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Abstract For solving nonlinear parabolic equation on massive parallel computers,
the construction of parallel difference schemes with simple design, high parallelism and
unconditional stability and second order global accuracy in space, has long been desired.
In the present work, a new kind of general parallel difference schemes for the nonlinear
parabolic system is proposed. The general parallel difference schemes include, among
others, two new parallel schemes. In one of them, to obtain the interface values on
the interface of sub-domains an explicit scheme of Jacobian type is employed, and then
the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of
Jacobian type, the values at the points being adjacent to the interface points are taken
as the linear combination of values of previous two time layers at the adjoining points
of the inner interface. For the construction of another new parallel difference scheme,
the main procedure is as follows. Firstly the linear combination of values of previous
two time layers at the interface points among the sub-domains is used as the (Dirichlet)
boundary condition for solving the sub-domain problems. Then the values in the sub-
domains are calculated by the fully implicit scheme. Finally the interface values are
computed by the fully implicit scheme, and in fact these calculations of the last step
are explicit since the values adjacent to the interface points have been obtained in the
previous step. The existence, uniqueness, unconditional stability and the second order
accuracy of the discrete vector solutions for the parallel difference schemes are proved.
Numerical results are presented to examine the stability, accuracy and parallelism of
the parallel schemes.
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1. Introduction

There is rich literature on the parallel difference schemes for the parabolic equation
(see [1-5] [6-10]).Explicit schemes are naturally parallel and also easy to implement, but
they usually require small time steps because of stability constraints. Implicit schemes
are necessary for finding steady state solution or computing slowly unsteady problems
where one needs to march with large time steps. However, implicit schemes are not
inherently parallel. The parallel schemes in [4, 5]and [9, 10] use the explicit scheme and
the implicit scheme alternately in the time and space direction, which can implement the
parallel computation and are unconditionally stable. These schemes involve three time
layers in essence, and have been extended to semi-linear parabolic equation in [7]. Their
truncation error is O(τ + h), where τ and h are the time and space step respectively.
Furthermore they suffer from the defect that the truncation error of the alternating
schemes can not be eliminated for the general nonlinear parabolic problem. For clarity
we recall the definition of the unconditional stability. Let r = τ

h2 . If a difference
scheme is stable for all small τ and h satisfying r ≤ Λ with Λ being any fixed positive
constant, then we call it is unconditionally stable. For the heat equation ut = uxx

the fully implicit scheme is unconditional stable, while the fully explicit scheme is not
unconditional stable since the constant Λ cannot be taken larger than 1

2 in this case.
A natural way to solve partial differential equations in parallel is to divide the do-

main over which the problem is defined into sub-domains, and solves the sub-domain
problems in parallel. The major difficulties with such procedures involve defining val-
ues on the sub-domain boundaries and piecing the solutions together into a reasonable
approximation to the true solution. Once the interface values are available, the global
problem is fully decoupled and thus computed in parallel. A parallel scheme was pro-
posed in [1], where instead of using the same spacing h as for the interior points where
the implicit scheme is applied, a larger spacing HD is used at each interface point
where the explicit scheme is applied. There are also some other schemes with domain
decomposition in [2, 3]. These schemes are conditionally stable. Since unconditional
stable schemes are desired in many applications, some unconditional stable schemes
were proposed in [8], which firstly take the values of previous time step as the bound-
ary condition, and then solve the sub-domain problems in parallel, and finally update
the interface values between sub-domains by the implicit scheme. These schemes can
be easily implemented in the parallel computer, but their convergence order is only
one order. In order to improve the convergence order, the parallel iterative differ-
ence schemes based on interface correction for parabolic equation were proposed in [6],
which are complicated in requiring the correction of the interface values in the process
of iteration of solving sub-domain problems.

In this paper we propose a new kind of general parallel difference schemes for the
nonlinear parabolic problem. The resulting schemes are of second order global accuracy
in space and unconditionally stable as well. The general parallel difference schemes
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include, among others, two new parallel schemes. In one of them, to obtain the interface
values on the interface of sub-domains an explicit scheme of Jacobian type is employed,
in which the values at the points being adjacent to the interface points are taken as the
linear combination of values of previous two time layers at the adjoining points of the
inner interface, and then the fully implicit scheme is used in the sub-domains. The main
ideas of constructing the another new parallel difference scheme are as follows. First
we take a linear combination of the values of previous two time layers at the interface
points among the sub-domains as the (Dirichlet) inner boundary condition for solving
the sub-domain problems. Then the values in the sub-domains are calculated by using
the fully implicit scheme in parallel. Finally the interface values are computed by the
fully implicit scheme, and in fact these calculations of the last step are explicit since
the values at the points being adjacent to the interface points have been obtained in
the previous step. It’s obvious that the design of the parallel schemes is very simple.
The new kind of schemes is equivalent to a kind of two-layer schemes with intrinsic
parallelism, though the values of the previous two time layers at the interface points
(or their adjacent points) are used in the statement of the construction.

