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Abstract The compressible Euler equations with dissipation and/or dispersion

correction are widely used in the area of applied sciences, for instance, plasma physics,

charge transport in semiconductor devices, astrophysics, geophysics, etc. We consider

the compressible Euler equation with density-dependent (degenerate) viscosities and

capillarity, and investigate the global existence of weak solutions and asymptotic limit.
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1. Introduction

In the area of applied sciences, like plasma physics, transport of charged parti-

cles, astrophysics, geophysics, etc, the compressible Euler equations with additional

dissipation of the form

∂tn+ ∇ · (nu) = 0, (1.1)

∂t(nu) + ∇ · (nu⊗ u) + ∇p(n) = ρF + fdis, (1.2)

are often used to simulate the dynamical behaviors of physical observable like the

density n > 0, velocity u, momentum J = nu, and energy e = e(n, u). Here, the

Eq. (1.1) and (1.2) respectively express the conservation of mass and the balance of

momentum. The force F is taken as the gradient filed of some potential F = −∇Φ,
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Program 2005B48, the NNSFC grant No.10431060, the NCET support of the Ministry of Education of
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where Φ represents either electrostatic potential or gravity, and can be determined by

the self-consistent Poisson equation

λ∆Φ = n (1.3)

with λ = ∓1. The term fdis in (1.2) is chosen based on the different effects caused by the

specific physical (dissipative or dispersive) mechanism, like drag friction (lubrication)

−n|u|u in the motion of shallow water [1], dispersion effects ε2

2 ∇(
∆
√

ρ√
ρ ) with ε > 0 the

scaled Planck constant in quantum mechanics [2], Korteweg term εn∇∆n with ε > 0

small parameter in phase transition [1], viscosity µ∆u or µ∇(n∇u) with µ viscosity

coefficient in fluid-dynamics [3, 4], and so on.

The aim of this paper is to study the dissipative and dispersive approximation to

the hydrodynamical system (1.1)–(1.2) as follows

∂tn+ div(nu) = 0, (1.4)

∂t(nu) + div(nu⊗ u) + ∇p(n) + n∇Φ

= ε2n∇(ϕ′(n)∆ϕ(n)) + 2ηdiv (µ(n)D(u)) + η∇(λ(n)divu) − rn|u|u, (1.5)

where the right hand side terms in (1.5) consist of viscosity, dispersion and nonlinear

friction, corresponding to the term fdis in (1.2), and D(u) = (∇u+ t∇u)/2 is the stress

tensor with degenerate viscosities µ(n) ≥ 0, λ(n), and η > 0 a small parameter, which

is zero in the appearance of vacuum n = 0. The nonlinear dispersion term is also taken

into accounted with ϕ(n) ≥ 0 and ε > 0 a small parameter, and the nonlinear term

−rn|u|u represents a drag friction with r > 0 a constant. The internal electrostatic

potential Φ is chosen through the self-consistent Poisson equation

−∆Φ = n− 1. (1.6)

We consider the initial value problem of the approximate system (1.4)–(1.5) in T
N

with initial data

n(x, 0) = n0(x), nu(x, 0) = m0(x), x ∈ T
N , (1.7)

which satisfies

n0 ≥ 0 a.e. on T
N ,

∫

n0(x)dx = 1, and
|m0|2
n0

= 0 a.e. on {n0(x) = 0}. (1.8)

The motivation to consider the approximate system (1.4)–(1.6) is the follows. Re-

cently, the quantum hydrodynamic (QHD) model

∂tn+ ∇ · (nu) = 0, (1.9)

∂t(nu) + ∇ · (nu⊗ u) + ∇p(n) = n∇Φ +
ε2

2
n∇(

△√
n√
n

), (1.10)
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− ∆Φ = n− 1, (1.11)

is derived and studied in the modelings and simulations of semiconductor devices,

where the effects of quantum mechanics arises. The basic observation therein is that

the energy density consists of one additional new quantum correction term of the order

O(ε) introduced first by Wigner [5] and that the stress tensor contains also an additional

quantum correction caused by the quantum Bohm potential Q(ρ) = − ε2

2
∆
√

ρ√
ρ , which is

responsible for the quantum effect [2]. Thus, a natural question is whether the quantum

hydrodynamic (QHD) model (1.9)–(1.11) will converge to the classical hydrodynamical

model as Planck constant ε tends to zero, the so-called semiclassical (dispersion) limit.

This problem is only solved recently for global smooth solution [6–8], and is not clear

yet for weak solutions. To this end, we first consider the dissipative and dispersive

approximation system (1.1)–(1.3) and consider the global existence of weak solutions

and the dispersion limit.

There are several prototype models in the literatures of the approximate system

(1.4)–(1.6), for instance, the viscous Saint-Venant model for the motion of shallow

water when we set in (1.4)–(1.6) that

p(n) = n2, µ(n) = n, λ(n) = 0, ϕ(n) = 0, Φ ≡ 0,

or the model of shallow water in general form if

p(n) = n2, µ(n) = n, λ(n) = 0, ϕ(n) = n, Φ ≡ 0.

The rest part of the paper is arranged as follows. We state the main results on

existence and dispersion limit in Section 2; and we establish the a-priori estimates for

the system in multi-dimension in Section 3.1, and prove the main results in Section 3.2.

