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1 Introduction

We consider the exponential decay of radial ground states of a class of N-Laplacian ellip-
tic equations as follows:

∆Nu+ f (u)=0 in R
N , N≥2, (1.1)

where ∆Nu=div(|Du|N−2 Du) is the degenerate N-Laplacian. Here by a ground state we
mean a non-negative non-trivial C1 distribution solution of (1.1) which tends to zero at
infinity. The particular interest in this problem is that the order of the Laplacian is the
same as the dimension of the underlying space. For the classical case of this problem, i.e.,
N =2, (1.1) reduces to

∆u+ f (u)=0 in R
2, (1.2)

Under suitable conditions on f it was shown in [1] that the ground state for (1.2) satisfies

u(x)=u(|x|)=u(r)>0, u(0)=max
x∈R2

u(x),

u′(0)=0 and u′(r)<0 for r∈ (0,∞).
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Moreover,
lim
r→∞

u(r)
√

rer =C (1.3)

with some constant 0<C<∞. Such precise estimates of asymptotes as |x|→∞ have been
proved to be very useful. For applications of such estimates, readers can refer to [1–5]
etc. In an earlier work [6], we considered the exponential decay of ground states of the
m-Laplacian equation

∆mu+ f (u)=0 in R
N , N >m>1

under certain assumptions on f . It has been known that when 1<m< N, Pohozaev-type
restrictions on the nonlinear term f are needed to show the existence of ground states [7],
and for m>N no growth conditions are required [8]. So we can regard (1.1) as a transition
or borderline case.

Throughout this paper we make the following assumptions on f :

(f1): f : [0,∞)→R is locally Lipschtiz continuous and there exist positive constants
K and α such that

f (t)+KtN−1 =O(tN−1+α) as t↓0.

(f2): There exists β>0 such that

F(t)=
∫ t

0
f (s)ds<0 on (0,β), F(β)=0, f (t)>0 for t≥β.

(f3): For some γ≥β we have f ∈C1[γ,∞) and f ′(t)≥0 for t>γ.

Note that an example of f satisfying all above assumptions is f (t) = −tN−1+tp with
N−1< p<∞. Also note that under assumptions (f1)-(f3), the existence of a radial ground
state is guaranteed and moreover if r= |x| the function u=u(r) satisfying u′(r)<0 for all
r>0 such that u(r)>0 (see [9]). Our result can be stated as follows:

Theorem 1.1. Let u(x) = u(r) be a positive radial ground state for (1.1) and f (t) satisfies as-
sumptions (f1)-(f3). Then there exists a sequence of constants {Ci} (i=1, 2,···) such that for any
l =1, 2,··· ,

(

−u′

u

)N−1

=

(

K

N−1

) N−1
N

+
C1

r
+

C2

r2
+···+ Cl

rl
+O

(

1

rl+1

)

as r→∞,

where {Ci} (i=1, 2,···) are determined by

C1 =
N−1

N

(

K

N−1

) N−2
N

, C2 =
(N−2)C1− N

2(N−1)

(

K
N−1

)
2−N

N C2
1

N
(

K
N−1

)
N−1
N2

;
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and for i>2, Ci can be uniquely determined by

(N−i)Ci−1−N

(

K

N−1

) 1
N

Ci =
i

∑
j=2

F(j)(0)

j!

(

∑
j1+···+jj=i

j1 ,···jj>0

Cj1 Cj2 ···Cjj

)

,

where

F(ρ)=(N−1)

(

(

K

N−1

)
N−1

N

+ρ

)

N
N−1

.

Particularly we have

lim
r→∞

u(r)r
1
N e(

K
N−1 )

1
N r =C∗

for some constant C∗>0.

2 Two lemmas

In this section, we will prove Theorem 1.1. First, let u(x)= u(r) be a radial ground state
as stated in Theorem 1.1. It follows from (1.1) that

(

∣

∣u′∣
∣

N−2
u′
)′

+
N−1

r

∣

∣u′∣
∣

N−2
u′+ f (u)=0. (2.1)

Denote

ϕ(r)=−|u′|N−2
u′

uN−1
. (2.2)

Then
∣

∣u′∣
∣

N−2
u′=−ϕuN−1,

u′

u
=−ϕ

1
N−1 .

Substituting them into (2.1) yields

ϕ′−(N−1)ϕ
N

N−1 +
N−1

r
ϕ− f (u)

uN−1
=0. (2.3)

Lemma 2.1. For ϕ defined by (2.2), we have

limsup
r→∞

ϕ(r)<∞.

