary problem

(wm)t =∆w+a1wα1 , (zn)t =∆z−a2zβ0 , (x,t)∈Ω×(0,T), (2.27)

∂w

∂η
=wα2 zp,

∂z

∂η
=wqzβ2 , (x,t)∈∂Ω×(0,T), (2.28)

w(x,0)=w0(x), z(x,0)= z0(x), x∈ Ω̄. (2.29)

By Lemmas 2.2-2.5, the solutions of (2.27)-(2.29) with β0 >n≥ β1 blow up in a finite time
for large initial data. Let (w,z) be such a solution with blow-up time T′. Take T1 satisfying

{n/[a2(β0−n)T1]}
1/(β0−n)

>1, (2.30)

and let w0,z0 be large such that T′≤T1. It can be verified that the ODE problem

(ηn)t =−a2ηβ0(t), η(0)= M

has a solution of the form

η(t)=
( n

a2(β0−n)t+nMn−β0

)
1

β0−n
.
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By the comparison principle, we have that

z(x,t)≥η(t)≥
( n

a2(β0−n)T1+nMn−β0

)
1

β0−n
>1, (x,t)∈ Ω̄×[0,T′)

provided M large enough due to (2.30). Consequently, (w,z) can be a subsolution to
(1.1)-(1.3) with w0,z0≥M. Theorem 1.2 is obtained from Lemmas 2.1-2.6.

3 Global solutions

We will prove that the case of 1/ρ1,1/ρ2 < 0 corresponds to the global existence of so-
lutions stated in Theorem 1.3. Firstly, we claim that the assumption 1/ρ1,1/ρ2 < 0 is
equivalent to

(d) pq< (µ−α2)(γ−β2) with α2 <µ, β2 <γ.

In fact, 1/ρ1, 1/ρ2 <0 implies (p−β2+γ)(q−α2+µ)>0. If p< β2−γ, q<α2−µ, then
pq < (β2−γ)(α2−µ), and thus 1/ρ1, 1/ρ2 > 0, a contradiction. Consequently, it has to
be satisfied that p > β2−γ, q > α2−µ and pq < (β2−γ)(α2−µ). If α2 ≥ µ or β2 ≥γ, then
pq> (β2−γ)(α2−µ), also a contradiction.

We will prove that the solutions are global even under the following more general
assumption:

(e) pq≤ (µ−α2)(γ−β2) with α2 <µ, β2 <γ.

Notice that the assumption (e) covers the critical case 1/ρ1 = 1/ρ2 = 0 with α2 < µ,
β2 <γ, corresponding to Theorem 1.4 (ii).

It suffices to treat the following eight situations:

1. m, n≥1 with β1 >n;

2. 0<m, n<1 with β1 >n;

3. 0<m<1, n≥1 with β1 >n;

4. m≥1, 0<n<1 with β1 >n;

5. m, n≥1 with β1 ≤n;

6. 0<m, n<1 with β1≤n;

7. 0<m<1, n≥1 with β1 ≤n;

8. m≥1, 0<n<1 with β1 ≤n.

Correspondingly, we will introduce eight lemmas in the sequel, where it is always as-
sumed that α1≤m due to Theorem 1.1.

Lemma 3.1. Assume m,n≥ 1 with β1 > n, and the condition (e) holds. Then the solutions of
(1.1)-(1.3) are global.
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Proof. The assumption of the lemma implies

µ=
1+m

2
, γ=

1+n

2
+

( β1−n

2

)

+
=

1+β1

2

with m, n≥1 and β1 >n by (1.14), and thus

pq≤
(1+m

2
−α2

)(1+β1

2
−β2

)

.

