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1. Introduction

In this paper, we consider the initial boundary value problem for the following

Cahn-Hilliard type equation with gradient dependent potential

∂u

∂t
+ div

(

K∇∆u−
→
Φ (∇u)

)

= 0, (x, t) ∈ QT , (1.1)

∇u · ν
∣

∣

∣

∂Ω
= µ · ν

∣

∣

∣

∂Ω
= 0, t ∈ [0, T ], (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where Ω is a bounded domain in R
N with smooth boundary, QT = Ω×(0, T ), ν denotes

the unit exterior normal to the boundary ∂Ω, µ = K∇∆u −
→
Φ (∇u) is the flux, K is

the positive diffusion coefficient, and
→
Φ = (Φ1,Φ2, · · · ,ΦN ) is a smooth vector function

from R
N to R

N .

The problem (1.1)–(1.3) models many interesting phenomena in mathematical biol-

ogy, fluid mechanics, phase transition, etc. Recently, such type of equations, especially

in the case of one spatial dimension have arisen interests to many mathematicians.

*This work is supported by NNSF of China (No. 10531040).
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For example, Myers [1] considered the following one dimensional fourth-order diffusion

equation,
∂u

∂t
+

∂

∂x

(

C
u3

3

∂3u

∂x3
+ f(u, ux, uxx)

)

= 0,

which has been proposed to describe the surface tension phenomena in some particular

case of thin films. We refer the readers to [2–6] for more examples of one-dimensional

models. However, many models in multi-dimensional case may occur from practical

problems, see for example [7,8]. Here, we briefly introduce the derivation of the equation

(1.1) based on the continuum model for epitaxial thin film growth from King, Stein

and Winkler [9]. Let u(x, t) be the height of the film at point x and time t. Then u

satisfies the following basic equation

∂u

∂t
= g −∇ ·

→
j + η, (1.4)

where g = g(x, t) denotes the deposition flux,
→
j =

→
j (x, t) comprises all processes which

move atoms along the surface, η = η(x, t) is some Gaussian noise. The pivotal step in

the phenomenological approach is to expand
→
j in ∇u and powers thereof keeping only

“sensible” terms (see [10]). Then, we have

→
j = A1∇u+A2∇∆u+A3|∇u|

2∇u+A4∇|∇u|2, (1.5)

where A1, A2, A3 and A4 are constants. It can be informed from the work of Ortiz [11]

that A4 = 0 if Onsager’s reciprocity relations hold. Then, after neglecting the effect of

the noise term η and the deposition flux g, the equation (1.4) reads

∂u

∂t
+A2∆

2u+A1∇ ·

(

A3

A1
|∇u|2 + 1

)

∇u = 0. (1.6)

It can be informed from [11] that the case of A1 > 0, A3 < 0 is significative and

interesting. After relabeling the constants, we have the following fourth-order diffusion

equation
∂u

∂t
+ α∆2u− β∇ ·

(

|∇u|2∇u
)

+ γ∆u = 0,

where α, β and γ are positive constants. Moreover, from a mathematical point of view

it is more satisfactory to generalize the term involving second-order diffusion, and then

we have
∂u

∂t
+ α∆2u− β∇ ·

→
Φ (∇u) = 0, (1.7)

where
→
Φ is a smooth vector with

→
Φ(0) = 0. In fact, a lot of references (for example

[12–15] etc) show that the diffusion coefficient is usually dependent on the concentration

in the models governed by the Cahn-Hilliard equations or Thin-Film equations. Then,

the equality (1.5) should be rewritten as

→
j = m(u)

(

A1∇u+A2∇∆u+A3|∇u|
2∇u+A4∇|∇u|2

)

,
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where m(s) is a positive smooth real value function, denotes the diffusion coefficient or

mobility. Substituting the above equality into the basic equation (1.4) and redoing the

same deducing procedure as above, we can see that the equation (1.7) can be generalized

to the following equation

∂u

∂t
+ div

[

m(u)(K∇∆u−
→
Φ (∇u))

]

= 0, (1.8)

where K is a positive constant.

It was King, Stein and Winkler [9] who first paid their attention to the theoretical

investigation of equations like (1.8) with constant mobility, namely the equation (1.1)

subject to the boundary value conditions (1.2) and initial value condition (1.3). The

typical case considered in [9] is related to the following gradient dependent potential

→
Φ (∇u) = |∇u|p−2∇u−∇u,

where p > 2. In fact, part of their structure conditions are

→
Φ(ξ) · ξ ≥ C1(|ξ|

p − |ξ|2),
∣

∣

∣

∣

→
Φ(ξ)

∣

∣

∣

∣

≤ C2(|ξ|
p−1 + 1),

∣

∣

∣

∣

→

Φ′(ξ)

∣

∣

∣

∣

≤ C3(|ξ|
p−2 + 1),

under which
→
Φ(ξ) · ξ is restricted to be bounded below and goes to infinity as |ξ| → ∞,

namely
→
Φ(ξ) · ξ ≥ C4, lim

|ξ|→∞

→
Φ(ξ) · ξ = +∞.

Our interest in the current paper is to find a more suitable structure condition for
→
Φ(ξ),

under which we are able to discuss the global solvability of weak solutions, while if such

a condition is not valid, then the local solution might blow-up in finite time. It will be

shown that such a condition is

→
Φ(ξ) · ξ ≥ −C|ξ|2, ∀ξ ∈ R

N , (1.9)

where C is a positive constant.