2. Main Results

For simplicity, we consider the approximate system (1.4)–(1.6) for γ-law pressure-

density function

p(n) = nγ , γ ≥ 1. (2.1)

And the viscosity coefficients and the dispersion term satisfies

µ(n) = µ0n
α, α > 0, ϕ(n) = nα, λ(n) = 2(nµ′(n) − µ(n)), (2.2)

with µ0 positive constant set to be one below, and define the functions π(n) and ξ(n)

by

nπ′(n) − π(n) = p(n), nξ′(n) = µ′(n). (2.3)

Let us give the definition of weak solutions of the IVP problem (1.4)–(1.6) and

(1.7)–(1.8) in multi-dimensional periodic domain T
N , N ≥ 1 as follows.
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Definition 2.1 (n, u) with n ≥ 0 a.e. is said to be a global entropy solution to the

IVP problem (1.4)–(1.6) and (1.7)–(1.8), provided that it holds

n ∈ L∞(0, T ;L1(TN ) ∩ Lγ(TN )),
∇µ(n)√

n
∈ L∞(0, T ;L2(TN )),

∇µ(n) ∈ L∞(0, T ;L2(TN )),
√
nu ∈ L∞(0, T ;L2(TN )),

√

ϕ′(n)∆ϕ(n) ∈ L2(0, T ;L2(TN )),
√

p′(n)µ′(n)∇
√
n ∈ L2(0, T ;L2(TN )),

√

µ(n)∇u ∈ L2(0, T ;L2(TN )), ∇Φ ∈ L∞(0, T ;L2(TN )).







































(2.4)

Moreover, (n, u) satisfies the a-priori entropy estimate

∫

TN

(nu2 + π(n) + |∇µ(n)√
n

|2 + |∇Φ|2 + |ε∇µ(n)|2)dx

+

∫ T

0

∫

TN

((n− 1)(µ(n) − µ(1)) + |
√

p′(n)µ′(n)∇
√
n |2) dxdt

+

∫ T

0

∫

TN

(ε2|
√

µ′(n) ∆µ(n)|2 + η|
√

µ(n)∇u|2 + n|u|3) dxdt ≤ C0, (2.5)

for some constant C0 > 0, and the IVP problem (1.4)–(1.6) and (1.7)–(1.8) in the sense

of distribution

∫ T

0

∫

TN

nψt dxdt+

∫ T

0

∫

TN

√
n
√
nu · ∇ψ dxdt−

∫

TN

nψdx

∣

∣

∣

∣

T

t=0

= 0, (2.6)

∫ T

0

∫

TN

√
n
√
nu · ψt dxdt+

∫ T

0

∫

TN

√
nu⊗

√
nu : ∇ψ dxdt

+

∫ T

0

∫

TN

p(n)divψ dxdt−
∫

TN

√
n
√
nu · ψdx

∣

∣

∣

∣

T

t=0

−
∫ T

0

∫

TN

r
√
n|u|

√
nu · ψ dxdt−

∫ T

0

∫

TN

n∇Φ · ψ dxdt

− ε2
∫ T

0

∫

TN

(ϕ′(n)∆ϕ(n)∇n · ψ + nϕ′(n)∆ϕ(n)divψ) dxdt

− 2η < µ(n)D(u),∇ψ > −η < λ(n)divu,divψ >= 0







































































, (2.7)

∫ T

0

∫

TN

∇Φ · ∇ψ dxdt−
∫ T

0

∫

TN

nψ dxdt = 0, (2.8)

for any test function ψ ∈ C∞
per([0, T ] × T

N ). The nonlinear diffusion terms are well

defined in terms of (n, u) as

< µ(n)∇u,Ψ >= −
∫ T

0

∫

TN

µ(n)u · div Ψ dxdt−
∫ T

0

∫

TN

(
√
nuΨ) · ∇µ(n)√

n
dxdt, (2.9)
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< λ(n)divu, ψ >= −
∫ T

0

∫

TN

λ(n)u · ∇ψ dxdt−
∫ T

0

∫

TN

ψ
√
nu · ∇λ(n)√

n
dxdt, (2.10)

for any test function Ψ ∈ C∞
per([0, T ] × T

N)N×N and ψ ∈ C∞
per([0, T ] × T

N ).

Remark 2.1 Note here that the dispersion (capillarity) terms and the electrical

force appeared in (2.7) are meaningful in multi-dimension in the sense of distribution

at least for the case α ∈ (N−1
N , 1] and γ ≥ 2 (or γ ≥ 1 for one-dimension). In fact, we

can conclude from (2.4) that

n(α+1)/2 ∈ L2(0, T ;H1(TN )), n ∈ L2(0, T ;L2(TN )),

which together with the entropy estimates (2.5) implies

∫ T

0

∫

TN

ϕ′(n)∆ϕ(n)∇n · ψ dxdt ≤ C‖
√

ϕ′(n)∆ϕ(n)‖L2
x,t
‖∇n(α+1)/2‖L2

x,t
‖ψ‖L∞

x,t
,

∫ T

0

∫

TN

nϕ′(n)∆ϕ(n)divψ dxdt ≤ C‖
√

ϕ′(n)∆ϕ(n)‖L2
x,t
‖nγ‖1/2

L∞

t L1
x
‖ψ‖L∞

x,t
,

and

∫ T

0

∫

TN

n∇Φ · ψ dxdt ≤ C‖n‖L2([0,T ]×TN )‖∇Φ‖L∞

t (L2
x)‖ψ‖L∞([0,T ]×TN ).

For the approximate system (1.4)–(1.6), we can prove the global in time existence

of entropy weak solutions in the sense of Definition 2.1 subject to the initial data (1.7)–

(1.8). To this end, additional regularity (2.11) of the initial data (n0,m0) is required.

In fact, we have

Theorem 2.1 (Global existence) Let N = 1 and T > 0. Let (2.1)–(2.3) hold

and α ∈ (2/3, γ], and η and ε be fixed positive constants in Eq. (1.4)–(1.5). Assume

that the initial data (n0,m0) given by (1.7)–(1.8) satisfies

n0 ∈ Lγ(TN ), ∇µ(n0) ∈ L2(TN ), ∇µ(n0)√
n0

∈ L2(TN ),
|m0|2
n0

∈ L1(TN ). (2.11)

Then, there is a global entropy weak solution (n, u,Φ) of the IVP problem (1.4)–(1.8)

in the sense of Definition 2.1.