To show the performance of our new parallel difference schemes for two dimen-
sional problem, we will compare them with the well-known parallelization method, the
so-called parallel algebraic method, which uses the parallel preconditioned conjugate
gradient method to solve the global (linear or nonlinear) algebraic system of equations
arising from the fully implicit scheme on the global space domain. That is, the stan-
dard implicit discretization for the nonlinear parabolic equations is used, and then the
usual Picard linearization is applied to form a linear algebraic system of equations, and
finally the parallel algebraic solver (parallel preconditioned conjugate gradient method,
see [11]) is exploited to solve the linear system in parallel on parallel computers. We
call it the parallel algebraic method since the difference scheme to be solved is the fully
(nonlinear) implicit scheme, not a parallel difference scheme. Our new parallel differ-
ence scheme can be regarded as a meaningful modification of both the fully implicit
scheme and the parallel difference schemes proposed in previous papers. They differ in
the treatment of the values at the points being adjacent to the interface points.

The rest of this paper is organized as follows. In next section, we describe the par-
allel difference schemes for one dimensional problem. In Section 3, we derive the priori
estimate, existence, and convergence of the discrete vector solutions for the parallel
difference schemes under the assumption that the unique smooth vector solution of the
original problems for the nonlinear parabolic system exist. In Section 4, we prove the
unconditional stability and uniqueness of the discrete vector solutions for the parallel
schemes. In Section 5, we extend the results to two-dimensional problem. In Section 6,
we examine numerically the stability, accuracy, and parallelism of the schemes. The nu-
merical results verify the theoretical results. Moreover it is shown that the super-linear
speedup is achieved. In the final section, we present a summary.
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2. Construction of Parallel Difference Schemes

2.1 Problem and notation

Consider the nonlinear parabolic system:

ut = A(x, t, u, ux)uxx + f(x, t, u, ux), 0 < x < l, 0 < t ≤ T (2.1)

u(0, t) = u(l, t) = 0, 0 < t ≤ T (2.2)

u(x, 0) = ϕ(x), 0 ≤ x ≤ l (2.3)

where u(x, t) = (u1(x, t), · · · , um(x, t)) is an m–dimensional vector function (m ≥ 1),
ut = ∂u

∂t , ux = ∂u
∂x and uxx = ∂2u

∂x2 are the corresponding vector derivatives. A(x, t, u, p)
is a m × m positive definite coefficient matrix, f(x, t, u, ux) and ϕ(x) are the m–
dimensional vector functions.

Let QT = {0 ≤ x ≤ l, 0 ≤ t ≤ T}, where l > 0, T > 0. Divide the domain QT into
small grids by x = xj (j = 0, 1, · · · , J) and t = tn (n = 0, 1, · · · , N), where xj = jh,
tn = nτ , J and N are positive integers, h and τ are step lengths of the grids. Denote
Qn

j = {xj < x ≤ xj+1, t
n < t ≤ tn+1}, where j = 0, 1, · · · , J − 1;n = 0, 1, · · · , N −

1. For a function f(x, t) defined at mesh points (xj , t
n), let fn

j = f(xj , t
n). Let

v∆ = vτ
h = {vn

j |j = 0, 1, · · · , J ;n = 0, 1, · · · , N} be the m–dimensional discrete vector
function defined on the discrete rectangular domain Q∆ = {(xj , t

n)|j = 0, 1, · · · , J ;n =
0, 1, · · · , N}.

Define the difference operators

∆τv
n+1
j =

vn+1
j − vn

j

τ
, δvn

j+ 1
2

=
vn
j+1 − vn

j

h
,

δvn+1
j =

1
2
(δvn

j+ 1
2

+ δvn
j− 1

2

), δ̄vn+1
j =

1
2h

(
v

n̄+λj

j+1 − v
n̄+µj

j−1

)
,

∗
δ 2vn+1

j =
1
h2

(
v

n̄+λj

j+1 − 2vn+1
j + v

n̄+µj

j−1

)
, n ≥ 1,

where

v
n̄+λj

j+1 = λjv
n+1
j+1 + (1− λj)(2vn

j+1 − vn−1
j+1 ),

v
n̄+µj

j−1 = µjv
n+1
j−1 + (1− µj)(2vn

j−1 − vn−1
j−1 ).

When n = 0, define the difference operator

∗
δ 2vn+1

j = δ2v1
j =

1
h2

(
v1
j+1 − 2v1

j + v1
j−1

)
.

For the discrete function uh = {uj |j = 0, 1, · · · , J}, where u0 = uJ = 0, define the
discrete norm as follows:

‖uh‖∞ = max
0≤j≤J

|uj |, ‖uh‖2
2 =

J−1∑

j=1

u2
jh, ‖δuh‖2

2 =
J−1∑

j=0

|δuj+ 1
2
|2h,
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∥∥∥∗δ 2vn+1
h

∥∥∥
2

2
=

J−1∑

j=1

∣∣∣∗δ 2vn+1
j

∣∣∣
2

h,
∥∥∆τv

n+1
h

∥∥2

2
=

J−1∑

j=1

∣∣∣∆τv
n+1
j

∣∣∣
2
h.