We adopt the following definition of weak solutions with more regularity than that

formulated in [9].

Definition 1.1 A function u(x, t) is said to be a weak solution of the problem

(1.1)–(1.3), if u ∈ L∞(0, T ;H2(Ω))∩C([0, T ];H1(Ω)),
→
Φ(∇u) ∈ L2(QT ), ∂u

∂t ∈ L2(QT ),

u(x, 0) = u0(x) in L2(Ω), namely,

lim
t→0+

∫

Ω
|u(x, t) − u0(x)|

2dx = 0,
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and u satisfies

∫∫

QT

∂u

∂t
ϕdxdt−K

∫∫

QT

∆u∆ϕdxdt+

∫∫

QT

→
Φ(∇u)∇ϕdxdt = 0 (1.10)

for all ϕ ∈ E ≡ {ϕ ∈ L2(0, T ;H2(Ω));∇ϕ · ν|∂Ω = 0}.

The existence and uniqueness we obtain is in the following theorem.

Theorem 1.1 Assume that
→
Φ is Lipschiz continuous and satisfies the structure

condition (1.9). If u0(x) ∈ H2(Ω), Ψ(∇u0(x)) ∈ L1(Ω), where ∇ξΨ =
→
Φ(ξ),∀ξ ∈ R

N ,

then the problem (1.1)–(1.3) admits a unique weak solution.

It is worthy noticing that if the condition (1.9) is not valid, then the solutions might

blow-up in finite time. In fact, we have

Theorem 1.2 If ∇u0(x) 6≡ 0 and

→
Φ(ξ) = −γ1|ξ|

2ξ + γ2ξ, ∀ξ ∈ R
N ,

where γ1 and γ2 are positive constants. Then there exists a positive constant Γ such

that the problem (1.1)–(1.3) admits no global weak solution if γ1 > Γ.

Finally, we supplement a regularity discussion for weak solutions. Owing to the

weakness of the structure condition (1.9), up to now, we can only obtain a fine regularity

result for two dimensional case, stated in the following theorem.

Theorem 1.3 If N = 2, u0(x) ∈ C4+α(Ω),
→
Φ = (Φ1,Φ2) satisfies the condition

(1.9), and Φ1(ξ),Φ2(ξ) ∈ C1+α(R2), then the solution of the problem (1.1)–(1.3) is

classical, namely, u ∈ C4+α,1+α/4(QT ).

As far as the regularity of the solutions is considered, a key step is to establish the a

priori Schauder type estimates. It is obvious that the Schauder’s estimates are certain

kind of pointwise estimates and in many cases it is quite difficult to derive pointwise

estimates directly from the differential equation considered. However, to derive integral

estimates is relatively easy. In fact, the Campanato spaces can be used to describe the

integral characteristic of the Hölder continuous functions. Our method in this section is

based on the theory of Campanato spaces. To shorten the length of this paper, we omit

the definition and properties of the Campanato spaces which can be found in [15–18].

Comparing to the standard Cahn-Hilliard equation, the equation (1.1) owns a gradient

dependent potential. Due to the structure condition satisfied by the potential, we can

not able to use the interpolation inequality in the proof directly. So, we have to give

the L∞ norm estimate of ∇u which restrict us to get the regularity of the solutions in

two spatial dimension.
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This paper is organized as follows. In the second section, we investigate the existence

and uniqueness of weak solutions of the problem (1.1)–(1.3) by means of the Galerkin

approach for any spatial dimension. After establishing some necessary compactness

estimates on the approximate solutions and using a compactness result of Sobolev

spaces provided by [19], we obtain the existence of weak solutions by passing to the

limits on the approximate solutions. In the third section, we prove that if
→
Φ(ξ) does

not satisfies the condition (1.9), then the nontrivial solution to the problem (1.1)–(1.3)

might blow up in a finite time. In the fourth section of this paper, we investigate the

regularity of the solutions in two spatial dimension.

2. Existence and Uniqueness of Weak Solutions

In this section we employ the Galerkin approximation to prove the existence of weak

solutions of the problem (1.1)–(1.3). For this purpose, let {φi}i∈N be the eigenfunctions

of the Laplace operator with Neumann boundary value conditions, i.e.

−∆φi = λiφi, x ∈ Ω,

∇φi · ν = 0, x ∈ ∂Ω.

The eigenfunctions φi are orthogonal in the H1(Ω) and the L2(Ω) scalar product. We

normalize φi such that (φi, φj)L2(Ω) = δij . Consider the following problem

uk(x, t) =
k
∑

i=1

cki (t)φi(x), (2.1)

∫

Ω
∂tu

kφjdx+K

∫

Ω
∆uk∆φjdx+

∫

Ω

→
Φ(∇uk)∇φjdx = 0, j = 1, · · · , k, (2.2)

uk(x, 0) =

k
∑

i=1

(u0, φi)L2(Ω) φi. (2.3)

This gives an initial value problem for a system of ordinary differential equations for

(c1, · · · , ck)

d

dt
ckj (t) = −λ2

iKc
k
j (t) −

∫

Ω

→
Φ

(

k
∑

i=1

cki (t)∇φi(x)

)

∇φjdx, (2.4)

ckj (0) = (u0, φj)L2(Ω) . (2.5)

Since the right hand side in (2.4) depends continuously on c1, · · · , ck, the initial value

problem (2.4)–(2.5) admits a local solution.