Construct

ū(x,t)=eKt
(

M+A−1e−A2ϕ0eK(m−1)t/2)

, v̄(x,t)= BeLt
(

M+e−ϕ0(BeLt)(β1−1)/2)

with positive constants K, L, A, B, M to be determined. Due to −ye−y≥−e−1 for y≥0,

(ūm)t =KmeKmt
(

M+A−1e−A2ϕ0eK(m−1)t/2)m−1
(

M+A−1e−A2ϕ0eK(m−1)t/2

−
(m−1)A2ϕ0eK(m−1)t/2

2
A−1e−A2ϕ0eK(m−1)t/2

)

≥KmeKmt,

∆ū=
(

AeK(m+1)t/2λ0ϕ0+A3|∇ϕ0|
2eKmt

)

e−A2ϕ0eK(m−1)t/2

≤A(λ0+A2c2
1)eKmt,

a1ūα1 = a1eα1Kt
(

M+A−1e−A2ϕ0eK(m−1)t/2
)α1

≤ a1emKt(M+A−1)α1 ,

provided that A≥ m−1
2e(M−1) . Hence

(ūm)t≥∆ū+a1ūα1 , (x,t)∈Ω×R
+ (3.1)

provided that

K≥
A(λ0+A2c2

1)+a1(M+A−1)α1

m
.

Similarly, we have also

(v̄n)t = BnLneLnt
(

M+e−ϕ0(BeLt)(β1−1)/2)n−1
(

M+e−ϕ0(BeLt)(β1−1)/2

−
(β1−1)ϕ0(BeLt)(β1−1)/2

2
e−ϕ0(BeLt)(β1−1)/2

)

≥0,

∆v̄= BeLt
(

λ0ϕ0(BeLt)(β1−1)/2+|∇ϕ0|
2(BeLt)β1−1

)

e−ϕ0(BeLt)(β1−1)/2

≤ (λ0+c2
1)Bβ1eLβ1t,

a2v̄β1 = a2Bβ1eLβ1t
(

M+e−ϕ0(BeLt)(β1−1)/2
)β1

≥ a2Bβ1 Mβ1eLβ1t.
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Consequently,

(v̄n)t≥∆v̄−a2v̄β1 , (x,t)∈Ω×R
+ (3.2)

provided that

M≥max
( β1−1

2e
,
(λ0+c2

1

a2

)
1

β1

)

.

Moreover, on the boundary ∂Ω,

∂ū

∂η
≥ c2 AeK(m+1)t/2, ūα2 v̄p≤Bp(M+1)p+α2eKα2t+Lpt,

∂v̄

∂η
≥ c2(BeLt)(β1+1)/2, ūqv̄β2 ≤Bβ2(M+1)q+β2eKqt+Lβ2t.

Observe that

pq≤
(1+m

2
−α2

)(1+β1

2
−β2

)

.

Letting

L=K
(m+1

2
−α2

)

/

p, B
β1+1

2 −β2 ≥ (M+1)q+β2/c2, A≥Bp(M+1)p+α2/c2,

we can have

∂ū

∂η
≥ ūα2 v̄p,

∂v̄

∂η
≥ ūqv̄β2 , (x,t)∈∂Ω×R

+. (3.3)

For M≥max(‖u0‖∞,‖v0‖∞), we have in addition that ū(x,0)≥u0(x) and v̄(x,0)≥v0(x).
Thus, (ū,v̄) is a global supersolution of (1.1)-(1.3).

Lemma 3.2. Assume 0< m, n <1 with β1 > n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. We know

µ=m, γ=n+
(

β1−n
)

+
−

( β1−1

2

)

+

with 0<m,n<1 by (1.15). Thus, γ=(1+β1)/2 if β1>1>n, and γ=β1 if n<β1<1. There are

two subcases for the lemma: (i) β1 >1 with pq≤ (m−α2)(
1+β1

2 −β2)< (1−α2)(
1+β1

2 −β2);
(ii) n< β1≤1 with pq≤ (m−α2)(β1−β2)< (1−α2)(β1−β2). Construct

ū(x,t)= AeKt log
[

h0(x)eK(m−1)t+M
]

,

v̄(x,t)= BeLt
(

M+e−ϕ0(BeLt)(β1−1)/2)

for (i),

v̄(x,t)= BeLt
(

M+e−ϕ0(BeLt)(β1−1))

for (ii),
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with positive constants K, L, A, B, M to be determined. In the subcase (i), we have