2.2 Parallel difference scheme

The general parallel difference schemes for the nonlinear parabolic system (2.1)–
(2.3) are as follows:

vn+1
j − vn

j

τ
= An+1

j

∗
δ 2vn+1

j + fn+1
j , (j = 1, · · · , J − 1;n = 0, · · · , N − 1), (2.4)

vn+1
0 = vn+1

J = 0, (n = 0, 1, · · · , N − 1), (2.5)

v0
j = ϕj , (j = 0, 1, · · · , J), (2.6)

where ϕj = ϕ(xj), (j = 0, 1, · · · , J), ϕ0 = ϕJ = 0; An+1
j = A(xj , t

n+1, vn+1
j , δ̄vn+1

j ),
fn+1

j = f(xj , t
n+1, vn+1

j , δ̄vn+1
j ).

We can obtain some concrete examples of the parallel schemes by choosing the
parameter in the general schemes (2.4).

2.3 Assumptions

Introduce the following assumptions.
(I) The problem (2.1)–(2.3) has a unique smooth solution u(x, t) ∈ C3(QT ), and the

maximum norms of u(x, t) and its first order derivatives and second order derivatives
are bounded by a constant G, i.e.,

|u(x, t)|, |ux(x, t)|, |uxx(x, t)|, |ut(x, t)|, |uxt(x, t)| ≤ G. (2.7)

(II) There has a positive constant σ0, such that for any ξ ∈ Rm, (x, t) ∈ QT and
u, p ∈ Rm,

(ξ,A(x, t, u, p)ξ) ≥ σ0|ξ|2. (2.8)

(III) The coefficient matrix A(x, t, u, p) and vector function f(x, t, u, p) are con-
tinuous with respect to (x, t) ∈ QT , and continuously differentiable with respect to
u, p ∈ Rm.

(IV) The initial vector function ϕ(x) ∈ C1[0, l], and ϕ(0) = ϕ(l) = 0.
(V) Suppose that r = τ

h2 ≤ Λ, which holds for all τ and h small enough, where Λ
can be any given positive constant; and there hold 0 ≤ λj , µj ≤ 1, λj + µj+1 ≥ 1 for ∀
1 ≤ j ≤ J − 1.

Note that the constant λj and µj depend on j = 1, 2, · · · , J − 1. They may be
different from different j. These schemes (2.4)–(2.6) include many different schemes
with intrinsic parallelism, for example, the resulting scheme when λj = 0 or µj = 0 at
some mesh points.
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Since u(x, t) ∈ C3(QT ) is the smooth solution of the problem (2.1)–(2.3), the dis-
crete vector function u∆ = uτ

h = {un
j = u(xj , t

n)|0 ≤ j ≤ J, 0 ≤ n ≤ N} satisfies the
difference system:

un+1
j − un

j

τ
= Ān+1

j

∗
δ 2un+1

j + f̄n+1
j + Rn+1

j ,

(j = 1, · · · , J − 1;n = 0, · · · , N − 1), (2.9)

un+1
0 = un+1

J = 0, (n = 0, 1, · · · , N − 1), (2.10)

u0
j = ϕj , (j = 0, 1, · · · , J), (2.11)

where Ān+1
j = A(xj , t

n+1, un+1
j , δ̄un+1

j ), f̄n+1
j = f(xj , t

n+1, un+1
j , δ̄un+1

j ), Rn+1
j = O(τ +

h2).
Denote w∆ = v∆−u∆ = vτ

h−uτ
h = {wn

j = vn
j −un

j |0 ≤ j ≤ J, 0 ≤ n ≤ N}. Subtract
(2.9) from (2.4), (2.10) from (2.5), and (2.11) from (2.6) to obtain

wn+1
j − wn

j

τ
= A(v)n+1

j

∗
δ 2wn+1

j + B(u, v)n+1
j wn+1

j + C(u, v)n+1
j δ̄wn+1

j

+Rn+1
j , (j = 1, 2, · · · , J − 1;n = 0, 1, · · · , N − 1), (2.12)

wn+1
0 = wn+1

J = 0, (n = 0, 1, · · · , N − 1), (2.13)

w0
j = 0, (j = 0, 1, · · · , J), (2.14)

where

A(v)n+1
j = An+1

j = A(xj , t
n+1, vn+1

j , δ̄vn+1
j ),

B(u, v)n+1
j = (Au)n+1

j

∗
δ 2un+1

j + (fu)n+1
j ,

C(u, v)n+1
j = (Ap)n+1

j

∗
δ 2un+1

j + (fp)n+1
j ,

(Au)n+1
j =

∫ 1

0
Au(xj , t

n+1, λvn+1
j + (1− λ)un+1

j , δ̄vn+1
j )dλ,

(Ap)n+1
j =

∫ 1

0
Ap(xj , t

n+1, un+1
j , λδ̄vn+1

j + (1− λ)δ̄un+1
j )dλ,

(fu)n+1
j and (fp)n+1

j are similarly defined.

2.4 Lemmas

The proof of our main results relies on the following lemmas (see [12]):

Lemma 2.1 (The discrete Green formula) Let uj and vj be the discrete function
defined on {xj |j = 0, 1, · · · , J}, then

J−1∑

j=0

uj(vj+1 − vj) = −
J−1∑

j=1

(uj − uj−1)vj − u0v0 + uJ−1vJ .
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Lemma 2.2 (The discrete Gronwall inequality) (i) Let wn ≥ 0 be a discrete func-
tion defined on {tn|n = 0, 1, · · · , N}, and satisfy

wn+1 − wn ≤ Bτ(wn+1 + wn) + Cnτ, n = 0, 1, · · · , N − 1,

where B and Cn are nonnegative constants, then

wn ≤
(

w0 +
N∑

k=0

Ckτ

)
e4BT , n = 0, 1, · · · , N,

where we take τ such that 4Bτ ≤ N−1
N .