Proof. It follows from assumption (f1) and limr→∞ u(r)=0 that

κ =sup
r

| f (u(r))|
uN−1(r)

<∞.
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It follows from ϕ(r)≥0 and (2.3) that as long as

ϕ(r)≥
(

4κ

N−1

) N−1
N

, r≥4

(

N−1

4κ

) N−1
N

we have

ϕ′=(N−1)ϕ
N

N−1 − N−1

r
ϕ+

f (u)

uN−1
≥ N−1

2
ϕ

N
N−1 . (2.4)

Now, suppose to the contrary that limsupr→∞ ϕ(r)=∞. Let

r1 = inf

{

r≥4

(

N−1

4κ

) N−1
N

: ϕ(r)≥
(

4κ

N−1

) N−1
N

}

.

Since ϕ(0)=0 and ϕ(r)>0 for r>0, it follows that 0<r1≤∞. If r1 =∞ we are done. Next
we suppose r1 <∞. Then

ϕ(r1)=

(

4κ

N−1

) N−1
N

, ϕ′(r)≥ N−1

2
ϕ(r)

N
N−1 for all r≥ r1,

which blows up before or at

r2 = r1+2

(

N−1

4κ

) 1
N

.

This contradicts the well-definedness of ϕ. The proof of this lemma is complete.

Lemma 2.2. For ϕ defined by (2.2), we have

lim
r→∞

ϕ=

(

K

N−1

) N−1
N

, (2.5)

where the constant K is the one stated in (f1).

Proof. Since ϕ(0)=0 and ϕ(r)>0 for r>0 it follows from (2.3) and Lemma 2.1 that

0≤ liminf
r→∞

ϕ(r)=ω1 <∞

and
0< limsup

r→∞

ϕ(r)=ω2 <∞.

Next we use the contradiction arguments to prove (2.5). Suppose

ω1 = liminf
r→∞

ϕ(r)< limsup
r→∞

ϕ(r)=ω2.

Then we may choose two sequences {ηi} and {ζi} going to ∞ as i→∞ such that

{ηi} are local minima of ϕ, {ζi} are local maxima of ϕ,
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and ζi ∈ (ηi,ηi+1), and

liminf
r→∞

ϕ(r)= lim
i→∞

ϕ(ηi)=ω1, limsup
r→∞

ϕ(r)= lim
i→∞

ϕ(ζi)=ω2.

Then at ηi (i=1, 2,···) we know u′(ηi)=0 and thus

−(N−1)ϕ(ηi)
N

N−1 +
N−1

ηi
ϕ(ηi)−

f (u(ηi))

u(ηi)N−1
=0. (2.6)

Similarly at ζi (i=1, 2,···) we get

−(N−1)ϕ(ζi)
N

N−1 +
N−1

ζi
ϕ(ζi)−

f (u(ζi))

u(ζi)N−1
=0. (2.7)

For any given ǫ>0, since

lim
t↓0

f (t)

tN−1
=−K, lim

r→∞
u(r)=0,

we can take r3 sufficiently large such that

∣

∣

∣

∣

f (u(r))

u(r)N−1
+K

∣

∣

∣

∣

<ǫ for all r> r3.

Next we take i0 sufficiently large such that ηi > r3 for i> i0. It follows from (2.6) and (2.7)
that for all i> i0:

K−ǫ< (N−1)ϕ(ηi)
N

N−1 − N−1

ηi
ϕ(ηi)<K+ǫ,

K−ǫ< (N−1)ϕ(ζi)
N

N−1 − N−1

ζi
ϕ(ζi)<K+ǫ.

Letting i→∞ and noticing the arbitrariness of ǫ, we obtain

(N−1)ω
N

N−1

1 =K, (N−1)ω
N

N−1

2 =K

which yields ω1 =ω2, and contradicts to ω1 <ω2. Consequently,

lim
r→∞

ϕ(r)=

(

K

N−1

) N−1
N

.

The proof of this lemma is complete.
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3 Proof of Theorem 1.1

With the help of the two lemmas above, next we give a proof of Theorem 1.1. It follows
from Lemma 2.2 that

lim
r→∞

u′

u
= lim

r→∞
−ϕ

1
N−1 =−

(

K

N−1

) 1
N

.

