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Abstract. This paper studies a nonlinear diffusion system with coupled nonlinear
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1 Introduction

In this paper we consider coupled nonlinear diffusion equations of the form

(u™);=Au+aju®, (0")i=Av—ayof, (x,£)eQx(0,T), (1.1)
a_u— Q2P %— 9,,B2

377_“ o*, an—uv , (x,t) €002 % (0,T), (1.2)
U(X,O):uo(X), U(X,O):Uo(X), XEQ/ (13)

where QO C RN is a bounded domain with smooth boundary 9(), the parameters
m,n,p,q,a1,a; are positive, ;,; >0 (i=1,2), up and vy are positive functions satisfying
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the compatibility conditions on Q. The diffusion in (1.1) may be fast or slow, e.g., when
m>1or 0<m<1 for the component u. There are positive and negative sources for u
and v respectively, together with coupled nonlinear boundary condition (1.2) describing
the nonlinear radiation laws in heat propagations. The critical exponent to the semilinear
case (m=n=1) of (1.1)-(1.3) was studied by Zheng, Liang and Song [1]. They introduced

the matrix equation
< 2 ) < 1) (1>
q ,32 Y 02 1

i (B (85,

and obtained that the critical exponent of (1.1)-(1.3) is just (1/p1,1/p2) = (0,0). We refer
also to, e.g., Zheng et al. [2, 3], Bedjaouit and Souplet [4] for the results on parabolic
equations with inner absorptions.

The scalar case was studied by Filo [5], and Deng et al. [6]. For the scalar nonlinear
diffusion equation with positive source

with

(u™)=Au+aju”, (x,t)eQx(0,T), (1.4)
g—z:bluﬁ, (x,t) €aQ2x (0,T), (1.5)
u(x,0)=up(x), xeQ), (1.6)

with m >0, a,>0, a;,b1 >0, Song and Zheng [7] proved the following result:

Proposition 1.1. The solutions of (1.4)-(1.6) blow up in a finite time for large initial value pro-
vided (1) « >m, a1 >0, or (ii)) 0<m <1, B>m, by >0, or (iii) m>1, B> (m+1)/2, by >0.

Andreu et al. [8] and Li et al. [9] studied the scalar case with absorption, i.e.,

(u"); = Au—aubr, (x,t)€Qx(0,T), (1.7)
g—;‘:uﬁz, (x,t) €aQ2x (0,T), (1.8)
u(x,0)=up(x), xeQ), (1.9)

with ay,n >0, B; >0 (i=1,2), and obtained the blow-up criterion:

Proposition 1.2. The solutions of (1.7)-(1.9) blow up in a finite time for large initial data if
(i) n>1with B1<n, fa>(n+1)/20r f1>n, 2> (B1+1)/2; or
(i) 0<n<lwith fa>1, B> (B1+1)/2, orn<Ba<1, B2>PB1.

Recently, Zheng and Wang [10] established the critical exponent for the nonlinear
diffusion system with inner absorptions and nonlinear boundary conditions.
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Definition 1.1. A vector function (u,v), defined everywhere on Q) x (0,T] and a.e. on Q) x {0},
is called a subsolution (supersolution) of (1.1)-(1.3) in Qr=Q x (0,T) if it satisfies:
(i) u,0eL*(Qr);
(i) u(x,0)<(>)uo(x),0(x,0) < (>)vo(x) a.e. on O
(iii) for every t € [0,T] and every 1,2 € C(Qr)NC>1(Qx (0,T))NV(Qr),

/u P —uggrodx < (> // )r+ulyp +a;u ) dxdt
//m “Zv”l[)l——u)deT (1.10)
/Qv”ll)z—vgllfzodx< / / (2) —I—vAl/Jz—azvﬁll/Jz)dxdr
n / /m (P2, — OP2 )der (L11)

where V(Qr) = {4 : ¢, | V|, Ap € L2(Qr),3 > 0}. Furthermore, (u,v) is called a weak
solution of (1.1)-(1.3) in Qr if it is both a subsolution and a supersolution of (1.1)-(1.3) in

Qr.

By the standard technique (see, e.g., Theorems 2.1 and 3.1, pp. 118-123 in [11]), we
have the following proposition:

Proposition 1.3. (i) (Local existence and continuation) There is some T* >0 such that there
exists a nonnegative weak solution (u,v) of (1.1)-(1.3) in Qr for each T < T*. Moreover, if
T* < 400, then
timsup [lu(:/) oo +[o(-/8)lleo) =0
(ii) (Comparison principle) Let (u,v) and (ii,0) be nonnegative sub and supersolutions of
(1.1)-(1.3) in Qr respectively. Then (u,v) < (i1,0) a.e. on Qr if

(u(x,0),0(x,0)) < (i(x,0),0(x,0))
with u,v>é(or 1,0 >6) for some 6 > 0.

Remark 1.1. It is observed that every classical subsolution (supersolution) of (1.1)-(1.3)
is also a weak subsolution (supersolution). In the sequel, we will use explicit classical
positive sub and supersolutions instead of those in Definition 1.1.