Remark 2.2 Although we present only the global existence of entropy weak so-

lution in spatial one-dimension for α ∈ (2/3, γ], (since we aim at the dispersion limit

on approximate system (1.4)–(1.6)), the global existence of entropy weak solution in

multi-dimension can be established within a similar framework, which is left for further

investigation.
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For any given global entropy weak solution (nε, uε,Φε) of the approximate sys-

tem (1.4)–(1.6) in the sense of Definition 2.1, we are able to investigate the dispersion

limit. Let ε→ 0+ in the approximate system (1.4)–(1.6) and assume formally

nε → ρ,
√
nε uε →

√
ρ v, Φε → V,

we obtain the Navier-Stokes-Poisson system for (ρ, v, V ) as

∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) + ∇p(ρ) + ρ∇V
= 2ηdiv(µ(ρ)D(v)) + η∇(λ(ρ)divv) − rρ|v|v,

− ∆V = ρ− 1.























(2.12)

Without the loss of generality, we set η = 1, r = 1 in Eq. (1.4)–(1.6) and (2.12)

throughout this paper. We have the result on the dispersion limit for weak solutions

as follows.

Theorem 2.2 (Dispersion limit) Let 1 ≤ N ≤ 3 and T > 0. Assume (2.1)–

(2.3) hold with α ∈ (2/3, 1] and γ ≥ 2. Let (nε, uε,Φε) be any global entropy weak

solution of the IVP problem (1.4)–(1.8) in the sense of Definition 2.1. Then, there

exists (ρ, v, V ) so that it holds

nε → ρ in C(0, T ;L1(TN )),
√
nε uε →

√
ρ v in L2(0, T ;L2(TN )), (2.13)

Φε → V in C(0, T ; Ḣ2(TN )), (2.14)

as ε→ 0+. Here (ρ, v, V ), ρ ≥ 0 a.e., is a global weak solution of the IVP problem (2.12)

and (1.7)–(1.8) in the sense of distribution.

Remark 2.3 Theorem 2.2 implies the dispersion limit from the approximate sys-

tem (1.4)–(1.6) to the Navier-Stokes-Poisson system (2.12). What left for further study

is to understand the vanishing viscosity limit η → 0+ for the system (2.12) to the hydro-

dynamical model (1.1)–(1.3). Note that the global existence of weak solutions to (2.12)

without Poisson and drag friction terms is obtained recently in [9] in multi-dimension

with symmetry.

3. Proof of Main Results

3.1 The a-priori entropy estimates

Let us establish the energy estimates of physical entropy and the BD entropy de-

veloped recently by Bresch and Desjardins [10] that can be satisfied by solutions to

the model in general multi-dimension. We only deal with the spatial periodic case T
N ,

1 ≤ N ≤ 3. As mentioned before, we set all parameters η, r to be one except ε, since

we shall also consider the dispersion limit of the solutions below. We have
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Lemma 3.1 Let T > 0. Under the assumptions of Theorem 2.1, it holds for any

classical solution (n, u,Φ) of the IVP problem (1.4)–(1.8) that

n ∈ L∞(0, T ;L1(TN ) ∩ Lγ(TN )),
∇µ(n)√

n
∈ L∞(0, T ;L2(TN )),

ε∇µ(n) ∈ L∞(0, T ;L2(TN )),
√
nu ∈ L∞(0, T ;L2(TN )),

ε
√

ϕ′(n)∆ϕ(n) ∈ L2(0, T ;L2(TN )), ∇n(γ+α−1)/2 ∈ L2(0, T ;L2(TN )),
√

µ(n)∇u ∈ L2(0, T ;L2(TN )), ∇Φ ∈ L∞(0, T ;L2(TN )).







































(3.1)

Proof The a-priori estimates (3.1) follow directly from the equalities (3.2) and

(3.3) for smooth (approximate) solution sequence of the IVP problem (1.4)–(1.8). (Note

here that the estimates (3.1) also hold for weak solution of the IVP problem (1.4)–(1.8),

which we can verify later when taking the (sequence) limit of the (approximate) smooth

solution). The first one is the classical (physical) entropy for compressible fluids and

can be established by the standard arguments. That is, we just have to take inner

product in Eulerian space between the transport equation (1.4) and the test function

|u|2/2, and between the momentum equation (1.5) and u respectively. Then make

summation of the resultant equations and employ the Poisson equation, we have

1

2

∫

(n|u|2 + ε2|∇µ(n)|2 + |∇Φ|2 + 2π(n))(x, t)dx

+

∫ T

0

∫

(µ(n)|D(u)|2 + λ(n)|divu|2)dxdt+
∫ T

0

∫

n|u|3dxdt

=
1

2

∫

(2π(n0) +
|m0|2
n0

+ ε2|∇µ(n0)|2 + |∇Φ0|2)dx. (3.2)

The second one is a mathematical entropy developed recently by Bresch and Des-

jardins [10] as

1

2

∫

(n|u+ ∇ξ(n)|2 + ε2|∇µ(n)|2 + |∇Φ|2 + 2π(n)) dx

+

∫ T

0

∫

((n− 1)(µ(n) − µ(1)) + µ(n)|A(u)|2 + n|u|3 + |u|u · ∇µ(n)) dxdt

+ ε2
∫ T

0

∫

µ′(n)|∆µ(n)|2 dxdt+

∫ T

0

∫

p′(n)µ′(n)
|∇n|2
n

dxdt

=
1

2

∫

(n0|u0 + ∇ξ(n0)|2 + ε2|∇µ(n0)|2 + |∇Φ|2 + 2π(n0)) dx. (3.3)

For reader’s convenience, let us show the derivation line by line as in [10]. Let us rewrite

its derivation to let the paper self-contained. Multiplying the mass equation (1.4) with

ξ′(n) and taking gradient, we get for smooth solutions that

∂t∇ξ(ρ) + u · ∇∇ξ(ρ) + ∇u · ∇ξ(ρ) + ∇(ρξ′(ρ)divu) = 0
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with the help of (2.1)–(2.3). Thus, denote v = ∇ξ(n), we get by using the mass

equation (1.4) again

∂t(nv) + div(nu⊗ v) + ρ∇u · ∇ξ(n) + n∇(nξ′(n)divu) = 0,

which together with the momentum equation (1.5) and the relation (2.2) gives rise to

the equation on u+ v as

∂t(n(u+ v)) + div(nu⊗ (u+ v)) + ∇p(n) + n∇Φ

= 2div(µ(n)A(u)) + ε2n∇(ϕ′(n)∆ϕ(n)) − n|u|u (3.4)

with A(u) = 1
2(∇u− t∇u) the anti-symmetric stress tensor.