Lemma 2.1 The initial value problem (2.1)–(2.3) admits a global solution. Fur-

thermore, there exists a positive constant C which is independent of k, such that

‖uk‖L∞(0,T ;H2(Ω)) ≤ C,

∥

∥

∥

∥

∂uk

∂t

∥

∥

∥

∥

L2(QT )

≤ C. (2.6)



82 Yin Jingxue and Huang Rui Vol.21

Proof We first discuss the solvability of the problem (2.1)–(2.3). For this purpose,

we need some a priori estimates on the possible solutions uk. We use uk as a test

function to conclude
∫

Ω

∂uk

∂t
ukdx+K

∫

Ω
|∆uk|2dx+

∫

Ω

→
Φ(∇uk)∇ukdx = 0.

By the assumption (1.9), we have

1

2

d

dt

∫

Ω
|uk|2dx+K

∫

Ω
|∆uk|2dx

≤ C

∫

Ω
|∇uk|2dx = −C

∫

Ω
∆uk · ukdx

≤
K

2

∫

Ω
|∆uk|2dx+

C2

2K

∫

Ω
|uk|2dx.

Thus
d

dt

∫

Ω
|uk|2dx+K

∫

Ω
|∆uk|2dx ≤

C2
1

K

∫

Ω
|uk|2dx.

The Gronwall inequality yields

sup
t∈[0,T ]

∫

Ω
|uk(x, t)|2dx ≤ C, (2.7)

∫∫

QT

|∆uk(x, t)|2dxdt ≤ C.

The inequality (2.7) implies that cki (t) are bounded and therefore a global solution to

the initial value problem (2.4)–(2.5) exists. Thus, the initial value problem (2.1)–(2.3)

admits a global solution.

Now, we prove the two estimates on the approximate solutions uk in (2.6). To this

end, we define

Ek(t) =
K

2

∫

Ω
|∆uk(x, t)|2dx+

∫

Ω
Ψ(∇uk(x, t))dx,

where ∇ξΨ =
→
Φ(ξ),∀ξ ∈ R

N . Without loss of generality, we can assume Ψ(0) = 0.

Then,

dEk(t)

dt
= K

∫

Ω
∆uk∆

∂uk

∂t
dx+

∫

Ω

→
Φ(∇uk) · ∇

∂uk

∂t
dx

=

∫

Ω

(

K∆2uk − div
→
Φ(∇uk)

)

∂uk

∂t
dx

= −

∫

Ω

∣

∣

∣

∣

∂uk

∂t

∣

∣

∣

∣

2

dx ≤ 0.
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Thus

K

2

∫

Ω
|∆uk(x, t)|2dx+

∫

Ω
Ψ(∇uk(x, t))dx+

∫ t

0

∫

Ω

∣

∣

∣

∣

∂uk

∂t

∣

∣

∣

∣

2

dxdt = Ek(0), ∀t ∈ [0, T ].

Let Ψ(tξ) = ψ(t). It follows from the assumption (1.9) that

Ψ(ξ) = ψ(1) = ψ(1) − ψ(0)

=

∫ 1

0
ψ′(t)dt =

∫ 1

0

→
Φ(tξ) · ξdt

≥ −C

∫ 1

0
t|ξ|2dt = −

C

2
|ξ|2

holds for any ξ ∈ R
N . Then

K

2

∫

Ω
|∆uk(x,t)|2dx+

∫ t

0

∫

Ω

∣

∣

∣

∣

∂uk

∂t

∣

∣

∣

∣

2

dxdt

≤Ek(0) +
C

2

∫

Ω
|∇uk(x, t)|2dx

≤Ek(0) −
C

2

∫

Ω
uk∆ukdx

≤Ek(0) +
K

4

∫

Ω
|∆uk(x, t)|2dx+

C2

4K

∫

Ω
|uk|2dx

holds for all t ∈ [0, T ]. Noticing the inequality (2.7) and the condition satisfied by the

initial value u0, we have

K

4

∫

Ω
|∆uk(x, t)|2dx+

∫ t

0

∫

Ω

∣

∣

∣

∣

∂uk

∂t

∣

∣

∣

∣

2

dxdt ≤ C, ∀t ∈ [0, T ].

Thus we have
∥

∥

∥

∥

∂uk

∂t

∥

∥

∥

∥

L2(QT )

≤ C,

and

sup
0<t<T

∫

Ω
|∆uk|2dx ≤ C.

Combining the above inequality with (2.7), we have

‖uk‖L∞(0,T ;H2(Ω)) ≤ C.

The proof of this lemma is complete.

The following lemma is used to prove the existence of weak solutions of the problem

(1.1)–(1.3). One can find its proof in Simon [19].
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Lemma 2.2 Let X,Y and Z be Banach spaces with a compact embedding X →֒ Y

and a continuous embedding Y →֒ Z. Then the embeddings

{

u ∈ L2(0, T ;X),
∂u

∂t
∈ L2(0, T ;Z)

}

→֒ L2(0, T ;Y )

and
{

u ∈ L∞(0, T ;X),
∂u

∂t
∈ L2(0, T ;Z)

}

→֒ C([0, T ];Y )

are compact.