(ii) Suppose that the discrete function wτ = {wn ≥ 0|n = 0, 1, · · · , N}, Nτ = T ,
satisfies

wn ≤ B + C
n∑

k=0

wkτ,

where B and C are nonnegative constants, then

wn ≤ B(e2CT + 1),

where we take τ such that Cτ ≤ 1
2 .

Lemma 2.3(The interpolation formula) For any discrete function uh = {uj |j =
0, 1, · · · , J} (Jh = l), the following assertions hold.

(i) For ∀ ε > 0, there are

‖uh‖2
∞ ≤ ε‖δuh‖2

2 +
C

ε
‖uh‖2

2,

where C is a constant depending on l, and independent of ε, h and uh;
(ii) If u0 = uJ = 0, then

‖uh‖2 ≤ l‖δuh‖2, ‖uh‖∞ ≤ ‖δuh‖
1
2
2 ‖uh‖

1
2
2 ;

(iii) There exists a constant C independent of h and l, such that

‖δuh‖2 ≤ C

(
‖uh‖

1
2
2 ‖δ2uh‖

1
2
2 + l−1‖uh‖2

)
.

Throughout the paper C denotes a generic positive constant, which is independent
of h, τ and vτ

h.

3. Priori Estimate, Existence and Convergence

Construct a mapping Φ from m(J + 1)(N + 1) dimensional Euclidean space R∗ =
Rm(J+1)(N+1) to itself.
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For ∀ z∆ = zτ
h = {zn

j |0 ≤ j ≤ J, 0 ≤ n ≤ N} ∈ R∗, let w∆ = Φ(z∆) ∈ R∗ be the
solution of the linear difference system:

wn+1
j − wn

j

τ
= A(u + z)n+1

j

∗
δ 2wn+1

j + Hn+1
j ,

(j = 1, 2, · · · , J − 1;n = 0, 1, · · · , N − 1), (3.1)

wn+1
0 = wn+1

J = 0, (n = 0, 1, · · · , N − 1), (3.2)

w0
j = 0, (j = 0, 1, · · · , J), (3.3)

where Hn+1
j = B(u, u + z)n+1

j wn+1
j + C(u, u + z)n+1

j δ̄wn+1
j + Rn+1

j .
Let Ω be a close convex set bounded in R∗:

Ω = {z∆| max
0≤n≤N

‖zn
h‖∞ ≤ G, max

0≤n≤N
‖δzn

h‖∞ ≤ G}.

Making the scalar product of
∗
δ 2wn+1

j hτ with (3.1), and summing up the resulting
products for j = 1, 2, · · · , J − 1, we get

J−1∑

j=1

(∗
δ 2wn+1

j , wn+1
j − wn

j

)
h = τ

J−1∑

j=1

(∗
δ 2wn+1

j , An+1
j

∗
δ 2wn+1

j + Hn+1
j

)
h. (3.4)

Obviously

∗
δ 2wn+1

j = δ2wn+1
j − r

[
(1− λj)(∆τw

n+1
j+1 −∆τw

n
j+1) + (1− µj)(∆τw

n+1
j−1 −∆τw

n
j−1)

]
,

and by Lemma 2.1,

J−1∑

j=1

(
δ2wn+1

j , wn+1
j − wn

j

)
h = −1

2
‖δwn+1

h ‖2
2 +

1
2
‖δwn

h‖2
2 −

1
2
‖δwn+1

h − δwn
h‖2

2.

When 0 ≤ λj ≤ 1, 0 ≤ µj ≤ 1, λj + µj+1 ≥ 1, we have

−r

J−1∑

j=1

(
(1− λj)(∆τw

n+1
j+1 −∆τw

n
j+1) + (1− µj)(∆τw

n+1
j−1 −∆τw

n
j−1), w

n+1
j − wn

j

)
h

−1
2
‖δwn+1

h − δwn
h‖2

2 ≤
τ2

2h

J−1∑

j=0

[
−(1− λj)

∣∣∣∆τw
n+1
j+1

∣∣∣
2
− (1− µj+1)

∣∣∣∆τw
n+1
j

∣∣∣
2

+(1− λj)
∣∣∆τw

n
j+1

∣∣2 + (1− µj+1)
∣∣∆τw

n
j

∣∣2
]

= −τr

2

J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2
− ∣∣∆τw

n
j

∣∣2
)

h.
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Hence,

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + 2τ

J−1∑

j=1

(∗
δ 2wn+1

j , An+1
j

∗
δ 2wn+1

j

)
+ τr

J−1∑

j=1

(2− λj−1 − µj+1)

×
(∣∣∣∆τw

n+1
j

∣∣∣
2
− ∣∣∆τw

n
j

∣∣2
)

h ≤ −2τ

J−1∑

j=0

(∗
δ 2wn+1

j ,Hn+1
j

)
h

≤ 2τ

∣∣∣∣∣∣

J−1∑

j=1

(∗
δ 2wn+1

j ,Hn+1
j

)
h

∣∣∣∣∣∣

≤ τ

2

J−1∑

j=1

σ(An+1
j )

∣∣∣∗δ 2wn+1
j

∣∣∣
2

h + 2τ
J−1∑

j=1

∣∣∣Hn+1
j

∣∣∣
2

σ(An+1
j )

h.