There are four kinds of nonlinear mechanisms in the model (1.1)-(1.3): nonlinear dif-
fusion, nonlinear absorption, nonlinear reaction, and nonlinear boundary flux. We are
interested in the interactions among them. To represent the critical exponent for (1.1)-
(1.3), we introduce the following characteristic algebraic system [2,3,10]:

<“2¢7_V ﬁzri'y> (Z;) B G) (1.12)
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namely,
p—B2+7 q—ar+p
_ . pp= (1.13)
O b= (=) (v—B2)" " P (—a2) (v p2)
with
1+m 1+n  /B1—n
== +( : )+ for mn>1; (1.14)
p1—1
—m, — - for0<m,n<1; 1.15
ymvn+(ﬁl)(2)+ or 0<m,n (1.15)
p=m, 'y— <’Bl_ ) forO<m<1,n>1; (1.16)
1+m B1—1
=, = n—l—(ﬁl—) ( ) form>1,0<n<1. (1.17)

Remark 1.2. Clearly, all the eight exponents m, n, p, g, «;, B; (i=1,2) from the nonlinear
terms of (1.1)-(1.3) are included in (1.12), and the classification for m,n >0 is complete.
We will use the signs of 1/p1,1/pz (rather than those of p1,0, themselves) to describe the
critical properties of solutions. Here, we have to define (1/p1,1/p2) = (0,0) by the limit
of (1/p1,1/p2) as

pg—(p—a2)(y—pB2) =0 with p#Bo—y, g#ar—p.
Clearly, if g=ap —u, p#B2—, then p1 =1/4, p2=0. For p=po—1, g=a2—p, define, e.g.,
1
p1=p2=——"—

to satisfy (1.12).
Now state the main results of the paper.

Theorem 1.1. If a1 > m, then the solutions of (1.1)-(1.3) will blow up in a finite time for large
initial data.

Theorem 1.2. If1/p1>0o0r 1/p2 >0 with ay <m, then the solutions of (1.1)-(1.3) will blow up
in finite time for large initial data.

Theorem 1.3. If1/p1,1/p2 <0 with ay <m, then the solutions of (1.1)-(1.3) are global.

Theorem 1.4. Assume (1/p1,1/p2) = (0,0) with ay <m. (i) If ay > u, then the solutions of
(1.1)-(1.3) will blow up in finite time for large initial data. (ii) If ao < p, then the solutions of
(1.1)-(1.3) are global.

Remark 1.3. Notice from (1.13) and Remark 1.2 that 1/p; =0 is equivalent to 1/p> =0
and that (1/p1,1/p2) = (0,0) with pg> 0 excludes the possibility of a = j. Therefore, in
Theorems 1.1-1.4, the classification for the nonlinear parameters is complete. We know
from Theorems 1.2-1.4 that the critical exponent of (1.1)-(1.3) can be simply stated as
(1/p1,1/p2) = (0,0) under the nontrivial case of a; <m.
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Remark 1.4. The previous results for nonlinear parabolic equations [1,12,13] are covered
by the above theorems when taking special parameters. For example, let a; =1 =0,
a1 =ay =0 to get the results in [12,13], and take m =n =1 to reach those in [1].

Remark 1.5. Since the source is positive for u and negative for v in (1.1)-(1.3), the roles
of the two components are unequal. This is quite different from that considered in [10],
where both of the two components 1 and v possess negative source terms. In addition, it
was known that blow-up or not of the solutions in the critical case to that problem will
be determined by the coefficients of absorption terms [10]. However, this does not occur
for our problem (1.1)-(1.3) by Theorem 1.4 due to the effects of the positive source for the
component u.

This paper is arranged as follows. In the next section, we will verify the blow-up
conditions in Theorems 1.1 and 1.2. Then Theorem 1.3 will be proven in Section 3 to fix
the conditions for global solutions. Section 4 deals with the critical situation stated in
Theorem 1.4, for which the arguments for Theorems 1.2 and 1.3 will be applied directly.

2 Blowing up of solutions

In this section, we will prove the blow-up of solutions under the conditions of Theorems
1.1 and 1.2. We first treat the more trivial blow-up case of a1 > m.

Proof of Theorem 1.1. Introduce a scalar problem of the form

(umy=aUu+aU", (x,£)eQx(0,T), (2.1)
ou

= (x,t) €3Q1% (0,T), (2.2)
U(x,0)=up(x), xe (2.3)

with a; >0, ay >m. By Proposition 1.1 (i), U blows up in a finite time for large initial data,
while (U,0) is just a pair of subsolutions to the problem (1.1)-(1.3). O

The assumption & > m implies that the component u in (1.1)-(1.3) can blow up in a
finite time without the help of v. So, we will always assume &1 <m in the sequel.