Now we are in a position to prove the existence and uniqueness of weak solutions

of the problem (1.1)–(1.3).

Proof of the Theorem 1.1 By Lemma 2.1, we can choose X = H2(Ω), Y =

H1(Ω) and Z = L2(Ω) in Lemma 2.2 to obtain a subsequence of ∇uk which is still

denoted by itself and

∇uk → ∇u, strongly in L2(QT ) k → +∞.

By the assumptions on
→
Φ, we have

→
Φ(∇uk) →

→
Φ(∇u), strongly in L2(QT ), k → +∞.

Letting k → +∞, by (2.6) and Lemma 2.2 we have

uk ∗
⇀ u, in L∞(0, T ;H2(Ω)),

uk → u, in C([0, T ];H1(Ω)) strongly,

∂uk

∂t
⇀

∂u

∂t
, in L2(QT ),

∆uk ⇀ ∆u, in L2(QT ),

except for a subsequence. Now we can pass to the limit in (2.2) and (2.3) to see

that (1.10) holds. The strong convergence of uk in C([0, T ];H1(Ω)) and the fact that

uk(x, 0) → u0(x) in L2(Ω) gives u(x, 0) = u0(x) in L2(Ω). Then the problem (1.1)–(1.3)

admits a weak solution.

Next, we prove the uniqueness of the weak solution. Suppose the problem (1.1)–

(1.3) admits two weak solutions u1 and u2. Set w = u1 − u2. Then the function w

satisfies the following problem

∂w

∂t
+K∆2w − div

(

→
Φ(∇u1) −

→
Φ(∇u2)

)

= 0, (x, t) ∈ QT , (2.8)

∇w · ν
∣

∣

∣

∂Ω
= µ̂ · ν

∣

∣

∣

∂Ω
= 0, t ∈ [0, T ], (2.9)

w(x, 0) = 0, x ∈ Ω, (2.10)
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where µ̂ = K∇∆w −

(

→
Φ(∇u1) −

→
Φ(∇u2)

)

. Multiplying both sides of the equation

(2.8) by w and integrating the result over Ω × (0, t), we have

∫ t

0

∫

Ω

∂w

∂t
wdxdt+K

∫ t

0

∫

Ω
|∆w|2dxdt+

∫ t

0

∫

Ω

(

→
Φ(∇u1) −

→
Φ(∇u2)

)

∇wdxdt = 0.

Since
→
Φ is Lipchitz continuous, we have

∫ t

0

∫

Ω

∂

∂t
w2dxdt+ 2K

∫ t

0

∫

Ω
|∆w|2dxdt ≤C

∫ t

0

∫

Ω
|∇w|2dxdt

≤K

∫ t

0

∫

Ω
|∆w|2dxdt+ C

∫ t

0

∫

Ω
w2dxdt.

Noticing that w(x, 0) = 0, we have

∫

Ω
w2(x, t)dx ≤ C

∫ t

0

∫

Ω
w2(x, t)dxdt.

It follows from Gronwall’s inequality that
∫

Ω
w2(x, t)dx = 0, a.e. [0, T ].

Thus w = 0 a.e. in QT . The proof of this Theorem is complete.

3. Non-Existence of Global Solutions

In the previous section, we have shown that the problem (1.1)–(1.3) admits a unique

weak solution under the condition (1.9) satisfied by
→
Φ(ξ). In this section, we will prove

that if
→
Φ(ξ) does not satisfy the condition (1.9), then the problem (1.1)–(1.3) might

not have global weak solutions.

Proof of Theorem 1.2 Suppose to the contrary, namely, the problem (1.1)–(1.3)

admits a global weak solution u. Integrating the equation (1.1) with respect to x over

Ω and using the boundary value conditions (1.2), we have

∫

Ω
u(x, t)dx =

∫

Ω
u0(x)dx ≡M, ∀t ≥ 0.

Without loss of generality, we assume M = 0. Otherwise, we may consider the initial

boundary value problem satisfied by v(x, t) = u(x, t) −M . Then, it follows from the

Poincaré inequality that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω). (3.1)

Define

E(t) =
K

2

∫

Ω
|∆u(x, t)|2dx+

∫

Ω
Ψ(∇u(x, t))dx,
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where

Ψ(ξ) = −
γ1

4
|ξ|4 +

γ2

2
|ξ|2, ∀ξ ∈ R

N .

A simple calculation gives that dE(t)
dt ≤ 0. Thus

E(t) =
K

2

∫

Ω
|∆u|2dx+

∫

Ω
Ψ(∇u)dx ≤ E(0),

and hence

K

∫

Ω
|∆u|2dx ≤ 2E(0) +

γ1

2

∫

Ω
|∇u|4dx− γ2

∫

Ω
|∇u|2dx. (3.2)

Multiplying both sides of the equation (1.1) by u and integrating the result with respect

to x over Ω, we obtain from the equality (3.1), (3.2) and the Hölder inequality that

1

2

d

dt

∫

Ω
u2dx = −K

∫

Ω
|∆u|2dx−

∫

Ω

→
Φ(∇u)∇udx

= −K

∫

Ω
|∆u|2dx+ γ1

∫

Ω
|∇u|4dx− γ2

∫

Ω
|∇u|2dx

≥
γ1

2

∫

Ω
|∇u|4dx− 2E(0) ≥

γ1

2|Ω|

(
∫

Ω
|∇u|2dx

)2

− 2E(0)