Notice that

δ̄wn+1
j =

1
2h

(wn+1
j+1 − wn+1

j−1 )

− τ

2h

(
(1− λj)(∆τw

n+1
j+1 −∆τw

n
j+1) − (1− µj)(∆τw

n+1
j−1 −∆τw

n
j−1)

)
,

and then there is

J−1∑

j=1

|δ̄wn+1
j |2h ≤ C

J−1∑

j=1

|δwn+1
j+ 1

2

|2h

+Cτr
J−1∑

j=1

(
(1− λj−1)2 + (1− µj+1)2

) ·
(
|∆τw

n+1
j |2 + |∆τw

n
j |2

)
h.

Hence,

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + 2τ
J−1∑

j=1

(∗
δ 2wn+1

j , An+1
j

∗
δ 2wn+1

j

)

+τr
J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2
− ∣∣∆τw

n
j

∣∣2
)

h

≤ τ

2

J−1∑

j=1

(∗
δ 2wn+1

j , An+1
j

∗
δ 2wn+1

j

)
h + Cτ [τr

J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2

+
∣∣∆τw

n
j

∣∣2
)

+ ‖wn+1
h ‖2

2 + ‖δwn+1
h ‖2

2 + (τ + h2)2], (3.5)

where the Cauchy inequality is used, and

σ(A) = inf
ξ∈Rm

(ξ, Aξ)
|ξ|2 .
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It follows

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + σ0τ‖
∗
δ 2wn+1

h ‖2
2

+τr

J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2
−

∣∣∆τw
n
j

∣∣2
)

h

≤ Cτ


τr

J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2
+

∣∣∆τw
n
j

∣∣2
)

+ ‖δwn+1
h ‖2

2 + (τ + h2)2


 .

Obviously,

‖δw1
h‖2

2 + τ‖∆τw
1
h‖2

2 ≤ C(‖δw0
h‖2

2 + (τ + h2)2) = C(τ + h2)2.

Combine the above two inequalities to find

max
0≤n≤N−1

‖δwn+1
h ‖2 ≤ C(τ + h2), max

0≤n≤N−1
‖wn+1

h ‖∞ ≤ C(τ + h2), (3.6)

and

(
N−1∑

n=0

∥∥∥∗δ 2wn+1
h

∥∥∥
2

2
τ

) 1
2

+

(
N−1∑

n=0

∥∥∆τw
n+1
h

∥∥2

2
τ

) 1
2

≤ C(τ + h2),

(
N−1∑

n=0

∥∥δ2wn+1
h

∥∥2

2
τ

) 1
2

≤ C(τ + h2), max
0≤n≤N−1

‖δwn+1
h ‖∞ ≤ C(

τ

h
1
2

+ h
3
2 ). (3.7)

For τ

h
1
2

and h
3
2 small enough,

max
0≤n≤N−1

‖wn+1
h ‖∞ ≤ G, max

0≤n≤N−1
‖δwn+1

h ‖∞ ≤ G.

i.e. w∆ ∈ Ω. So the mapping Φ is a continuous mapping from Ω to itself.
By the Brouwer fixed point theorem, we get the following result.

Theorem 3.1 Suppose that the conditions (I)–(V) hold, and step length τ , h and
τ

h
1
2

are small enough. Then there exists at least one solution v∆ for the parallel differ-

ence schemes (2.4)–(2.6), and the estimates (3.6)–(3.7) hold.

4. Stability and Uniqueness

Suppose that m × m coefficient matrix Ã(x, t, u, p), m–dimensional vector func-
tions f̃(x, t, u, p) and ϕ̃(x) satisfy the conditions (I)–(IV), and they approximate
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A(x, t, u, p), f(x, t, u, p) and ϕ(x) respectively. Suppose that ṽ∆ = {ṽn
j |j = 0, 1, · · · , J ;n =

0, 1, · · · , N} satisfies

ṽn+1
j − ṽn

j

τ
= Ãn+1

j

∗
δ 2ṽn+1

j + f̃n+1
j , (j = 1, · · · , J − 1;n = 0, · · · , N − 1), (4.1)

ṽn+1
0 = ṽn+1

J = 0 (n = 0, 1, · · · , N − 1), (4.2)

ṽ0
j = ϕ̃j = ϕ̃(xj), (j = 0, 1, · · · , J), (4.3)

where

Ãn+1
j = Ã(xj , t

n+1, ṽn+1
j , δ̄ṽn+1

j ), f̃n+1
j = f̃(xj , t

n+1, ṽn+1
j , δ̄ṽn+1

j ).

Assume the inequalities (3.6)–(3.7) hold for ṽ∆ and ṽ∆ = {ṽn
j } ∈ Ω.