We need the eigenvalue problem related to (1.1)-(1.3) throughout the rest of the paper.
Let ¢ be the first eigenfunction of

Ap+Ap=0 in(Q), =0 ondQ) (2.4)

with the first eigenvalue A, normalized by ||@o|l =1, ¢o>0in Q. It is well known that
there exist positive constants ¢; (i=1, 2, 3) such that

Vool <c1 onQ), czg—%—q;ogc3 on 9Q). (2.5)
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Denote
O ={xe€Q:dist(x,000) <e}, szﬂ\()l. (2.6)

It is easy to see that there exist some ¢, ¢4 € (0,1) such that
Vool >c2/2 on (Y, @o>cq on . (2.7)
Furthermore, let /iy be the solution of the linear problem
Ah=MA,=|9Q|/|Q] inQ, dh/dyp=1 ondQ) (2.8)

with infr hp(x) =0, supn ho(x) =c5, | Q2] and [0Q)] being the Lebesgue measures of () and
0Q), respectively.

It is observed that the assumption 1/p1 or 1/p, >0 with a1 <m in Theorem 1.2 comes
from the following three cases only:

@ B2>7;
(b) ax>pu, B2 <1;
(© a2 <P <7y with pg> (p—az)(7y—B2).

We will prove Theorem 1.2 via six lemmas. The first one deals with the case (a), and
the other five will treat both (b) and (c).

Lemma 2.1. Under the condition (a), the solutions of (1.1)-(1.3) blow up in a finite time for large
initial data.

Proof. Let (u,v) be a solution of (1.1)-(1.3), U solve (2.1)-(2.3). Due to Theorem 1.1, we can
assume 1 > U > 6 >0. Consider the scalar problem

(VM) =AV —ayVF1, (x,t)€Qx(0,T), (2.9)
g—‘; =51vP2, (x,t) €aQ2x (0,T), (2.10)
V(x,0)=0vp(x), xeQ. (2.11)

We know that v >V by the comparison principle.
Clearly, the condition B, > < implies that at least one of the following holds:

() n>1with B1<n, Bo>(n+1)/20r B1>n, f2> (B1+1)/2;
(i) (i) 0<n<1with By>1, B> (B1+1)/2, or n<Ba<1, Bo>P1.

By Proposition 1.2, V blows up in a finite time with large initial data. O

Lemma 2.2. Assume m,n>1, B1 > n with one of (b) and (c). Then the solutions of (1.1)-(1.3)
will blow up in a finite time for large initial data.



J. Wang, M. Tian and L. Hong / J. Part. Diff. Eq., 22 (2009), pp. 11-31 17

Proof. Notice ag <m, 1 >n>11implies y=(1+m)/2, v=(14p1)/2 by (1.14). Construct

A __a9(x) - o
e o(xt)=B|pB T +(1-ct)t| "

u(x,t)=

for (x,t) €1 x[0,1/c), where p = Mgy, a = A" Ki=1form=1,Ki=((m—1)K+1)/2
form>1,and A, B, M, K, L, c are positive constants to be determined. We have

A"Kme ~— —-eel)
(Em)t < We 1-enk1 ,
ag(x) 2 2 a¢(x)
Au—= Me_ (1:ﬂct)K1 + Me_ (11)’(1 )
= (1—Ct)K+K1 <1_Ct)K+2K1

We know from (2.5)-(2.7) that for x € ()4,

=

2AMR22 el
AaM*c; K

AL T ek © ’

and for x €Q)y,

Aa}\o MC4 - ”“’(”}(1

- ¢ (1—ct)
(1—ct)K+K !
A"Kmc T

my < (1—ct) , >1,
(™)< (m—l)ac4(1—ct)Km+1—Kle "

Au>

where the fact ye ¥ <e~! for y >0 is used. By choosing
A()MC4 MZC% ..
X ' IK } form=1;
(m—1)AgMcj M?c3
Km " 4Km

cgmin{

cgmin{ } form>1,
we get
(™) <Au+au™ inQx(0,1/c). (2.12)

Similarly, for v with L >max{(f1—1)/2(f1—n),1}, we have

2B"], - 2Py - 2Apm)_3
(Qn)tg B qc [QOB%—i-(l—ct)L} B1 I[MBy—i—l} BT L’
1—
i1
Av— ZB%/\O(P n 2(,31‘1‘1)3‘31’V(p’2
al - Bl - .
(B1=D)lgB"™ +(1—ct 7T (B1=1)2[pB" +(1—c)l]7
HZU‘BIZ aZBﬁ]
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With (2.5)-(2.7), we know for x € (); that

BP: (B1+1)M?c
2p1 [ - 2}/

1
A0 —a0f > ,
2 [pB" +(1—cytyir - AP~

and for x € (), that

1 BA AoM?c?
(9B T +(1—ctyy P

By choosing

M?=max{ay(B1—1)/Aocs 4a2(B1—1)*/ (B1+1)c3},

_ B1—n
c= (B ﬂ,]l])B 2<lefn>7l'
2Ln[MB 7 +1] AT L

we get

(") <Av—a0P' in Q< (0,1/¢). (2.13)

On the boundary 02 x (0,1/c), we find

B1+1
ou aAMcs Jdv 2B77 Mecs
o S — K+Ki’ Jp S L(B1+1) 7 (214)
N~ (1—ct)KtK” 9y L(p1+1)
(B1—=1)(1—ct) AT
A% BP A91BB2
utpf = -, WP =————— (2.15)
1 (1—ct) A

(1—ct)er i
Since the condition (b) implies ap > (m+1)/2>1, B2 <(B1+1)/2, we have

2Lp  L(B1+1-2B2)

K+K K , K
+Ki<ar +,31_1 Bi—1 <Kg
for large K, and
L. (2Mcs Bl _g, 1/q S
A>max{(aMC3) 2 ’(,31—1B z ) }, B>1
for large A.