≥
γ1

2|Ω|C4

(
∫

Ω
u2dx

)2

− 2E(0),

where |Ω| is the Lebesgue measure of the domain Ω, and C is the constant in the

Poincaré inequality (3.1). Noticing that

E(0) =
K

2

∫

Ω
|∆u0(x)|

2dx−
γ1

4

∫

Ω
|∇u0(x)|

4dx+
γ2

2

∫

Ω
|∇u0(x)|

2dx,

and ∇u0(x) 6≡ 0, we know that there exists a positive constant Γ, such that E(0) ≤ 0

if γ1 > Γ. So
d

dt

∫

Ω
u2dx ≥

γ1

|Ω|C4

(
∫

Ω
u2dx

)2

.

Then

∫

Ω
|u(x, t)|2dx ≥

∫

Ω
|u0(x)|

2dx

1 −
γ1t

|Ω|C4

∫

Ω
|u0(x)|

2dx
,

which contradicts the global existence of the solution u. The proof is complete.

4. Regularity of Weak Solutions

In this section we discuss the regularity of weak solutions of the problem (1.1)–(1.3).

The key point of the proof is the Schauder type estimates on the solutions, and we will

adopt the theory of Campanato spaces combined with the energy estimates to obtain

the desired a priori estimates.

Firstly, we prove the boundedness of the L∞ norm of solutions.
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Lemma 4.1 The solution u of the problem (1.1)–(1.3) satisfies

‖u‖L∞(QT ) ≤ C, ‖∇u‖L∞(QT ) ≤ C, (4.1)

where C is a positive constant.

Proof Multiplying both sides of the equation (1.1) by u and integrating the re-

sulting relation with respect to x over Ω, we have

d

dt

∫

Ω
u2dx+ 2K

∫

Ω
|∆u|2dx ≤ C

∫

Ω
|∇u|2dx

≤ K

∫

Ω
|∆u|2dx+ C

∫

Ω
u2dx,

namely,
d

dt

∫

Ω
u2dx+K

∫

Ω
|∆u|2dx ≤ C

∫

Ω
u2dx.

It follows from the Gronwall inequality that

sup
0<t<T

∫

Ω
u2dx ≤ C. (4.2)

Define

E(t) =
K

2

∫

Ω
|∆u(x, t)|2dx+

∫

Ω
Ψ(∇u(x, t))dx,

where

∇ξΨ =
→
Φ(ξ), ∀ξ ∈ R

2.

Without loss of generality, we assume that Ψ(0) = 0. Then, a simple calculation similar

to that in the proof of Lemma 2.1 gives that

E(t) =
K

2

∫

Ω
|∆u|2dx+

∫

Ω
Ψ(∇u)dx ≤ E(0).

Furthermore, we have

sup
0<t<T

∫

Ω
|∆u(x, t)|2dx ≤ C,

which, together with the inequality (4.2), gives that

‖u(x, t)‖L∞(0,T ;H2(Ω)) ≤ C.

By the Sobolev embedding theorem, we have

‖u‖L∞(QT ) ≤ C.

It follows from the Nirenberg inequality that

‖∇u‖L∞(QT ) ≤ C1‖u‖L∞(0,T ;H2(Ω)) + C2‖u‖L∞(QT ) ≤ C.



88 Yin Jingxue and Huang Rui Vol.21

The proof of this lemma is complete.

Now, we are in a position to establish the estimate on the Hölder norm of ∇u. Let

(x0, t0) ∈ Ω × (0, T ) be fixed and define

ϕ(u, ρ) =

∫∫

Sρ

(

|∇u− (∇u)ρ|
2 + ρ4|∇∆u|2

)

dxdt,

where

Sρ = (t0 − ρ4, t0 + ρ4) ×Bρ(x
0), (∇u)ρ =

1

|Sρ|

∫∫

Sρ

∇udxdt

and Bρ(x
0) is the ball centers at x0 with radius ρ.

We split the solution u of the problem (1.1)–(1.3) on SR as u = u1 + u2, where u1

is the solution of the problem

∂u1

∂t
+ ∆2u1 = 0, (x, t) ∈ SR, (4.3)

∂u1

∂ν
=
∂u

∂ν
,

∂∆u1

∂ν
=
∂∆u

∂ν
, (x, t) ∈ (t0 −R4, t0 +R4) × ∂BR(x0), (4.4)

u1 = u, t = t0 −R4, x ∈ BR(x0), (4.5)

and u2 solves the problem

∂u2

∂t
+ ∆2u2 = div

→
Φ(∇u), (x, t) ∈ SR, (4.6)

∂u2

∂ν
= 0,

∂∆u2

∂ν
= 0, (x, t) ∈ (t0 −R4, t0 +R4) × ∂BR(x0), (4.7)

u1 = 0, t = t0 −R4, x ∈ BR(x0). (4.8)

By the classical linear theory, the above decomposition is uniquely determined by u.

Lemma 4.2

sup
(t0−R4,t0+R4)

∫

BR(x0)
|∇u2(x, t)|

2dx+

∫∫

SR

|∇∆u2|
2dxdt ≤ C sup

SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2

R6.