Taking inner product over T
N between the equation (3.4) and (u+ v) and between

the mass equation (1.4) and |u+ v|2/2 respectively, and adding the resultant equations

together, we get easily the new mathematical entropy equality (3.3), where we have

make use of the following facts. First of all, we have

∫

TN

div(µ(n)A(u)) · vdx = 0

since v is a gradient, and from the Poisson equation (1.6) that

−
∫

TN

n∇Φ · vdx = −
∫

TN

(n− 1)(µ(n) − µ(1))dx.

The terms coming from the dispersion give for µ(n) = ϕ(n) that

ε2
∫

TN

n∇(ϕ′(n)∆ϕ(n))·(u+v)dx = −1

2

d

dt

∫

TN

|ε∇µ(n)|2dx−ε2
∫

TN

ϕ′(n)|∆ϕ(n)|2dx,

and from the pressure lead to

∫

TN

∇p(n) · (u+ v)dx =
d

dt

∫

TN

π(n)dx+

∫

TN

p′(n)µ′(n)
|∇n|2
n

dx.

The term coming from the drag friction gives

−
∫

TN

n|u|u · (u+ v)dx = −
∫

TN

n|u|3 dx−
∫

TN

|u|u · ∇µ(n) dx

= −
∫

TN

n|u|3dx+

∫

TN

µ(n) div(|u|u) dx

≤− 1

2

∫

TN

n|u|3dx+

∫

TN

|∇µ(n)|2dx+ C

∫

TN

µ(n)|∇u|2 dx

(3.5)
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for α ∈ (2/3, 1], due to the fact

∫

TN

|µ(n) div(|u|u)|dx ≤
∫

TN

√

µ(n)

n1/3
n1/3|u|

√

µ(n)|∇u|dx

≤
(
∫

0≤n<1
+

∫

n≥1

)

√

µ(n)

n1/3
n1/3|u|

√

µ(n)|∇u|dx

≤
∫

0≤n<1
n2/3|u|2nα−2/3 dx+

∫

n≥1
n|u|2nα−1 dx

≤C
∫

TN

(µ(n)|∇u|2 + |∇µ(n)|2) dx+
1

2

∫

TN

n|u|3 dx (3.6)

The proof of the Lemma 3.1 is complete.

Next, we can derive the a-priori estimates for smooth solutions based on the entropy

estimates given by Lemma 3.1, which allows us to pass into the limit of approximate

(smooth) solution sequence, and in particular to take the dispersion limit later for the

weak solutions so long as the related estimate derived there is uniform with respect to

ε > 0.

Lemma 3.2 Let T > 0. Under the assumptions of Theorem 2.2, it holds for any

classical solution (n, u,Φ) with n > 0 of the IVP problem (1.4)–(1.8) that

n(α+1)/2 ∈ L2(0, T ;H1(TN )), (3.7)

(n(α+1)/2)t ∈ L2(0, T ;W−1,s0(TN )) ∩ L∞(0, T ;W−1,1(TN )), (3.8)

for α ∈ (2/3, 1] and γ ≥ 2, and s′0 = max{ 2γ
γ−1 ,

2(α+1)N
2α+N } > 2 if N = 2, 3; and that

nα ∈ L∞(0, T ;H1(TN )), n ∈ C([0, T ] × T
N ) (3.9)

uniformly with respect to ε > 0 for α ∈ (2/3, 1] and γ ≥ max{1, α} if N = 1.

In addition, the electrostatic potential Φ satisfies

Φ ∈ L∞(0, T ; Ẇ 2,γ(TN ) ∩ Ẇ 3,p(TN )), Φt ∈ L∞(0, T ; Ẇ
1, 2γ

γ+1 (TN )) (3.10)

with p = 2γ
γ+2(1−α) ∈ (1, 2) for N = 2, 3, and

Φ ∈ L∞(0, T ; Ḣ3(TN )), Φt ∈ L∞(0, T ; Ḣ1(TN )), N = 1. (3.11)

Proof The estimate (3.7) is established in terms of the estimates (3.1) in Lemma 3.1

as follows. We have the gradient estimate in terms of n(α+1)/2 directly

‖∇n(α+1)/2‖2
L2 = (α+1)2

4

∫

TN

nα−1|∇n|2dx = (α+1)2

4

(
∫

0≤n<1
+

∫

n≥1

)

nα−1|∇n|2dx

= (α+1)2

4 (

∫

0≤n<1
n2α−3|∇n|2n2−αdx+

∫

n≥1
nγ+α−3|∇n|2n2−γdx)
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≤C
∫

TN

(|∇µ(n)√
n

|2 + p′(n)ξ′(n)|∇n|2)dx ≤ C0, (3.12)

in the case α ∈ (0, 1] and γ ≥ 2 if N = 2, 3. Here and below C0 > 0 denotes a constant

dependent of initial data. Since it holds

n(α+1)/2 =:
1

|TN |

∫

TN

n(α+1)/2dx ≤ 1

|TN |

∫

TN

nγdx ≤ C0 (3.13)

due to the fact max{α, 1} ≤ γ, we have

‖n(α+1)/2‖2
L2 ≤C(‖n(α+1)/2 − n(α+1)/2‖2

L2 +
√

|TN | n(α+1)/2)

≤C(‖∇n(α+1)/2‖2
L2 +

√

|TN | n(α+1)/2) ≤ C0

(3.14)

with the help of Poincáre’s inequality.