For the condition (c), due to the fact that

i (M) (B ) 2 (1) (P ) w2, Pt
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we know

ay S B B
(aMc3)]EA z <B<(§}VI )ﬁl“ b2 AP b

2Lp  L(Br+1-2
K+Ky<apk+—F <ﬁ1+ B2) _kq,
p1—1 p1—1

provided that A, B, K, L are sufficiently large. In summary, for both (b) and (c), we obtain
from (2.14)-(2.15) that

ay

ou

TE oyl ZZ < ydph2 ) .

P <uvd, 8;7 uloP? on 02 x(0,1/¢) (2.16)
Letting uo(x) > u(x,0), vo(x) > v(x,0), we understand from (2.12), (2.13) and (2.16) that
(1,v) is a blow-up subsolution of (1.1)-(1.3). O

Lemma 2.3. Assume 0<m, n<1, B1>n with one of (b) and (c). Then the solutions of (1.1)-(1.3)
will blow up in a finite time for large initial data.

Proof. By (1.15), divide the condition 0 <m, n <1, B1 >n into two subcases: (i) 1 >1 with
p=m,y=(B1+1)/2; (ii) n < B1 <1 with p=m, = B;. Construct

A m—101_ ~)K(1—m)—1
(x t) — ehA (1—ct) ,
(1—ct)K

o(x,t) = [goB (1—ctﬂ TR o (i),

B B1—1(1—op)~L(B1-1) ..
(i) = g™ o ()

with ¢ =M@y, h=Mhy, and A, B, M, K, L, c >0 to be determined. We first consider the
subcase (i). We have with g1 >1, K>1/(1—m) that

( AmI§Z1C+1 ehAm—l(lict)K(l—m)—]

1—ct)Km ’

( Am);hKM+1 ehAm—l(lict)K(l—m)—]
1—ct)Km ’

(u")r <
Au=>
and consequently,
(™) <Au+au™ inQx(0,1/c) (2.17)
if 0<c<AyM/(Km). Similar to Lemma 2.2, we have

(") < Av—aroPt in Qx (0,1/¢) (2.18)
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with
M?*=max{ay(B1—1)/Aoci 4a2(B1—1)*/ (B1+1)c3},

—1)BPr—n
s —PIE zmax (1) /206 - 1)

2Ln[MB 'z +1] A1

1
L

Moreover, for (x,t) €9Q2x (0,1/¢c),

/51 +1

ou _ MA™eMs 9o 2B 2 Mocs
@<W’ oy = e (2.19)
(B1—=1)(1—ct) A
A™BP AqBB2
u'2pf > i ulhr > —— . (2.20)
(1—ct) nat g (1—ct)tmT

Under the condition (b) with ay >m, B2 < (B1+1)/2, or the condition (c) with ay <m,
B2 < (B1+1)/2by pqg> (m—az) (B2 — ), it holds that

9
Mesy L 4222 B1—1 ﬁﬁl 2 A B
(MeMes) 5 A™7 <B<(2MC3) 2 A

B1+1-2pB> (B1—1)g
KB v Y 2 a0 (B 11282

for A, B, K, L sufficiently large. Consequently, we obtain from (2.19)-(2.20) that

<yf2pP <ulP* onaQx(0,1/¢). (2.21)

QJ|QJ
= |I=
QJ|QJ
= |I]

With uy(x) >u(x,0), vo(x) >v(x,0), we know from (2.17), (2.18) and (2.21) that (u,v) is a
blowing up subsolution of (1.1)-(1.3).

Next consider the subcase (ii), where n <1 <1 with y=m, y=;. Similarly to subcase
(i), we can get for u that

(™) <Au+au™ inQx(0,1/c). (2.22)
For v, a simple calculation shows that

B"Lnc hBP1—1(1—ct)~L(B1-1)
(Qn)t < We (1=ct) ’
B'Bl)\hM hBP1-1(1—ct)~L(F1-1)
(1—ct)Lh ¢ '
B

Av— a0t > ﬂlgwﬂhM—uz)ehBﬁll(lCf)L(ﬁl”l
—c

Av>
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and thus,

(") <Av—arvPr in Q1 x(0,1/¢) (2.23)
provided that

It gee< P M

>/31—n' <cs— (AyM —ay).