(ūm)t =KmAmeKmt
(

log[h0(x)eK(m−1)t+M]
)m

+mAmeKmt
(

log[h0(x)eK(m−1)t+M]
)m−1

×
K(m−1)h0(x)eK(m−1)t

h0(x)eK(m−1)t+M
≥

1

2
KmAmeKmt(logM)m,

∆ū=
AeKmt

∆h0

h0(x)eK(m−1)t+M
−

AeKt(∇[h0(x)eK(m−1)t+M])2

[h0(x)eK(m−1)t+M]2
≤

AλheKmt

M
,

a1ūα1 = a1 Aα1eα1Kt
(

log[h0(x)eK(m−1)t+M]
)α1

≤ a1 AmemKt
(

log[c5+M]
)α1

,

provided that MlogM≥2c5(1−m), and hence

(ūm)t≥∆ū+a1ūα1 , (x,t)∈Ω×R
+ (3.4)

with

K≥
2A1−mλh+2a1M(log[c5+M])α1

mM(logM)m
.

Similarly to the proof of Lemma 3.1,

(v̄n)t≥∆v̄−a2v̄β1 , (x,t)∈Ω×R
+ (3.5)

provided that

M≥max
( β1−1

2e
,
(λ0+c2

1

a2

)
1

β1
)

.

Moreover, for (x,t)∈∂Ω×R
+, we have

∂ū

∂η
≥

AeKmt

M+c5
,

∂v̄

∂η
≥ c2B

β1+1
2 e

L(β1+1)t
2 ,

ūα2 v̄p ≤Aα2 Bp(log[c5+M])α2(M+1)pe(Kα2+Lp)t,

ūqv̄β2 ≤AqBβ2(log[c5+M])q(M+1)β2e(Kq+Lβ2)t.

Since

pq≤ (m−α2)
(1+β1

2
−β2

)

< (1−α2)
(1+β1

2
−β2

)

,

by taking L=K(m−α2)/p and

A1−α2

M+c5
> Bp(log[c5+M])α2(M+1)p,

c2B
β1+1

2 −β2 > Aq(log[c5+M])q(M+1)β2 ,
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we can get

∂ū

∂η
≥ ūα2 v̄p,

∂v̄

∂η
≥ ūqv̄β2 , (x,t)∈∂Ω×R

+. (3.6)

If A, B are sufficiently large then ū(x,0) ≥ u0(x), v̄(x,0) ≥ v0(x). Hence (ū,v̄) is just a
supersolution of (1.1)-(1.3). In the subcase (ii), by virtue of the calculation of subcase (i),
we have

(ūm)t≥∆ū−a1ūα1 , (x,t)∈Ω×R
+ (3.7)

provided MlogM≥2c5(1−m) and

K≥
2A1−mλh+2a1 M(log[c5+M])α1

mM(logM)m
.

In addition,

(v̄n)t = BnLneLnt
(

M+e−ϕ0(BeLt)(β1−1))n−1
(

M+e−ϕ0(BeLt)(β1−1)

−(β1−1)ϕ0(BeLt)(β1−1)e−ϕ0(BeLt)(β1−1)
)

≥0,

∆v̄=Bβ1eLβ1t
(

λ0 ϕ0+|∇ϕ0|
2(BeLt)β1−1

)

e−ϕ0(BeLt)(β1−1)
≤ (λ0+c2

1)Bβ1eLβ1t,

a2v̄β1 ≥ a2Bβ1 Mβ1eLβ1t,

and hence

(v̄n)t≥∆v̄−a2v̄β1 , (x,t)∈Ω×R
+ (3.8)

provided M≥ (λ0+c2
1)

1
β1 a2

− 1
β1 . On the boundary ∂Ω×R

+,

∂ū

∂η
≥

AeKmt

M+c5
,

∂v̄

∂η
≥ c2(BeLt)β1 ,

ūα2 v̄p ≤Aα2 Bp(log[c5+M])α2(M+1)pe(Kα2+Lp)t,

ūqv̄β2 ≤AqBβ2(log[c5+M])q(M+1)β2e(Kq+Lβ2)t.