To prove the regularity (3.8) for n(α+1)/2, we make use of the re-normalized equation

β(n)t + div (nβ′(n)u) − nu · ∇β′(n) = 0 to have

(n(α+1)/2)t = −1+α
2 div (n(α+1)/2u)+ 1−α2

2α

√
nu ·∇nα/2 ∈ L∞(0, T ;W−1,1(TN )), (3.15)

where we have used

‖∇nα/2‖L2(TN ) ≤ C(‖∇nα−1/2‖L2(TN ) + ‖∇nα‖L2(TN )).

On the other hand, we can re-write the re-normalized equation as

β(n)t + div (β(n)u) + (nβ′(n) − β(n))divu = 0,

in order to have for β(n) = n(α+1)/2 that

(n(α+1)/2)t = −div (nα/2√nu) + 1−α
2

√
n
√

µ(n) divu.

It is easy to verify that it holds for 1 < p0 = 2γ
γ+1 < 2 (due to γ ≥ 2) that

‖
√
n
√

µ(n) divu‖L2(0,T ;Lp0 (TN )) ≤C‖
√

µ(n) divu‖L2
t (L2

x)‖
√
n‖L∞

t (L2γ
x )

≤C‖n‖1/2

L∞

t Lγ
x
‖
√

µ(n)∇u(t)‖2
L2

x,t
, (3.16)

and for p = 2(α+1)N
2α(N−1)+N ∈ (1, 2) and q = 2(1 + 1

α) > 2 that

‖nα/2√nu‖Lq(0,T ;Lp(TN )) ≤C‖
√
nu‖L∞

t L2
x
‖nα/2‖

L
2(α+1)

α
t L

2N(α+1)/α(N−2)
x

≤C‖
√
nu‖L∞

t L2
x
‖n(α+1)/2‖α/2

L2
t H1

x
(3.17)

with the help of the Sobolev embedding

n(α+1)/2 ∈ L2(0, T ;H1(TN )) →֒ L2(0, T ;Lp(TN )), p ∈ [2, 6], N = 2, 3. (3.18)



No.1 Dissipation and dispersion approximation to hydrodynamical equations and ... 69

Thus, it follows from (3.16) and (3.17) that

(n(α+1)/2)t ∈ L
2(α+1)

α (0, T ;W−1,p(TN )) + L2(0, T ;L
2γ

γ+1 (TN )) →֒ L2
t (W

−1,s0
x ) (3.19)

with p = 2(α+1)N
2α(N−1)+N ∈ (1, 2) and s′0 = max{ 2γ

γ−1 ,
2(α+1)N
2α+N } > 2. This together with

(3.15) leads to (3.8).

In the case of spatial one-dimension N = 1, we can obtain the upper bound of

density under the assumption of γ ≥ max{1, α} and α > 1/2

nα−1/2 ≤ 1

|TN |

∫

TN

nα−1/2 dx+

∫

TN

|∇nα−1/2|dx

≤C(‖nγ‖(α−1/2)/γ
L∞

t L1
x

+ ‖∇µ(n)√
n

‖L∞

t L2
x
) ≤ C0. (3.20)

Thus, we have for α ∈ (1/2, 1] that

n ∈ L∞(0, T ;H1(TN )), N = 1, (3.21)

and

‖∇
√
n ‖2

L2(TN ) ≤ 1
(2α−1)2

∫

TN

|∇nα−1/2|2 dx ≤ C‖∇µ(n)√
n

‖L2(TN ) ≤ C0. (3.22)

The regularity (3.21) on the density n together with the re-normalized equation for

µ(n) in one-dimension gives

µ(n)t = −div (µ(n)u) − (µ′(n)n− µ(n)) divu ∈ L2(0, T ;W−1,2(TN )). (3.23)

We conclude from (3.21) and (3.23) the continuity of the function µ(ρ) = nα for any

α ∈ (1/2, 1] and the density n as

µ(n) ∈ C([0, T ] × T
N), n ∈ C([0, T ] × T

N ). (3.24)

The regularity (3.9) follows from (3.21), (3.22), and (3.24).

The regularities (3.10)–(3.11) on the electrostatic potential Φ follows from the Pois-

son equation (1.6), (3.1), (3.21), Eq. (1.4), and the Sobolev embedding inequality. The

proof of the Lemma 3.2 is complete.

Remark 3.1 Note here that the dispersion (capillarity) terms appeared in (2.7)

is meaningful in multi-dimension in the sense of distribution at least for the case α ∈
(2/3, 1] and γ ≥ 2 (or γ ≥ 1 for one-dimension). In fact, we conclude from Lemma 3.2

that

n(α+1)/2 ∈ L2(0, T ;H1(TN )), (3.25)

which together with the regularity (2.4) of (n, u) implies

∫ T

0

∫

TN

ϕ′(n)∆ϕ(n)∇n · ψ dxdt ≤ C‖
√

ϕ′(n)∆ϕ(n)‖L2
x,t
‖∇n(α+1)/2‖L2

x,t
, (3.26)
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∫ T

0

∫

TN

nϕ′(n)∆ϕ(n)divψ dxdt ≤ C‖
√

ϕ′(n)∆ϕ(n)‖L2
x,t
‖nγ‖1/2

L∞

t L1
x
, (3.27)

with q ∈ (2,∞]. Where we have used the regularity (3.7) on the density.

To justify the meaningfulness of the electrical force appeared in (2.7), we note that

it follows from (2.4), (3.7) and Sobolev embedding theorem that















n ∈ L∞([0, T ] × T
N ), for N = 1,

n ∈ Lα+1(0, T ;Lp(TN )) ∩ L∞(0, T ;Lγ(TN )), p ∈ [α+ 1,∞) for N = 2,

n ∈ Lα+1(0, T ;Lp(TN )) ∩ L∞(0, T ;Lγ(TN )), p ∈ [α+ 1, (α+1)N
N−2 ] for N = 3.