Moreover, on Q) x (0,1/¢),

du _ AmeMsM - 9o - BP1 MeMes
n = (1—ct)Km+1” 9y = (1—ct)LA’
A%BP A1BP>

pos _ ADE
W2 = TR (2.25)

(2.24)

P> _ 7 =
u-ot = (1_Ct)Ku¢2+Lp’

For (b) with ap >m, By < B1, or (c) with pg> (m—az)(B1—P2), a2 <m, and B < 1, let
A, B, K, L be sufficiently large to get

(MeMCS)%A¥ <B<( )TlﬁzAﬁ,

MeMes
B1—p2 q
K>——=I, L> ,
q pq—(m—az)(p1—Pp2)
and hence
ou Jv
—;7 <u®2yP, —17 <uivf2  ondQx (0,1/¢) (2.26)
by (2.24)-(2.25). With uo(x) >u(x,0), vo(x)>2v(x,0), it follows from (2.22), (2.23) and (2.26)
that (1,v) is a subsolution of (1.1)-(1.3). O

Lemma 2.4. Assume 0 <m <1, n>1, B1 > n with one of (b) and (c). Then the solutions of
(1.1)-(1.3) will blow up in a finite time for large initial data.

Proof. Notice 0<m <1, n>1, By >nimply y=m, y= % by (1.16). Construct

( A )KehAm—](l_Ct)K(]—m)—l
1—ct ’

u(x,t)=

2
-1

Q(X,t) =B [q)B/jlz: +(1—Ct)L] T B

with ¢ = Mo, h= Mhy. Similar to the proof for Lemmas 2.2 and 2.3, we can show that
(u,v) is a subsolution of (1.1)-(1.3). O

Lemma 2.5. Assume m>1, 0 <n <1, By >n with one of (b) and (c). Then the solutions of
(1.1)-(1.3) will blow up in a finite time for large initial data.
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Proof. Clearly, it follows from (1.17) that m >1, 0<n <1, 1 >n imply y = (m+1)/2,
y=(14p1)/2 for p1 >1,and p=(m+1)/2, y=pB; for n < By <1. Construct

A p(x)

E(x,t):me_lfft, m:1, <x,t)EQX[0,1/C),
__a9(x) _

ﬂ(-x/t) = me (1-ct)*1 , m>1, (x,t) e x [0,1/C),
Bi-1 L _/512771 _

g<x,t):B[(pB =+ (1—ct) ] , B1>1, (xt)eQx[01/c),

B QhBF1 ! (1—ct) ~HF1~D
(1—ct)E ’

o(x,t)= n<p1<1, (xt)eQx0,1/¢c)
with ¢ = Mgy, h= Mhy. According to the arguments used for Lemmas 2.2 and 2.3, we
know that (u,v) is a blowing up subsolution of (1.1)-(1.3). O

Lemma 2.6. Assume B1 <n with one of (b) and (c). Then the solutions of (1.1)-(1.3) will blow
up in finite time for large initial data.

Proof. We know pu=(m+1)/2, y=(n+1)/2 form, n>1by (1.14); p=m, y=n for 0 <
m,n<l;uy=m,y=(n+1)/2for0<m<1,n>1by (1.15); uy=(m+1)/2, y=n for m>1,
0<n<1by (1.17) due to a; <m, B1 <n.

We still deal with the two subcases (b) and (c). Clearly, we can choose By >n > 54
for (b) such that ay > uo, B2 <o, where puo =1, 0= (Bo+1)/2 for n>1, yo= Py for
0 <n < 1. Similarly, choose Bg > n > By with ,7o defined as above for (c) such that
pq > (po—az2)(yo—B2) with ax <o, B2 <yo. Consider the auxiliary problem

(™) =Aw+ayw™, (2");=~Az—ayzP, (x,£)eQax(0,T), (2.27)
ow 0z

gl 22 ik

o w2zP, 3 wizP?, (x,£)€9Q2x (0,T), (2.28)
w(x,0)=wp(x), z(x,0)=2z0(x), xeQ. (2.29)

By Lemmas 2.2-2.5, the solutions of (2.27)-(2.29) with Bo >n > B blow up in a finite time
for large initial data. Let (w,z) be such a solution with blow-up time T'. Take T; satisfying

{n/[az(Bo—n)Ty]}/ P > 1, (2.30)
and let wy,z( be large such that T’ <Tj. It can be verified that the ODE problem
(7")e=—ayP(t), n(0)=M

has a solution of the form

n Bo—n
W(t):(az(ﬁo—n)t—l—nM”_%) ‘
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By the comparison principle, we have that

1

! )5 >1, (xhexoT)

a2<ﬁ0—n)T1—|-7’lM”_ﬁ0

2(x,8) 2 () 2 (

provided M large enough due to (2.30). Consequently, (w,z) can be a subsolution to
(1.1)-(1.3) with wg,zg > M. Theorem 1.2 is obtained from Lemmas 2.1-2.6. O

3 Global solutions

We will prove that the case of 1/p;1,1/p2 <0 corresponds to the global existence of so-
lutions stated in Theorem 1.3. Firstly, we claim that the assumption 1/p1,1/p2 <0 is
equivalent to

(d) pg<(p—a2)(y—F2) withar<p, p2<7.