Since pq≤ (m−α2)(β1−β2)< (1−α2)(β1−β2), there exist sufficiently large A, B, K, and
L=K(m−α2)/p such that

∂ū

∂η
≥ ūα2 v̄p,

∂v̄

∂η
≥ ūqv̄β2 , (x,t)∈∂Ω×R

+. (3.9)

For A, B large that ū(x,0)≥ u0(x) and v̄(x,0)≥ v0(x), (ū,v̄) is a global supersolution of
(1.1)-(1.3).
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Lemma 3.3. Assume 0<m<1, n≥1 with β1>n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. Construct

ū(x,t)= AeKt log
[

h0(x)eK(m−1)t+M
]

, v̄(x,t)= BeLt
(

M+e−ϕ0(BeLt)(β1−1)/2
)

with K, L, A, B, M>0 to be determined. Similarly to the proof of Lemmas 3.1 and 3.2, it
is easy to prove that (ū,v̄) can be a supersolution of (1.1)-(1.3).

Lemma 3.4. Assume 0<n<1, m≥1 with β1>n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. We know

µ=
1+m

2
, γ=n+

(

β1−n
)

+
−

( β1−1

2

)

+

with m ≥ 1, 0 < n < 1 by (1.17). There are two subcases for the lemma: (i) β1 > 1 with

pq≤ ( m+1
2 −α2)(

1+β1

2 −β2); (ii) n< β1≤1 with pq≤ ( m+1
2 −α2)(β1−β2). Construct

ū(x,t)=eKt
(

M+A−1e−A2ϕ0eK(m−1)t/2)

,

v̄(x,t)= BeLt
(

M+e−ϕ0(BeLt)(β1−1)/2)

for (i),

v̄(x,t)= BeLt
(

M+e−ϕ0(BeLt)(β1−1))

for (ii).

By a similar argument as that in the proof of Lemmas 3.1 and 3.2, we can take
K, L, A, B, M sufficiently large such that (ū,v̄) is a global supersolution of (1.1)-(1.3).

Lemma 3.5. Assume m, n≥ 1 with β1 ≤ n, and the condition (e) holds. Then the solutions of
(1.1)-(1.3) are global.

Proof. We know

µ=
1+m

2
, γ=

1+n

2
+

( β1−n

2

)

+
=

1+n

2

with m, n≥1 and β1≤n by (1.14). Thus pq≤ ( 1+m
2 −α2)(

1+n
2 −β2). Construct

ū(x,t)=eKt
(

M+A−1e−A2ϕ0eK(m−1)t/2)

, v̄(x,t)=eLt
(

M+B−1e−B2ϕ0eL(n−1)t/2
)

.

Similar to the proof of Lemma 3.1, by letting

A≥
m−1

2e(M−1)
, K≥

A(λ0+A2c2
1)+a1(M+A−1)α1

m
,

we can get

(ūm)t≥∆ū+a1ūα1 , (x,t)∈Ω×R
+. (3.10)
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Moreover, by taking B≥ n−1
2e(M−1)

, we have

(v̄n)t≥ LneLnt, ∆v̄≤B(λ0+B2c2
1)eLnt,

and hence with L≥
B(λ0+B2c2

1)
n we have

(v̄n)t≥∆v̄−a2v̄β1 , (x,t)∈Ω×R
+. (3.11)

Furthermore, on the boundary ∂Ω

∂ū

∂η
≥ c2 AeK(m+1)t/2, ūα2 v̄p≤ (M+1)p+α2eKα2t+Lpt,

∂v̄

∂η
≥ c2BeL(n+1)t/2, ūqv̄β2 ≤ (M+1)q+β2eKqt+Lβ2t.

Since pq≤ ( 1+m
2 −α2)(

1+n
2 −β2), we can choose

L=
K( m+1

2 −α2)

p
, B≥

(M+1)q+β2

c2
, A≥

(M+1)p+α2

c2

to get

∂ū

∂η
≥ ūα2 v̄p,

∂v̄

∂η
≥ ūqv̄β2 , (x,t)∈∂Ω×R

+. (3.12)

It is easy to see that ū(x,0)≥ u0(x), v̄(x,0)≥ v0(x) with M≥max(‖u0‖∞,‖v0‖∞). Thus,
(ū,v̄) is a global supersolution of (1.1)-(1.3).