Therefore, we are able to estimate the electrical force for N = 1 as

∫ T

0

∫

TN

n∇Φ · ψ dxdt ≤ C‖n‖L∞([0,T ]×TN )‖∇Φ‖L∞

t (L2
x)‖ψ‖L∞(L2

x) (3.28)

and for N = 2, 3 that

∫ T

0

∫

TN

n∇Φ · ψ dxdt ≤ C‖n‖L2([0,T ]×TN )‖∇Φ‖L∞

t (L2
x)‖ψ‖L∞([0,T ]×TN ). (3.29)

3.2 Compactness and convergence

Proof of Theorem 2.1 With the help of the a-priori estimates, we are able to

prove the existence of global entropy weak solutions of the IVP problem (1.4)–(1.6) and

(1.7)–(1.8) in spatial one-dimension. Assume that (nk, uk,Φk) with nk > 0, k ≥ 1, is a

classical solution sequence for the IVP problem (1.4)–(1.6) and (1.7)–(1.8) and satisfies

the a-priori estimates given by Lemma 3.1. Indeed, with the standard argument as used

in [11], we can prove the existence of a sequence of approximate solutions (nk, uk,Φk)

with nk > 0, k ≥ 1, which satisfies the a-priori estimates given by Lemma 3.1. Let

us make use of the standard compactness framework developed in (refer to [11] and

references therein for instance) with modification to show the existence of (n, u,Φ)

which is the limit of (nk, uk,Φk) as k → ∞. In fact, we can verify by a straightforward

argument as proving Lemma 2.5 that it holds

nα
k ∈ L∞(0, T ;H1(TN )), ∂tn

α
k ∈ L2(0, T ;W−1,2(TN )), N = 1, (3.30)

for α ∈ (2/3, 1] and γ ≥ max{1, α}, and

0 < Ck ≤ nk ≤ C0 (3.31)

with Ck → 0 as k → ∞. On the other hand, we also have from the estimate (3.1) that

‖
√

µ′(nk) ∆µ(nk)‖2
L2

x,t
=

(
∫

0<nk≤1
+

∫

nk>1

)

αnα−1
k |∆µ(nk)|2dxdt ≤ C, (3.32)
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which together with (3.31) implies

‖∆µ(nk)‖2
L2((0,T )×TN ) ≤ C, N = 1. (3.33)

This together with the Lions-Aubin lemma implies that there is n ∈ C([0, T ] × T
N ) ∩

L∞(0, T ;H1(TN )) so that it holds after extracting a subsequence that

nk −→ n in C([0, T ] × T
N ), (3.34)

(nα
k )x → (nα)x and (n

(α+γ−1)/2
k )x → (n(α+γ−1)/2)x in L2((0, T ) × T

N ), (3.35)

µ(nk)x√
n

⇀ µ(n)x√
n

weakly in L2((0, T ) × T
N ), α > 1/2. (3.36)

The (3.34) together with (1.4) implies the conservation of mass for n
∫

n(x, t)dx =

∫

n0(x)dx = 1 (3.37)

and strong convergence of electric field

∇Φk −→ ∇Φ in C([0, T ] ×H2(TN )). (3.38)

Now, we can prove, by applying a similar argument as used in [12], that

√
nkuk −→

√
nu in L2((0, T ) × T

N ), N = 1. (3.39)

Indeed, we can first prove that there is a m so that mk = nkuk converges to m strongly

in L2(0, T ;L2(T1)), due to the facts nkuk ∈ L∞(0, T ;L2(TN )) ∩ L3(0, T ;L3(TN )),

∇(nkuk) = n
1−α/2
k n

α/2
k ∇u+ n

7/6−α
k ∇nα−1/2

k ⊗ n
1/3
k u ∈ L2(0, T ;L

6
5 (TN )), N = 1,

where we have used (3.31), and, in terms of the momentum equation (1.5),

(nkuk)t = − div (nku
2
k) − (nγ

k)x − nkΦkx − nk|uk|uk

+ α(nα
kukx)x + ε2nk(µ

′(nk)µ(nk)xx)x ∈ L1(0, T ;W−1,1(TN )).

In particular, we have m(x, t) = 0 a.e. in {n(x, t) = 0}. Moreover, since mk√
nk

is

uniformly bounded in L∞(0, T ;L2(TN ), if we define m2

n to be zero when m = 0. Then

by Fatou’s lemma, we have
∫

TN

m2

n
dx ≤ C.

Because
√
nkuk is uniformly bounded in L3(0, T ;L3(TN )), it is thus enough to prove

the strong convergence

√
nkuk −→

√
nu in L1((0, T ) × T

N ), (3.40)

as k → ∞. To this end, we denote the set of vacuum by V =: {ρ(x, t) = 0}. Notes that√
nkuk converges almost everywhere to m√

n
in the region Vc. To control the convergence
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of
√
nkuk on the vacuum set V, one sets Vk,M = {n

1
3
k uk ≥ M} for any given M > 0. It

holds obviously

∫

|√nkuk −
m√
n
|dxdt =

(

∫

(Vk,M )c\V
+

∫

(Vk,M )c∩V
+

∫

Vk,M

)

|√nkuk −
m√
n
|dxdt. (3.41)

The right hand side terms of (3.41) can be estimated as follows. Since
√
nkuk ∈

L∞(0, T ;L2(TN )) uniformly with respect to k, and
√
nkuk converges almost everywhere

to m√
ρ in the region Vc, it holds

∫

(Vk,M )c\V
|√nkuk − m√

n
|dxdt→ 0, as k → ∞.