Thus ∀ǫ>0, there exists a constant 0< C̃= C̃(ǫ)<∞ such that

u(r)≤ C̃e−(K−ǫ
N−1)

1
N r.

Especially taking ǫ=K/2 we have

u(r)≤ C̃(K)e
−( K

2(N−1))
1
N r

.

For convenience, let
(

K

2(N−1)

) 1
N

=µ, C∞ =

(

K

N−1

) N−1
N

.

Then the above result becomes
u(r)≤ C̃e−µr. (3.1)

Next we give more precise expansion of ϕ(r) at ∞. Let ϕ=C∞+ϕ1. We know from (2.3)
and Lemma 2.2 that limr→∞ ϕ1(r)=0 and ϕ1(r) satisfies

ϕ′
1−(N−1)(C∞+ϕ1)

N
N−1 +

N−1

r
(ϕ∞+ϕ1)−

f (u)

uN−1
=0,

or equivalently,

ϕ′
1−NC

1
N−1
∞ ϕ1+

N−1

r
ϕ1

=
f (u)

uN−1
+(N−1)(C∞+ϕ1)

N
N−1 −NC

1
N−1
∞ ϕ1−

N−1

r
C∞. (3.2)

Notice that

lim
r→∞

u(r)=0,
f (t)+KtN−1

tN−1
=O(tα) as t↓0.

We get for r sufficiently large
f (u)

uN−1
=−K+O(uα). (3.3)

At the same time for r sufficiently large we have

(N−1)(C∞+ϕ1)
N

N−1 =(N−1)C
N

N−1
∞ +NC

1
N−1
∞ ϕ1+O

(

ϕ2
1

)

. (3.4)
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Thus it follows from (3.2)-(3.4) that for r sufficiently large

ϕ′
1−NC

1
N−1
∞ ϕ1+

N−1

r
ϕ1 =O(ϕ2

1)−
N−1

r
C∞+O(uα). (3.5)

Multiplying both sides of (3.5) by ϕ1 and integrating the resulting equation from r to ∞

for r sufficiently large yield

1

2
ϕ2

1(r)+
∫ ∞

r

(

NC
1

N−1
∞ − N−1

s
+O(ϕ1)

)

ϕ2
1ds

=
∫ ∞

r

N−1

s
C∞ ϕ1ds−

∫ ∞

r
O(uα)ϕ1ds. (3.6)

We can take r sufficiently large such that

NC
1

N−1
∞ − N−1

s
+O(ϕ1)≥

N

2
C

1
N−1
∞ for s> r.

Therefore for such large r it follows that

ϕ2
1(r)+

∫ ∞

r

(

NC
1

N−1
∞

)

ϕ2
1ds≤2

∫ ∞

r

N−1

s
C∞ ϕ1ds−2

∫ ∞

r
O(uα)ϕ1ds.

Note that

2
∫ ∞

r

N−1

s
C∞ϕ1ds≤ 1

4

(

NC
1

N−1
∞

)

∫ ∞

r
ϕ2

1ds+
4(N−1)2C2

∞

NC
1

N−1
∞

∫ ∞

r

1

s2
ds,

2
∫ ∞

r
O(uα)ϕ1ds≤ 1

4

(

NC
1

N−1
∞

)

∫ ∞

r
ϕ2

1ds+
4

NC
1

N−1
∞

∫ ∞

r
O(u2δ)ds.

By virtue of the above estimates and (3.1) we get that for r sufficiently large

ϕ2
1(r)+

1

2

(

NC
1

N−1
∞

)

∫ ∞

r
ϕ2

1(s)ds

≤ 4(N−1)2C2
∞

NC
1

N−1
∞

1

r
+

4C̄

2αNC
1

N−1
∞

e−2δµr ≤ 8(N−1)2C2
∞

NC
1

N−1
∞

1

r
, (3.7)

where C̄>0 is a constant independent of r. Thus we have

ϕ2
1(r)=O

(

r−1
)

as r→∞. (3.8)

By this estimate and (3.5) it follows that as r→∞

ϕ′
1−NC

1
N−1
∞ ϕ1+

N−1

r
ϕ1 =O

(

r−1
)

. (3.9)



C. Zhao / J. Part. Diff. Eq., 22 (2009), pp. 32-41 39

For convenience let α0 = NC
1

N−1
∞ . Then we get from (3.9) as r→∞

(

rN−1e−α0r ϕ1

)′
= rN−1e−α0rO

(

r−1
)