Denote w∆ = v∆ − ṽ∆ =
{

wn
j = vn

j − ṽn
j | j = 0, 1, · · · , J ;n = 0, 1, · · · , N}. Sub-

tract (4.1) from (2.4), (4.2) from (2.5), and (4.3) from (2.6) to obtain

wn+1
j − wn

j

τ
= An+1

j

∗
δ 2wn+1

j + Bn+1
j wn+1

j + Cn+1
j δ̄wn+1

j + rn+1
j ,

(j = 1, 2, · · · , J − 1;n = 0, 1, · · · , N − 1), (4.4)

wn+1
0 = wn+1

J = 0, (n = 0, 1, · · · , N − 1), (4.5)

w0
j = ϕj − ϕ̃j , (j = 0, 1, · · · , J), (4.6)

where

Bn+1
j = (Ãu)n+1

j

∗
δ 2ṽn+1 + (f̃u)n+1

j , Cn+1
j = (Ãp)n+1

j

∗
δ 2ṽn+1 + (f̃p)n+1

j ,

rn+1
j = A [ṽ]n+1

j

∗
δ 2ṽn+1 + f [ṽ]n+1

j ,

and

(Ãu)n+1
j =

∫ 1

0
Au(xj , t

n+1, λvn+1
j + (1− λ)ṽn+1

j , δ̄vn+1
j )dλ;

(Ãp)n+1
j =

∫ 1

0
Ap(xj , t

n+1, ṽn+1
j , λδ̄vn+1

j + (1− λ)δ̄ṽn+1
j )dλ;

A [ṽ]n+1
j = A

(
xj , t

n+1, ṽn+1
j , δ̄ṽn+1

j

)
− Ã

(
xj , t

n+1, ṽn+1
j , δ̄ṽn+1

j

)
.

There are similar expressions for (f̃u)n+1
j , (f̃p)n+1

j and f [ṽ]n+1
j .
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Making the scalar product of
∗
δ 2wn+1

j hτ with (4.4) and summing up the resulting
products for j = 1, 2, · · · , J − 1, we get

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + 2τ

J−1∑

j=1

(∗
δ 2wn+1

j , An+1
j

∗
δ 2wn+1

j

)
h

+τr

J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2
− ∣∣∆τw

n
j

∣∣2
)

h

≤ 2τ

∣∣∣∣∣∣

J−1∑

j=1

(∗
δ 2wn+1

j , Bn+1
j wn+1

j + Cn+1
j δ̄wn+1

j + rn+1
j

)
∣∣∣∣∣∣
h. (4.7)

Furthermore, there holds

J−1∑

j=1

∣∣∣Bn+1
j wn+1

j + Cn+1
j δ̄wn+1

j + rn+1
j

∣∣∣
2
h

≤ C
(‖wn+1

h ‖2
∞ + ‖δwn+1

h ‖2
∞ + ‖A[ṽ]n+1

h ‖2
∞ + ‖f [ṽ]n+1

h ‖2
2

)
(1 + ‖ ∗δ 2ṽn+1

h ‖2
2)

+C(1 + ‖ ∗δ 2ṽn+1
h ‖2

∞)τr

J−1∑

j=1

(2− λj−1 − µj+1)
(∣∣∣∆τw

n+1
j

∣∣∣
2
+

∣∣∆τw
n
j

∣∣2
)

h.

Suppose that for sufficiently small τ and h

h

r
is uniformly bounded. (4.8)

By the inequality (3.7), ‖ ∗δ 2ṽn+1
h ‖2∞ ≤ C. For n ≥ 1, combine these results to find

‖δwn+1
h ‖2

2 +
n∑

k=0

∥∥∥∗δ 2wk+1
h

∥∥∥
2

2
τ + τr

J−1∑

j=1

(2− λj−1 − µj+1)
∣∣∣∆τw

n+1
j

∣∣∣
2
h

≤ C

(
n∑

k=0

‖δwk+1
h ‖2

∞τ + ‖δw0
h‖2

2 + R0

)
, (4.9)

where

R0 ≡ max
0≤n≤N−1

∥∥A[ṽ]n+1
h

∥∥2

∞ +
N−1∑

n=0

∥∥f [ṽ]n+1
h

∥∥2

2
τ.

When k ≥ 1, for ∀ε > 0, we have

‖δwk+1
h ‖2

∞ ≤ ε‖δ2wk+1
h ‖2

2 +
C

ε
‖δwk+1

h ‖2
2

≤ Cε




∥∥∥∗δ 2wk+1
h

∥∥∥
2

2
+ r2

J−1∑

j=1

(2− λj−1 − µj+1) (
∣∣∣∆τw

k+1
j

∣∣∣
2
+

∣∣∣∆τw
k
j

∣∣∣
2
)h




+
C

ε
‖δwk+1

h ‖2
2.
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When k = 0, there holds

‖δw1
h‖2
∞τ ≤ ‖δ2w1

h‖2
2 + C‖δw1

h‖2
2τ ≤ C(‖δw0

h‖2
2 +

∥∥A[ṽ]1h
∥∥2

∞ +
∥∥f [ṽ]1h

∥∥2

2
τ).