On the other hand, the fact that
√
nkuk is uniformly bounded in L∞(0, T ;L3(TN ))

together with Tchebychev’s inequality leads to

|Vk,M | ≤ C

M2
,

from which it follows as M → ∞ that
∫

Vk,M

|√nkuk −
m√
n
|dxdt ≤

√

|Vk,M |(‖√nkuk‖L2 + ‖ m√
n
‖L2) ≤ C

M
→ 0.

What left is to control the second term on the right hand side of (3.41). Since it holds

on the region (Vk,M)c ∩ V, where nk → 0 as k → ∞, that

|√nkuk| ≤ M(nk)
1
2
− 1

3 → 0,

and
√
nkuk is uniformly bounded in L∞(0, T ;L2(TN ) with respect to n, we conclude

as k → ∞ that
∫

(Vk,M )c∩V
|√nkuk|dxdt→ 0.

This together with the fact that m√
ρ = 0 on V yields 1(Vk,M )c∩V

m√
ρ(x, t) = 0, a.e. for

any integer k. Thus, we can conclude that the second term of (3.41) goes to zero as

k → ∞. Combining all the arguments above, using the diagonal principle, we have that√
nk uk converges to

√
nu =: m√

n
in L1((0, T ) × T

N ) strongly as k → ∞. Therefore, we

also have

nk|uk|uk −→ n|u|u in L3/2((0, T ) × T
N ). (3.42)

The limits of the nonlinear diffusion, nonlinear dispersion, and electric potential

force can be justified as follows. There exist functions nαux ∈ L2(Ω × (0, T )) and
√

ϕ′(n)∆ϕ(n) ∈ L2(Ω × (0, T )) so that

nα
kukx ⇀ nαux weakly in L2(Ω × (0, T )), (3.43)



No.1 Dissipation and dispersion approximation to hydrodynamical equations and ... 73

√

ϕ′(nk)∆ϕ(nk) ⇀
√

ϕ′(n)∆ϕ(n) weakly in L2(Ω × (0, T )). (3.44)

In one-dimension, the nonlinear diffusion term becomes

2ηdiv (µ(n)D(u)) + η∇(λ(n)divu) = ηα(nαux)x.

It is easy to derive for any test function ψ defined on [0, T ] × T
N that

∫

µε(nk)ukxψdxdt =

∫

nα
kukxψdxdt+ ε

∫

nθ
kukxψdxdt

= −
∫

nα
kukψxdxdt−

∫

uk(n
α
k )xψdxdt+ ε

∫

nθ
kukxψdxdt

= −
∫

nα
kukψxdxdt−

∫

n
1/2
k uk

(nα
k )x√
nk

ψdxdt

+ ε

∫

nθ
kukxψdxdt

−→−
∫

nαuψxdxdt−
∫ √

nuµ(n)x√
n
ψdxdt. (3.45)

The limiting nonlinear dispersion term and the limiting electric force term are obtained,

in the sense of distribution, as

−
∫

nk(ϕ
′(nk)ϕ(nk)xx)xψdxdt =

∫

(nkϕ
′(nk)ϕ(nk)xxψx + nkxϕ

′(nk)ϕ(nk)xxψ) dxdt

=

∫

nkϕ
′(nk)ϕ(nk)xxψxdxdt+

∫

ϕ(nk)xϕ(nk)xxψdxdt

= −
∫

((nkϕ
′(nk))xϕ(nk)xψx + nkϕ

′(nk)ϕ(nk)xψxx) dxdt− 1

2

∫

ϕ(nk)
2
xψxdxdt

−→ −
∫

((nϕ′(n))xϕ(n)xψx + nϕ′(n)ϕ(n)xψxx) dxdt− 1

2

∫

ϕ(n)2xψxdxdt

= −
∫

n(
√

ϕ′(n)
√

ϕ′(n)ϕ(n)xx )xψdxdt, (3.46)

and
∫

nkΦkxψdxdt −→
∫

nΦxψdxdt. (3.47)

In addition, one can verify easily that the limiting function (n, u,Φ) satisfies the

equations (1.4)–(1.6) in the sense of distribution and the following energy estimates

sup
0≤t≤T

∫

TN

(|µ(n)x√
n

(t)|2 + ε2|µ(n)x(t)|2 + |Φx(t)|2 + |
√
nu(t)|2 + nγ)dx

+

∫ T

0

∫

TN

(|
(

n(α+γ−1)/2
)

x
|2 + |nα/2ux|2 + |n1/3u|3

+ ε2|
√

ϕ′(n)∆ϕ(n) |2)dxdt ≤ C0, (3.48)
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with C0 independent of T. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2 We consider the zero dispersion limit and prove the

convergence of weak solutions (nε, uε,Φε) of the IVP problem (1.4)–(1.8) to the weak

solution (ρ, v, V ) of the Navier-Stokes-Poisson system (2.12), (1.7) and (1.8). Indeed,

the dispersion limit and the convergence from the equations (1.4)–(1.6) to the Navier-

Stokes-Poisson system (2.12) can be justified by a similar compactness argument to

those used in the proof of existence theory under modification, with the help of the

a-priori estimates (2.5) and the Lions-Aubin lemma. Without the loss of generality,

we only consider the cases N = 2, 3 here, since the dispersion limit for N = 1 can be

established by a similar arguments in proving Theorem 2.1.

For any global weak solution (nε, uε,Φε) of the IVP problem (1.4)–(1.8) in the sense

of Definition 2.1, it follows from (2.5) with α ∈ (2/3, 1] and γ ≥ 2 that

nα
ε ∈ L∞(0, T ;Lγ/α(TN ))

∇nα
ε ∈ L∞(0, T ;L

2γ
γ+1 (TN ))







⇒ nα
ε ∈ L∞(0, T ;W 1, 2γ

γ+1 (TN )),

nα/2
ε ∈ L∞(0, T ;L2γ/α(TN ))

∇nα/2
ε ∈ L∞(0, T ;L

2γ
γ+1−α (TN ))







⇒ nα/2
ε ∈ L∞(0, T ;W 1, 2γ

γ+1−α (TN )),

(nα
ε )t ∈ L2(0, T ;W−1,1(TN )), (nα/2

ε )t ∈ L2(0, T ;W−1,1(TN )).