Proof Multiplying both sides of the equation (4.6) by ∆u2 and integrating the

result relation over (t0 −R4, t) ×BR(x0), we have

1

2

∫

BR(x0)
|∇u2(x, t)|

2dx+

∫ t

t0−R4

∫

BR(x0)
|∇∆u2|

2dxdt

=

∫ t

t0−R4

∫

BR(x0)

→
Φ(∇u)∇∆u2dxdt

≤
1

2

∫ t

t0−R4

∫

BR(x0)

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2

dxdt+
1

2

∫ t

t0−R4

∫

BR(x0)
|∇∆u2|

2 dxdt
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≤C sup
SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2

R6 +
1

2

∫ t

t0−R4

∫

BR(x0)
|∇∆u2|

2 dxdt,

which implies that

sup
(t0−R4,t0+R4)

∫

BR(x0)
|∇u2(x, t)|

2dx+

∫∫

SR

|∇∆u2|
2dxdt ≤ C sup

SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2

R6.

The proof of this lemma is complete.

Lemma 4.3

|∇u1(x
1, t1) −∇u1(x

2, t2)|
2

|x1 − x2| + |t1 − t2|1/4

≤C sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

(

ρ−3 |∇u1 − (∇u1)ρ|
2 + ρ|∇∆u1|

2
)

dx

+ C

∫∫

Sρ

(

ρ−3|∇∆u1|
2 + ρ|∇∆2u1|

)

dxdt.

Proof From the Sobolev embedding theorem, we get, for any (x1, t1), (x
2, t2) ∈ Sρ,

that

|∇u1(x
1, t1) −∇u1(x

2, t2)|
2

|x1 − x2| + |t1 − t2|1/4

≤ C sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

(

ρ−3 |∇u1 − (∇u1)ρ|
2 + ρ|∇∆u1|

2
)

dx.

Then, by using the equation (4.3) itself we can obtain the desired estimate at once.

The proof of this lemma is complete.

Lemma 4.4 (Cacciopplli-type inequality)

sup
(t0−(R/2)4 ,t0+(R/2)4)

∫

BR/2(x0)
|∇u1 − (∇u1)R|

2dx+

∫∫

SR/2

|∇∆u1|
2dxdt

≤
C

R4

∫∫

SR

|∇u1 − (∇u1)R|
2dxdt;

sup
(t0−(R/2)4 ,t0+(R/2)4)

∫

BR/2(x0)
|∆u1|

2dx+

∫∫

SR/2

|∆2u1|
2dxdt

≤
C

R4

∫∫

SR

|∆u1|
2dxdt ≤

C

R6

∫∫

S2R

|∇u1 − (∇u1)R|
2dxdt;

sup
(t0−(R/2)4 ,t0+(R/2)4)

∫

BR/2(x0)
|∇∆u1|

2dx+

∫∫

SR/2

|∇∆2u1|
2dxdt

≤
C

R4

∫∫

SR

|∇∆u1|
2dxdt.
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Proof As an example, we only prove the first inequality, since the other two can be

shown similarly. Choose a cut-off function χ(x) defined on BR(x0) such that χ(x) = 1

in BR/2(x
0) and

|∇χ| ≤
C

R
, |∆χ| ≤

C

R2
, |∇∆χ| ≤

C

R3
, |∆2χ| ≤

C

R4
.

Let g(t) ∈ C∞
0 (R) with 0 ≤ g(t) ≤ 1, 0 ≤ g′(t) ≤ C

R4 for all t ∈ R, g(t) = 1 for

t ≥ t0 − (R/2)4 and g(t) = 0 for t ≤ t0 − R4. Multiplying both sides of the equation

(4.3) by g(t)∇ ·
[

χ4(∇u1 − (∇u1)R)
]

and integrating the resulting relation over (t0 −

R4, t) ×BR(x0), we have

∫ t

t0−R4

g(t)dt

∫

BR(x0)

∂u1

∂t
∇ ·
[

χ4(∇u1 − (∇u1)R)
]

dxdt

+

∫ t

t0−R4

g(t)dt

∫

BR(x0)
∆2u1∇ ·

[

χ4(∇u1 − (∇u1)R)
]

dxdt = 0. (4.9)

The first term of the left hand side in the above equality can be written to

∫ t

t0−R4

g(t)dt

∫

BR(x0)

∂u1

∂t
∇ ·
[

χ4(∇u1 − (∇u1)R)
]

dxdt

= −

∫ t

t0−R4

g(t)dt

∫

BR(x0)

∂∇u1

∂t
χ4(∇u1 − (∇u1)R)dxdt

= −
1

2

∫ t

t0−R4

g(t)dt

∫

BR(x0)
χ4 ∂

∂t
|∇u1 − (∇u1)R|

2dxdt

= −
1

2

∫ t

t0−R4

d

dt

∫

BR(x0)
g(t)χ4|∇u1 − (∇u1)R|

2dxdt

+
1

2

∫ t

t0−R4

∫

BR(x0)
g′(t)χ4|∇u1 − (∇u1)R|

2dxdt

= −
1

2

∫

BR(x0)
g(t)χ4|∇u1 − (∇u1)R|

2dx

+
1

2

∫ t

t0−R4

∫

BR(x0)
g′(t)χ4|∇u1 − (∇u1)R|

2dxdt.