Substitute the above two inequalities into (4.9), and take ε small enough, to obtain

‖δwn+1
h ‖2

2 +
n∑

k=0

∥∥∥∗δ 2wk+1
h

∥∥∥
2

2
τ ≤ C

(
n∑

k=0

‖δwk+1
h ‖2

2τ + ‖δw0
h‖2

2 + R0

)
.

Therefore,

‖δwn+1
h ‖2

2 +
n∑

k=0

∥∥∥∗δ 2wk+1
h

∥∥∥
2

2
τ ≤ C

(‖δw0
h‖2

2 + R0

)
.

Then we have proved the following theorem of unconditional stability.

Theorem 4.1 Suppose that the conditions of Theorem 3.1 hold, and the condition
(4.8) holds. Then, for w∆ = v∆ − ṽ∆,

‖v∆ − ṽ∆‖2
W 2,1

2 (Q∆)
≤ C

(
‖ϕh − ϕ̃h‖2

H1
h

+ R0

)
,

where C is a constant independent of τ and h, and

‖ϕh‖2
H1

h
≡ ‖ϕh‖2

2 + ‖δϕh‖2
2,

‖w∆‖2
W 2,1

2 (Q∆)
≡ max

0≤n≤N
‖wn

h‖2
H1

h
+

N−1∑

k=0

(∥∥∥∗δ 2wn+1
h

∥∥∥
2

2
+

∥∥∆τw
n+1
h

∥∥2

2

)
τ.

5. Extension to Two-dimensional Problem

In this section, we extend the results of Sections 2–4 for one-dimensional problem
to two-dimensional case. The notations for the two-dimensional problem are similar to
those for the one-dimensional case. For the sake of simplicity, we consider the following
two-dimensional problem.

ut = uxx + uyy + f(u), (x, y, t) ∈ Ω× [0, T ], (5.1)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ], (5.2)

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω, (5.3)

where Ω = (0, l1)× (0, l2).
Suppose that the following conditions are fulfilled.
(i) The problem (5.1)–(5.3) has a unique smooth solution u(x, y, t).
(ii) The m-dimensional vector function f(u) is continuously differentiable.
(iii) The initial value m-dimensional vector function ϕ(x, y) ∈ C1(Ω̄), and ϕ = 0

on ∂Ω.
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5.1 Construction of the parallel scheme

Divide the domain Ω× [0, T ] by xi = ih1, yj = jh2, t
n = nτ . For a function φ(x, y, t)

defined on the grid point (xi, yj , t
n), let φn

i,j = φ(xi, yj , t
n). Denote

v
n̄+λi,j

i+1,j = λi,jv
n+1
i+1,j + (1− λi,j)(2vn

i+1,j − vn−1
i+1,j),

v
n̄+µi,j

i−1,j = µi,jv
n+1
i−1,j + (1− µi,j)(2vn

i−1,j − vn−1
i−1,j),

v
n̄+λ̄i,j

i,j+1 = λ̄i,jv
n+1
i,j+1 + (1− λ̄i,j)(2vn

i,j+1 − vn−1
i,j+1),

v
n̄+µ̄i,j

i,j−1 = µ̄i,jv
n+1
i,j−1 + (1− µ̄i,j)(2vn

i,j−1 − vn−1
i,j−1).

The general difference scheme with intrinsic parallelism for the problem (5.1)–(5.3)
is as follows:

vn+1
i,j − vn

i,j

τ
=
∗
∆ vn+1

i,j + fn+1
i,j , (5.4)

where

∗
∆ vn+1

i,j =
∗
δ

2
xvn+1

i,j +
∗
δ

2
yv

n+1
i,j =

v
n̄+λij

i+1,j − 2vn+1
i,j + v

n̄+µij

i−1,j

h2
1

+
v

n̄+λ̄ij

i,j+1 − 2vn+1
i,j + v

n̄+µ̄ij

i,j−1

h2
2

,

fn+1
i,j = f(vn+1

i,j ).

Denote wn+1
i,j = vn+1

i,j − un+1
i,j , where un+1

i,j = u(xi, yj , t
n+1). Then wn+1

i,j satisfies

wn+1
i,j − wn

i,j

τ
=
∗
∆ wn+1

i,j + (fu)n+1
i,j wn+1

i,j + Rn+1
i,j , (5.5)

where (fu)n+1
i,j =

∫ 1
0 fu(λvn+1

i,j + (1− λ)un+1
i,j )dλ, Rn+1

i,j = O(τ + h2
1 + h2

2).
The following assumption will be needed.
(iv) Suppose that h1

r1
+ h2

r2
is uniformly bounded as τ , h1 and h2 are small, where

r1 = τ
h2
1
, r2 = τ

h2
2
. And there hold 0 ≤ λi,j , λ̄i,j , µi,j , µ̄i,j ≤ 1, λi,j + µi+1,j ≥ 1 and

λ̄i,j + µ̄i,j+1 ≥ 1.

5.2 Existence, convergence and stability

Similar to the proof of the one-dimensional problem, we have the following theorems.