This implies the existence of 0 ≤ ρ ∈ C(0, T ;Lp(TN )) with p ∈ [1, 2γαN
γ(N−2)+N ), so that

it holds after extracting a subsequence that

nα/2
ε −→ ρα/2 in C(0, T ;Lp(TN )), p ∈ [1, 2γN

γ(N−2)+N(1−α) ),

nε −→ ρ in C(0, T ;Lp(TN )), p ∈ [1, 2γαN
γ(N−2)+N ),

nγ
ε −→ ργ in L1(0, T ;L1(TN )),















(3.49)

and then

∇Φε −→ ∇V in C([0, T ] ×H1(TN )).

Next, we show, with the help of (2.5), that there are v and J so that for some fixed

small δ1 > 0 it holds

Jε = nεuε −→ J in L2(0, T ;L1+δ1(TN )), (3.50)
√
nεuε −→

√
ρv in L1((0, T ) × T

N ), (3.51)
∫

TN

|J |2
ρ

dx ≤ C. (3.52)

Indeed, we can prove that Jε = nεuε converges strongly to some J in L2(0, T ;L1+δ1(TN ))

with δ1 > 0 small, due to the facts Jε ∈ L∞(0, T ;L
2γ

γ+1 (TN )), and

∇(nεuε) = n1−α/2
ε nα/2

ε ∇u+ n7/6−α
ε ∇nα−1/2

ε ⊗ n1/3
ε u ∈ L1(0, T ;Lp1(TN ))
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for some constant p1 > 1 so that p−1
1 = 5/6 + r−1

1 with any r1 ∈ (6,∞) for N = 2,

or r1 = 6N(α+1)
(7−6α)(N−2) > 6 for N = 3, where we recall nε ∈ Lα+1(0, T ;Lp(TN )) with

p ∈ [1, N(α+1)
N−2 ) for N = 3, and

(nεuε)t = − div (nεuε ⊗ uε) −∇nγ
ε − nε∇Φε

+ div (nα
ε ∇uε) + (α− 1)∇(nα

ε divuε)

− nε|uε|uε + ε2nε∇(µ′(nε)∆µ(nε)) ∈ L1(0, T ;W−1,1(TN )).

Moreover, since Jk√
nk

is uniformly bounded in L∞(0, T ;L2(TN )), and J(x, t) = 0 a.e.

on {ρ(x, t) = 0}, thus, if we define |J |2
ρ to be zero as ρ = 0, then by Fatou’s lemma,

we have (3.52). Again, with a similar argument as above, we can prove the strong

convergence (3.51). The strong convergence

nε|uε|uε −→
√
ρ |v|√ρ v in L1((0, T ) × T

N ) (3.53)

follows from (3.51) and the fact

√
nε uε = n1/6

ε n1/3
ε uε ∈ L3(0, T ;L

6γ
2γ+1 (TN )) →֒ L

6γ
2γ+1 ((0, T ) × T

N ).

Similarly, the weak convergence of nonlinear term ρα
ε∇uε can be obtained too.

We can now perform dispersion limit on the global solutions (nε, uε,Φε). Indeed,

we can write the system with test function ψ ∈ C∞
per([0, T ] × T

N ) as

0 =

∫ ∫

(nε∂tψ +
√
nε

√
nεuε · ∇ψ) dxdt→

∫ ∫

(ρ∂tψ +
√
ρ
√
ρv · ∇ψ) dxdt,

0 =

∫ ∫

(nεuε · ∂tψ + nεuε ⊗ uε : ∇ψ + nγ
εdivψ) dxdt

−
∫ ∫

µ(nε)D(uε) : D(ψ) dxdt−
∫ ∫

λ(nε)divuεdivψ dxdt

+

∫ ∫

nε|uε|uε · ψ dxdt

−
∫ ∫

nψ · ∇Φε dxdt− ε2
∫ ∫

nεψ · ∇(µ′(nε)∆(µ(nε))) dxdt (3.54)

−→
∫ ∫

(
√
ρ
√
ρv · ∂tψ +

√
ρv ⊗√

ρv : ∇ψ + ργdivψ) dxdt

−
∫ ∫

√

µ(ρ)
√

µ(ρ)D(v) : D(ψ) dxdt−
∫ ∫

√

λ(ρ)
√

λ(ρ) divv divψ dxdt

+

∫ ∫ √
ρ |v|√ρ v · ψ dxdt−

∫ ∫

ρ∇V · ψ dxdt (3.55)

and

0 =

∫ ∫

∇Φε · ∇ψ dxdt+

∫ ∫

nεψ dxdt→
∫ ∫

∇V · ∇ψ dxdt+

∫ ∫

ρψ dxdt
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with the help of above convergence (3.49)–(3.51), and the fact

ε2
∫ ∫

nεψ · ∇(µ′(nε)∆µ(nε))) dxdt→ 0 (3.56)

for ψ any test function, which is derived due to

ε2
∫ ∫

nεψ · ∇(µ′(nε)∆µ(nε))dxdt = −ε2
∫ ∫

div(nεψ)µ′(nε)∆µ(nε)dxdt

≤Cε‖
√

µ′(nε) ∆µ(nε)‖L2 · ε‖n(α+1)/2
ε ‖L2 + Cε‖

√

µ′(nε)∆µ(nε)‖L2 · ε‖ ∇µ(nε)√
µ′(nε)

‖L2

≤Cε(‖n(α+1)/2
ε ‖L2 + ‖∇n(α+1)/2

ε ‖L2) → 0 (3.57)

as ε→ 0+. The proof of Theorem 2.2 is completed.
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