. (3.10)

Integrating both sides of (3.10) from r to ∞ yields, as r→∞,

ϕ1(r)=
eα0r

rN−1

∫ ∞

r
sN−1O

(

s−1
)

e−α0sds

=O
(

eα0r

rN−1

∫ ∞

r
sN−2e−α0sds

)

. (3.11)

Applying integration by parts as many steps as we want we arrive at that there exists a
sequence of constants {ai}(i=1, 2,···) such that

∫ ∞

r
sN−2e−α0sds= a1rN−2e−α0r+a2rN−3e−α0r +···

= e−α0r
(

a1rN−2+a2rN−3+···+alr
N−l−1+···

)

, (3.12)

where a1 =1/α0. Thus it follows from (3.10) that

ϕ1(r)=O
(

r−1
)

, as r→∞, (3.13)

which is an improvement of (3.8). Using (3.13) and (3.5) we obtain

(

rN−1e−α0r ϕ1

)′
=−rN−1e−α0r

(

N−1

r
C∞+O

(

r−2
)

)

. (3.14)

Similar to (3.10) and (3.11), we arrive at that

ϕ1(r)=
eα0r

rN−1

∫ ∞

r
sN−1e−α0s

(

N−1

s
C∞+O

(

s−2
)

)

ds

=
(N−1)C∞a1

r
+O

(

r−2
)

.

Again if we let

ϕ1 =
(N−1)C∞a1

r
+ϕ2

such that ϕ2(r)=O(r−2), we obtain from (3.4) and (3.5) that

ϕ′
2−α0ϕ2+

N−1

r
ϕ2 =

(5−2N)(N−1)

2N
C

N−2
N−1
∞

1

r2
+O

(

r−2
)

.

We can then repeat the same process to obtain the expansion as stated in Theorem 1.1 to
any polynomial order as we want. Next we need determine Ci (i = 1, 2,···) in Theorem
1.1. Let

F(ρ)=(N−1)(ϕ∞ +ρ)
N

N−1 .
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Then the Taylor expansion of F(ρ) at ρ=0 is as follows:

F(ρ)=(N−1)ϕ
N

N−1
∞ +α0ρ+

N

2(N−1)
C
− N−2

N−1
∞ ρ2

− N(N−2)

3!(N−1)2
C
− 2N−3

N−1
∞ ρ3+···+ F(n)(0)

n!
ρn+··· , (3.15)

where

F(n)(0)=
(−1)nN(N−2)(2N−3)··· (lN−l−1)··· [(n−2)N−n+1]

(N−1)n−1

for n≥4. Thus from (3.2), (3.3) and (3.15) we get

ϕ′
1−α0 ϕ1+

N−1

r
ϕ1

=O(uδ)− N−1

r
C∞+

N

2(N−1)
C
− N−2

N−1
∞ ϕ2

1

− N(N−2)

3!(N−1)2
C
− 2N

N−1
∞ ϕ3

1+···+ F(n)(0)

n!
ϕn

1 +··· . (3.16)

Substituting ϕ1(r) = ∑
∞
j=1 Cj/rj into (3.16) we get by comparing the coefficients of 1/rn

(n=1, 2,···) that

C1 =
N−1

N

(

K

N−1

)
N−2

N

, C2 =
(N−2)C1− N

2(N−1)
C
− N−2

N−1
∞ C2

1

α0
,

and Ci (i>2) is determined by

(N−i)Ci−1−α0Ci =
i

∑
j=2

F(j)(0)

j!



 ∑
j1+···+jj=i

Cj1 Cj2 ···Cjj



.

Note that
u′

u
=−ϕ

1
N−1 .

We know as r→∞,

u′

u
=−

(

C
1

N−1
∞ +

1

N−1
C

2−N
N−1
∞ C1 ·

1

r
+O

(

r−2
)

)

=−
(

K

N−1

) 1
N

− 1

N
· 1

r
+O

(

r−2
)

,

which yields that

u(r)=O
(

r−
1
N e−( K

N−1)
1
N r

)

as r→∞.
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Consequently,

lim
r→∞

u(r)r
1
N e( K

N−1)
1
N r =C∗,

for some 0<C∗<∞. The proof of Theorem 1.1 is complete. �
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