For the second term of (4.9), we just notice that

∫

BR(x0)
∆2u1∇ ·

[

χ4(∇u1 − (∇u1)R)
]

dx

= −

∫

BR(x0)
∇∆u1∆

[

χ4(∇u1 − (∇u1)R)
]

dx

= −

∫

BR(x0)
χ4|∇∆u1|

4dx− 2

∫

BR(x0)
∇χ4∇∆u1∆u1dx
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−

∫

BR(x0)
∇∆u1(∇u1 − (∇u1)R)∆χ4dx

≡− I1 − I2 − I3,

where

I2 =2

∫

BR(x0)
∇χ4∇∆u1∆u1dx = 8

∫

BR(x0)
χ∇χ∇∆u1∆u1dx

≥−
1

8

∫

BR(x0)
χ4|∇∆u1|

2dx− 128

∫

BR(x0)
|χ∇χ|2|∆u1|

2dx

≡−
1

8
I1 + I4,

and

I4 = − 128

∫

BR(x0)
|χ∇χ|2|∆u1|

2dx

≥−
C

R2

∫

BR(x0)
χ2|∆u1|

2dx

= −
C

R2

∫

BR(x0)
χ2∆u1∇ · (∇u1 − (∇u1)R)dx

=
C

R2

∫

BR(x0)
(∇u1 − (∇u1)R)∇

(

χ2∆u1

)

dx

=
C

R2

∫

BR(x0)
(∇u1 − (∇u1)R)χ2∇∆u1dx

+
C

R2

∫

BR(x0)
χ∇χ∆u1(∇u1 − (∇u1)R)dx

≥−
1

16

∫

BR(x0)
χ4|∇∆u1|

2dx−
C

R4

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx

− 64

∫

BR(x0)
|χ∇χ|2|∆u1|

2dx.

Then we have

I4 ≥ −
1

8
I1 −

C

R4

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx.

Thus

I2 ≥−
1

4
I1 −

C

R4

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx.

I3 =

∫

BR(x0)
∇∆u1(∇u1 − (∇u1)R)∆χ4dx

=

∫

BR(x0)
∇∆u1(∇u1 − (∇u1)R)

(

4χ3∆χ+ 12χ2|∇χ|2
)

dx
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≥−
1

4

∫

BR(x0)
χ4|∇∆u1|

2dx− 32

∫

BR(x0)
|χ∆χ|2|∇u1 − (∇u1)R|

2dx

− 288

∫

BR(x0)
|∇χ|4|∇u1 − (∇u1)R|

2dx

≥−
1

4
I1 −

C

R4

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx

and hence

I1 + I2 + I3 ≥
1

2
I1 −

C

R4

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx.

Then we can obtain the following estimate on the second term of (4.9)

∫ t

t0−R4

g(t)dt

∫

BR(x0)
∆2u1∇ ·

[

χ4(∇u1 − (∇u1)R)
]

dx

= −

∫ t

t0−R4

g(t)(I1 + I2 + I3)dt

≤−
1

2

∫ t

t0−R4

g(t)dt

∫

BR(x0)
χ4|∇∆u1|

2dx

+
C

R4

∫ t

t0−R4

g(t)dt

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx,

which, together with the estimate on the first term of (4.9), implies that

1

2

∫

BR(x0)
g(t)χ4|∇u1 − (∇u1)R|

2dx+
1

2

∫ t

t0−R4

g(t)dt

∫

BR(x0)
χ4|∇∆u1|

2dx

≤
1

2

∫ t

t0−R4

∫

BR(x0)
g′(t)χ4|∇u1 − (∇u1)R|

2dxdt

+
C

R4

∫ t

t0−R4

g(t)dt

∫

BR(x0)
|∇u1 − (∇u1)R|

2dx

≤
C

R4

∫∫

SR

|∇u1 − (∇u1)R|
2dxdt.

By the definition of g(t) and χ we immediately obtain the desired first inequality of

this lemma, and then complete the proof.

Lemma 4.5 For any ρ ∈ (0, R),

ϕ(u1, ρ) ≤ C
( ρ

R

)7
ϕ(u1, R).

Proof It is sufficient to show the inequality for ρ ≤ R/2. By the mean value

theorem, there exists a point (x∗, t∗) ∈ Sρ such that

(∇u1)ρ = ∇u1(x
∗, t∗).
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Then, by Lemma 4.3 and Lemma 4.4, one has
∫∫

Sρ

|∇u1 − (∇u1)ρ|
2dxdt

=

∫∫

Sρ

|∇u1 −∇u1(x
∗, t∗)|

2dxdt

≤Cρ6 sup
(x,t)∈Sρ

|∇u1 −∇u1(x
∗, t∗)|

2

≤Cρ7 sup
t∈(t0−(R/2)4,t0+(R/2)4)

∫

BR/2(x0)

(

R−3|∇u1 − (∇u1)R|
2 +R|∇∆u1|

2
)

dx

+ Cρ7

∫∫

SR/2

(R−3|∇∆u1|
2 +R|∇∆2u1|

2)dxdt

≤C
( ρ

R

)7
∫∫

SR

(|∇u1 − (∇u1)R|
2 +R4|∇∆u1|

2)dxdt,

and
∫∫

Sρ

ρ4|∇∆u1|
2dxdt ≤Cρ8 sup

t∈(t0−ρ4,t0+ρ4)

∫

Bρ(x0)
|∇∆u1|

2dx

≤Cρ7R sup
t∈(t0−(R/2)4 ,t0+(R/2)4)

∫

BR/2(x0)
|∇∆u1|

2dx

≤C
( ρ

R

)7
∫∫

SR

R4|∇∆u1|
2dxdt.