In fact, 1/p1, 1/p2 <0 implies (p—Pa2+7)(g—az+p) >0. If p<Po—-y, g<waz—p, then
pg < (B2—7)(a2—p), and thus 1/p1, 1/p2 > 0, a contradiction. Consequently, it has to
be satisfied that p > B2—7, ¢ >ax—p and pg < (B2—7)(ax—pu). If ax > p or Bp > 7, then
pq > (B2—7)(a2—p), also a contradiction.

We will prove that the solutions are global even under the following more general
assumption:

(@) pa<(p—az)(y—p2) withar<p, f2<7.

Notice that the assumption (e) covers the critical case 1/p1 =1/p2 =0 with ap <y,
B2 <y, corresponding to Theorem 1.4 (ii).

It suffices to treat the following eight situations:

. m, n>1with 1 >n;
. 0<m, n<1with B >n;
. 0<m<1, n>1with 1 >n;

1
2
3
4. m>1,0<n<1with B >n;
5. m, n>1with 1 <wn;

6. 0<m, n<1with B <n;

7. 0<m<1,n>1with 1 <wn;
8. m>1,0<n<1with 1 <n.

Correspondingly, we will introduce eight lemmas in the sequel, where it is always as-
sumed that a7 <m due to Theorem 1.1.

Lemma 3.1. Assume m,n >1 with By > n, and the condition (e) holds. Then the solutions of
(1.1)-(1.3) are global.
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Proof. The assumption of the lemma implies

_1+m _1+n Bi—n\  1+p1
_2’7_2+<2)+_2

with m, n>1 and B1 >n by (1.14), and thus

s () ().

Construct
i1(x, ) =eK (M+A-le A0 ) | g(x 1) = Belt (M-~ 0B P11
with positive constants K, L, A, B, M to be determined. Due to —ye ¥ > —e~! for y >0,

B 1 A2 K(m—1)t/2 -1 1 _ A2 K(m—1)t/2
(um)t:KmeKmt(M—i—A e A% goekim )m (M+A e A2 ggekim

~ (m_l)A2¢oeK(m—l)t/2A7 eiAzq)OeK(m—l)t/Z) > Kmekmt
2 — 4

Ail= (AeK(’”“)f/z/\oqvo + A%V g lzeK””> e~ A%poek(n112
< A(Ag+A%cd)elm,

_ 1 A2 K(m—1)t/2\ X1
alu”‘lzale"‘th<M—|-A e~ Apoe >

SalemKt(M_i_A—l)al,

provided that A > W’El) Hence
(@™); > Aid+aia™, (x,t) €QxRT (3.1)

provided that

AN+ A% +a;(M+A )M
m

K>
Similarly, we have also

(5n)t :BnLneLnt(M_i_e—q)o(Be“)(/ir])/Z)nfl (M_i_e—(po(BeU)(ﬁrU/Z

B (,Bl _ 1)¢0(BeLt)(/511)/2e_q)0(BeLt)(/511)/2) >0
2 — V4

A7 = Belt (A0¢0(BeLf)(ﬁ1—l>/2+ IV o ,Z(Beu)ﬁl—l) a—go(Bet) (P11
< (Ag+ci)BPrethit,

/2

1P = ;B! (M e mlBe) ) P1S 0o B MLt
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Consequently,
(") > AG—ar0P1,  (x,t) €QxRT (3.2)
provided that

_ 2
(P (2 ),

Moreover, on the boundary d(),

? > 0y AeKmEIH2 oy < (M 4 1)PHe2eKazt+LpE
S_Z 2 Cz(BeLt)(‘Bl+1)/2, L—lqz—,ﬁz S B,BZ (M+1)q+,BZeth+Llet.
Observe that 1+ 146
m 1
Pa= ( 2 _“2> ( 2 _ﬁ2>‘
Letting

1
L:K<m;—az>/rb B P> (M+1)1+F2 /ey, A>BP(M+1)P2/cy,
we can have

>aef, —>alof?, (x,t) €90 xR, (3.3)
For M > max(||ug||eo, ||v0]lee), we have in addition that 7(x,0) > uo(x) and 3(x,0) > vg(x).
Thus, (i7,9) is a global supersolution of (1.1)-(1.3). O

Lemma 3.2. Assume 0 <m, n <1 with By >n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. We know

_ _ ) (Bl

pem =t (pion) -(P57),

with 0<m,n<1by (1.15). Thus, y=(1+p1)/2if 1 >1>n, and y=p if n<B1<1. There are
two subcases for the lemma: (i) f1 > 1 with pg < (m—ocz)(lzﬁ —B2) < (1—%2)(% —B2);
(i) n<p1 <1with pg<(m—az)(B1—B2) < (1—az)(B1—B2). Construct
(x,t) = AeXlog [l (x)eX" Vi r M],
(x,t) = Bel (M4e (B PI2) - gor (4),
0(x,t) = Belt (M4e~ 9By for (i),

1|

eli
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with positive constants K, L, A, B, M to be determined. In the subcase (i), we have