Lemma 3.6. Assume 0< m, n <1 with β1 ≤n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. We have

µ=m, γ=n+
(

β1−n
)

+
−

( β1−1

2

)

+
=n

with 0<m, n<1 and β1≤n by (1.15). Thus pq≤ (m−α2)(n−β2)< (1−α2)(1−β2) for the
lemma. Construct

ū(x,t)= AeKt log
[

h0(x)eK(m−1)t+M
]

, v̄(x,t)= BeLt log
[

h0(x)eL(n−1)t+M
]

,

where

MlogM=max{2c5(1−m),2c5(1−n)},

K≥
2A1−mλh+2a1 M(log[c5+M])α1

mM(logM)m
, L≥

2B1−nλh

nM(logM)n
.
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By a simple computation, we can get

(ūm)t ≥∆ū+a1ūα1 , (v̄n)t≥∆v̄−a2v̄β1 , (x,t)∈Ω×R
+. (3.13)

Moreover, for (x,t)∈∂Ω×R
+,

∂ū

∂η
≥

AeKmt

M+c5
,

∂v̄

∂η
≥

BeLnt

M+c5
,

ūα2 v̄p ≤Aα2 Bp(log[c5+M])α2+pe(Kα2+Lp)t,

ūqv̄β2 ≤AqBβ2(log[c5+M])q+β2e(Kq+Lβ2)t.

Since pq ≤ (m−α2)(n−β2) < (1−α2)(1−β2), there exist sufficiently large A, B, K and
L=K(m−α2)/p such that

(

(M+c5)(log[c5+M])α2+p
)

1
1−α2 B

p
1−α2 < A<

(

(c5+M)(log[c5+M])q+β2

)− 1
q
B

1−β2
q ,

and Ln≥Kq+β2L. Therefore

∂ū

∂η
≥ ūα2 v̄p,

∂v̄

∂η
≥ ūqv̄β2 , (x,t)∈∂Ω×R

+. (3.14)

With A, B large that ū(x,0) ≥ u0(x), v̄(x,0) ≥ v0(x), (ū,v̄) is a global supersolution of
(1.1)-(1.3).

Lemma 3.7. Assume 0<m<1, n≥1 with β1≤n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. By (1.16), we have pq≤ (m−α2)(
n+1

2 −β2)< (1−α2)(
n+1

2 −β2) here. Construct

ū(x,t)= AeKt log
[

h0(x)eK(m−1)t+M
]

, v̄(x,t)=eLt
(

M+B−1e−B2ϕ0eL(n−1)t/2
)

.

By using the arguments for Lemmas 3.2 and 3.5, we can obtain with M, K, L large that
(ū,v̄) is a global supersolution of (1.1)-(1.3).

Lemma 3.8. Assume 0<n<1, m≥1 with β1≤n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. By (1.17), we know pq≤ ( m+1
2 −α2)(n−β2)< ( m+1

2 −α2)(1−β2). Construct

ū(x,t)=eKt
(

M+A−1e−A2ϕ0eK(m−1)t/2)

, v̄(x,t)= BeLt log
[

h0(x)eL(n−1)t+M
]

.

Similar to the arguments used for the proofs of Lemmas 3.5 and 3.6, we can take
K, L, A, B, M sufficiently large such that (ū,v̄) is a global supersolution of (1.1)-(1.3).

Combining Lemmas 3.1-3.8 yields the conclusion of Theorem 1.3.
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4 Critical situation

Finally, let us treat the critical case of (1/ρ1,1/ρ2) = (0,0) in Theorem 1.4. In fact, the
conclusions are included in Theorems 1.2 and 1.3 already:

Proof of Theorem 1.4. Notice that (1/ρ1,1/ρ2)=(0,0) is equivalent to pq=(µ−α2)(γ−β2),
which with pq > 0 implies either (i) µ−α2, γ−β2 < 0, or (ii) µ−α2, γ−β2 > 0. It is easy
to find that the case of α2 > µ, β2 > γ is included in the case (a) of the proof for Theorem
2 (treated by Lemma 2.1), while the case of α2 < µ, β2 < γ with pq = (µ−α2)(γ−β2) is
covered by (e) in Section 3, which is assumed in Lemmas 3.1-3.8 for proving Theorem
1.3.
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