The proof of this lemma is complete.

The following technical lemma is required to estimate the Höler norm of ∇u. One

can find its proof in Giaquinta [20].

Lemma 4.6 Let ϕ(ρ) be a nonnegative and nondecreasing function satisfying

ϕ(ρ) ≤ A
( ρ

R

)α
ϕ(R) +BRβ, ∀0 < ρ ≤ R ≤ R0,

where A,B,α, β are positive constants with β < α. Then there exists a positive constant

C depending only on α, β and A, such that

ϕ(ρ) ≤ C
( ρ

R

)β [

ϕ(R) +BRβ
]

, ∀0 < ρ ≤ R ≤ R0.

Lemma 4.7 For λ ∈ (6, 7),

ϕ(u, ρ) ≤ C

(

1 + sup
SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2
)

ρλ, ∀0 < ρ ≤ R ≤ R0,

where R0
∆
= min

{

dist(x0, ∂Ω), t
1/4
0

}

.
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Proof A simple calculation gives that

(∇u)ρ = (∇u1)ρ + (∇u2)ρ,

and
∫∫

Sρ

|∇u− (∇u)ρ|
2dxdt ≤

∫∫

Sρ

|∇u|2dxdt.

Then, by Cauchy’s inequality and using Lemmas 4.2 and Lemma 4.5, we have

ϕ(u, ρ) ≤2ϕ(u1, ρ) + 2ϕ(u2, ρ)

≤C
( ρ

R

)7
ϕ(u1, R) + 2ϕ(u2, R)

≤C
( ρ

R

)7
ϕ(u,R) + 2

∫∫

SR

(

|∇u2|
2 +R4|∇∆u2|

2
)

dxdt

≤C
( ρ

R

)7
ϕ(u,R) + C sup

SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2

R10

≤C
( ρ

R

)7
ϕ(u,R) + C sup

SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

2

Rλ,

where 6 < λ < 7 is a constant. Then, by Lemma 4.6, one can complete the proof of

this lemma immediately.

Now we give the proof of Theorem 1.3 as follows.

Proof of the Theorem 1.3 From the integral characteristic of the Hölder con-

tinuous functions (see [15,17,20] for details) and the Lemma 4.7, one has

|∇u(x1, t1) −∇u(x2, t2)|

|x1 − x2|(λ−6)/2 + |t1 − t2|(λ−6)/8
≤ C

(

1 + sup
SR

∣

∣

∣

∣

→
Φ(∇u)

∣

∣

∣

∣

)

.

By Lemma 4.1, we have

∣

∣∇u(x1, t1) −∇u(x2, t2)
∣

∣ ≤ C
(

|x1 − x2|(λ−6)/2 + |t1 − t2|
(λ−6)/8

)

.

Noticing that one can rewrite the equation (1.1) to the following form

∂u

∂t
+K∆2u−B1(x, t)∇ux1

−B2(x, t)∇ux2
= 0,

where Bi(x, t) = ∇ξΦi(∇u), i = 1, 2. By the Hölder continuity of ∇u and
→
Φ, one can

see that Bi(x, t) is Hölder continuous. Using the classical Schauder theory for parabolic

equations, one can conclude that the solution of the problem (1.1)–(1.3) is classical in

the interior points of QT .

For the regularity of the solution near the boundary of QT , we can deal with it in

the same way. Let (x0, t0) ∈ ∂Ω× (0, T ) be fixed and assume that ∂Ω can be explicitly

expressed by a function y = φ(x) in some neighborhood of x0. We split u as u1 + u2 in
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ŜR = (t0 − R4, t0 + R4) × ΩR(x0) with ΩR(x0) = BR(x0) ∩ Ω. u1 solves the following

problem

∂u1

∂t
+ ∆2u1 = 0, (x, t) ∈ ŜR,

∂u1

∂ν
=
∂u

∂ν
,

∂∆u1

∂ν
=
∂∆u

∂ν
, (x, t) ∈ (t0 −R4, t0 +R4) × ∂ΩR(x0),

u1 = u, t = t0 −R4, x ∈ ΩR(x0),

and u2 solves the problem

∂u2

∂t
+ ∆2u2 = div

→
Φ(∇u), (x, t) ∈ ŜR,

∂u2

∂ν
= 0,

∂∆u2

∂ν
= 0, (x, t) ∈ (t0 −R4, t0 +R4) × ∂ΩR(x0),

u1 = 0, t = t0 −R4, x ∈ ΩR(x0).

We can modify the function ϕ(u, ρ) as

ϕ(u, ρ) =

∫∫

Sρ

(

|∂nu|
2 + |∂τu− (∂τu)ρ|

2 + ρ4|∇∆u|2
)

dxdt,

where

∂n = φ′(x)
∂

∂x1
−

∂

∂x2
, ∂τ =

∂

∂x1
+ φ′(x)

∂

∂x2

denote the normal and tangential derivatives respectively. The remaining part of the

proof is similar to that in the proof of the previous lemmas, and we omit the details.

The proof of the theorem is complete.
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