—1
(L‘t’”)t:KmAmeK"”(log[ho(x)eK(m_l)t-l—M])m+mAmeK"”(log[ho(x)eK(m_l)t-l—M])m
K<m_1)h0(x)eK(mil)t 1 m _Kmt m
X Tho(meknDigar = 2KmATe (g M),
Ak Ay AeK(V[ho(x)eXm VL M])? _ Adyel™
o (x)eKm=Dt M ho(x)eKm Dty M2 = M

oy :alAleeleKt<log[h0(x)eK(mfl)t+M])“1 SglAmemKt(]og[%'i‘M])M,

Al =

provided that MlogM >2¢5(1—m), and hence

(@) > ANi+aa™, (x,t) €eQxRT (3.4)
with
K> 2AYMA +2a1 M(log s+ M])™
- mM(logM)™ '
Similarly to the proof of Lemma 3.1,
(") > Ao—ap0P1, (x,t) €QxRT (3.5)
provided that
,31 -1 )\0 +C% ﬁ]_l
> —_— | .
Mzmax (5= (557"
Moreover, for (x,t) €dQ X R", we have
on _ Aek™  9p B+l LBy

2 ez,

— —>

oy — M+cs' 9y =

1*25P < A% BP (log[cs+M])"*2 (M+41)PelKaz+Lp)t

11502 < A1BP2 (log[cs + M])T(M+1)Pre(Ka+LA2)t
Since

pq< (m—DCZ)(lJ;'Bl —,32> < (1—062)<1+2'Bl —,32>,

by taking L=K(m—a)/p and

Al*D&z
M++cs

czBﬁ_ﬁ2 > A1(log[cs+M))T(M+1)P2,

> BP(logcs +M])*2(M+1)7,
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we can get

o > %P, 9 >a15P2,  (x,t) €O xR, (3.6)
o1 o1

If A, B are sufficiently large then 7(x,0) > uo(x), 9(x,0) > vo(x). Hence (#,0) is just a
supersolution of (1.1)-(1.3). In the subcase (ii), by virtue of the calculation of subcase (i),
we have

(@™);>Ad—aia™, (x,t)€eQxR" (3.7)
provided MlogM >2c5(1—m) and

K> 2AY" Ay +2a1 M(log[cs + M])™
- mM (logM)™ '

In addition,
(") = BnLneLnt(M_i_efggO(BeLt)(ﬁrl))n—l (M_i_e,q,O(BeLr)(ﬁrl)
— (B1—1)go(Be™) PV (BB >,

AT :B‘BleL‘Blt(/\()QOo—i— ‘vqoo‘2<BeLt)‘B1fl)efq)O(BeLf)(ﬁlfl) < <A0+C%)B‘B1eLﬁ1t,
azﬁﬁ] ZazBﬁ1M51eL51f,

and hence

(") > Ao—ap5P1,  (x,t) €EQxRT (3.8)

provided M > (Ag+c?) ﬁaz_ﬁ . On the boundary 00 xR,

on _ Aekm™  9p I
IS 2 £\ 1
on — M+cs” oy = c2(Be)™,
1257 < A" BP (log[cs+M)])* (M +1)PelKe2tLp)t
a1oP2 < Aq3ﬁ2<log[c5+M])q<M+1)ﬁze(Kq+Lﬁz)f_
Since pg < (m—wz)(B1—P2) < (1—az)(B1—PB2), there exist sufficiently large A, B, K, and
L=K(m—uy)/p such that

> %P, p > 15, (x,t) €02 xR™. (3.9)

For A, B large that #(x,0) > ug(x) and 3(x,0) > vo(x), (i1,9) is a global supersolution of
(1.1)-(1.3). 0
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Lemma 3.3. Assume 0<m <1, n>1with B1>n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. Construct
1(x,t) = AeKlog [ho(x)eX "V 4 M), 0(x,t) = Bel (M e#0(Be)" )

with K, L, A, B, M >0 to be determined. Similarly to the proof of Lemmas 3.1 and 3.2, it
is easy to prove that (i7,73) can be a supersolution of (1.1)-(1.3). O

Lemma 3.4. Assume 0<n <1, m>1with B1>n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. We know

with m>1, 0<n <1 by (1.17). There are two subcases for the lemma: (i) f; > 1 with
pq < (2H _a2)<1+2/51 —B2); (i) n < B1 <1 with pg < (2 —ay)(B1—B2). Construct

7

i(x,t) :eKt(M-i-A_ e A%poet
(x,t) = Be (M4e (B P2) o (1),
o(x,t) BeLt(M—I-e_"’O(BeU)(ﬁrl)) for (ii).

(mfl)t/Z)

eli

By a similar argument as that in the proof of Lemmas 3.1 and 3.2, we can take
K, L, A, B, M sulfficiently large such that (i,9) is a global supersolution of (1.1)-(1.3). O

Lemma 3.5. Assume m, n>1 with B1 <n, and the condition (e) holds. Then the solutions of
(1.1)-(1.3) are global.

Proof. We know

_1+m _1+n  /B1—n\ 1+4n
= =+ (F) =5

with m, n>1and B1 <n by (1.14). Thus pg < (”Tm —ocz)(HT” —B2). Construct
1(x,t) =eKt (M4 A~ le= A0 " ') 505 p) —elt <M+B*1e*32<"06“"’””2) .

Similar to the proof of Lemma 3.1, by letting

m—1 AN+ A% +a;(M+A- )™
“2e(M-1)" m ’

we can get

(@™); > Ad+aa™, (x,t)€QxRY. (3.10)
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Moreover, by taking B > ﬁ we have

(") > Lne'™, A5 <B(Ag+B%c3)e!™,

B(Ag+B2c2
w we have

and hence with L >
(") > AG—a3P, (x,t) EQXRT. (3.11)

Furthermore, on the boundary 0Q)

a_Z > CZAeK(m+1)t/2’ a2 P < (M+1)p+a2eKa2t+Lpt’
g_:; > CzBeL(”+l)t/2, 79582 < (M+1)q+ﬁ2eth+Lﬁ2t‘

Since pg < (152 —ay ) (142 — B2), we can choose

m4l_ q+p p+u
L:K( > Déz)’ BZ(M+1) 2’ AZ(M+1) 2
p C2 2
to get
o > " % > 192, (x,t) €0Q xR (3.12)
an — "o T ’ ’ ) '

It is easy to see that i1(x,0) > ug(x), 7(x,0) > vo(x) with M > max(||to]|e,||70]/ec). Thus,
(11,7) is a global supersolution of (1.1)-(1.3). O

Lemma 3.6. Assume 0 <m, n <1 with By <n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. We have

with 0<m, n<1and B <nby (1.15). Thus pg<(m—az)(n—pB2) <(1—az)(1—p) for the
lemma. Construct

i(x,t) = AeKlog [ho(x)eX" =V 1 M), 5(x,t) = Bet'log [hg (x)el "~V 4 M],
where

MlogM =max{2c5(1—m),2c5(1—n)},
2A17m}\h—|—2(11M<108’[C5—|—M])M L> ZBlanh

> —_—_.
k2 mM(logM)™ " "~ nM(logM)"
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By a simple computation, we can get
(™) > Ai4-ara®, (7");>Ao5—ayoP, (x,t) EQxRT. (3.13)

Moreover, for (x,t) €EdQxR™,

% AeKmt @> BeL”t
o~ M+cs” oy~ M+cs’

anpP < A“zBp<log[c5—|—M])”‘2+pe(K"‘2+LP)fI
195P2 < ATBP2 (log[cs+ M] )T Fze(Ka LA,

Since pg < (m—ay)(n—p2) < (1—az)(1—p2), there exist sufficiently large A, B, K and
L=K(m—uay)/p such that

Ty ol —i b
((M+C5)(log[C5—|—M])"‘2+P>l 231—”«2<A<((c5+M)(1og[c5+M])q+ﬁz) "B,
and Ln > Kq+ B, L. Therefore
ol _ ., 00 _ _ 3 n
— >a*gf, — >ualo”, (x,t) €0QXRT. (3.14)
U] 7

With A, B large that #(x,0) > uo(x), 9(x,0) > vo(x), (%,0) is a global supersolution of
(1.1)-(1.3). 0

Lemma 3.7. Assume 0<m <1, n>1with B1 <n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. By (1.16), we have pg < (m—uay) (" — o) < (1—az) (%2 — B2) here. Construct
i(x,t) = AeKtlog [ho(x)eX" VL M), 5(x,t) =elt (M—i—B’le’Bz“”OeL(anz).

By using the arguments for Lemmas 3.2 and 3.5, we can obtain with M, K, L large that
(11,9) is a global supersolution of (1.1)-(1.3). O

Lemma 3.8. Assume 0<n<1, m>1with 1 <n, and the condition (e) holds. Then the solutions
of (1.1)-(1.3) are global.

Proof. By (1.17), we know pg < (- —a,) (n— ) < (% —a,) (1—B,). Construct
f(x,) = (M+ A7l 0" 1) (5, 1) = Bellog [ho(x)e "' 4-M].

Similar to the arguments used for the proofs of Lemmas 3.5 and 3.6, we can take
K, L, A, B, M sufficiently large such that (i,7) is a global supersolution of (1.1)-(1.3). O

Combining Lemmas 3.1-3.8 yields the conclusion of Theorem 1.3.
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4 Critical situation

Finally, let us treat the critical case of (1/p1,1/p2) = (0,0) in Theorem 1.4. In fact, the
conclusions are included in Theorems 1.2 and 1.3 already:

Proof of Theorem 1.4. Notice that (1/p1,1/p2)=(0,0) is equivalent to pg=(u—az)(y—B2),
which with pq > 0 implies either (i) y—ay, v—p2 <0, or (ii) p—ay, y—p2>0. It is easy
to find that the case of ax >y, B2 > is included in the case (a) of the proof for Theorem
2 (treated by Lemma 2.1), while the case of ay < p, fo < with pg= (p—a2)(y—p2) is
covered by (e) in Section 3, which is assumed in Lemmas 3.1-3.8 for proving Theorem
1.3. O
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