Theorem 5.1 (Existence and Convergence) Suppose that the conditions (i)–(iv)

hold, and step length τ , h1, h2 and min

(
τ

h
1
2
1

, τ

h
1
2
2

)
are small enough. Then there

exists one solution {vn
i,j} for the parallel difference schemes (5.1)–(5.3), and the solution

satisfies the following inequality,

max
0≤n≤N−1

(||wn+1
h ||2 + ||δxwn+1

h ||2 + ||δyw
n+1
h ||2) ≤ C(τ + h2), (5.6)

where C is a constant dependent only on the given data.
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Theorem 5.2 (Stability) Suppose that the conditions (i)–(iv) hold. Then

||v∆ − ṽ∆||2W 2,1
2 (Q∆)

≤ C(||ϕh − ϕ̃h||2H1
h

+
N−1∑

n=0

||f(ṽ)n+1
h ||22τ),

where ṽ∆ = {ṽn
i,j}, and C is a constant dependent only on the given data.

6. Numerical Results

In this section, we present numerical results examining the accuracy, stability and
parallelism.

6.1 One-dimensional test

Consider the following one-dimensional problem:

ut = (a(x)ux)x + uux + f(x, t), x ∈ (0, 1), t ∈ (0, T ],

u(0, t) = u(1, t) = 0, t ∈ (0, T ],

u(x, 0) = sin(πx), x ∈ [0, 1],

where a(x) = 0.04, f(x, t) = −π
2 e−0.08π2t sin(2πx), and the exact solution is u =

e−0.04π2t sin(πx).
First, we examine the errors in the solution for the parallel scheme. The errors

in the solution are presented in Table 1. Here the time step τ = 1.0e − 6, and the
time T = 0.1. Moreover, the rate is the experimental rate of convergence, four mesh
refinements are used and four processors are used. As can be seen in this table, the
errors appear to be O(h2).

Table 1: The accuracy for one-dimensional problem (τ = 1.0e− 6, T = 0.1)

J − 1 20 40 80 160
maxj,n |vn

j − un
j | 5.73E-4 1.43E-4 3.58E-5 8.95E-6

maxj,n
|vn

j −un
j |

|un
j | 1.44E-3 3.68E-4 9.24E-5 2.31E-5

rate – 2.00 2.00 2.00

Next, we examine the stability and parallelism of the parallel scheme. In order to
demonstrate the unconditional stability of the scheme, we present the numerical results
for r = 10, 100, 1000, 10000 in Tables 2 to 5, respectively, where r = τ/h2, CPUs is the
number of processor, Tall is the amount of clock time computing 100000 time steps, Sp

is the relative speedup and Eff is the parallel efficient. The fully implicit solution is
given when CPUs=1.
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In these runs a uniform mesh is used with 100000 grid blocks, i.e., J − 1 = 100000.
The direct solver is used to solve the linear systems on each sub-domain. Table 2 shows
that, for this test problem, the parallel difference scheme produces results which are
slightly more accurate than the fully implicit scheme, and the amount of clock time
of solving the problem is decreased essentially linearly with the number of processors
increased. In fact, the speed-up is super-linear. The similar phenomena can be seen
for r = 100, 1000, 10000 in Tables 3 and 5 respectively. Hence, the parallel scheme is
stability for r = 10, 100, 1000 and 10000, and these results indicate that the parallel
scheme is unconditionally stable.

Table 2: The stability and parallelism for one-dimensional problem (r = 10)

CPUs 1 10 20 40 80
maxj,n|vn

j − un
j | 2.60E-13 2.60E-13 2.60E-13 2.60E-13 2.51E-13

Tall(s) 17027 1522 755 382 191
Sp 1 11.18 22.54 44.52 88.98

Eff (100%) 1 1.12 1.13 1.11 1.11

Table 3: The stability and parallelism for one-dimensional problem (r = 100)

CPUs 1 10 20 40 80
maxj,n|vn

j − un
j | 8.78E-11 8.79E-11 8.79E-11 8.79E-11 8.79E-11

Tall(s) 17009 1535 762 381 192
Sp 1 11.08 22.32 44.67 88.64

Eff (100%) 1 1.11 1.12 1.12 1.11

Table 4: The stability and parallelism for one-dimensional problem (r = 1000)

CPUs 1 10 20 40 80
maxj,n|vn

j − un
j | 7.80E-11 7.73E-11 7.60E-11 7.34E-11 6.81E-11

Tall(s) 17901 1523 767 379 199
Sp 1 11.75 23.33 47.17 90.03

Eff (100%) 1 1.18 1.17 1.18 1.13

6.2 Two-dimensional test

Consider the following two-dimensional problem:

ut = u(uxx + uyy) + f(x, y, t), x ∈ (0, 1), y ∈ (0, 1), t ∈ [0, T ].
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Table 5: The stability and parallelism for one-dimensional problem (r = 10000)

CPUs 1 10 20 40 80
maxj,n|vn

j − un
j | 7.60E-9 6.47E-9 5.22E-9 2.77E-9 2.15E-9

Tall(s) 16907 1525 757 380 192
Sp 1 11.09 22.32 44.48 87.66

Eff (100%) 1 1.11 1.12 1.11 1.10

The solution is chosen to be

u(x, y, t) = e−2π2t(2 + sin(πx) sin(πy)).

The initial function is u(x, y, 0) = 2 + sin(πx) sin(πy), f(x, y, t) = −2π2e−2π2t(2 +
sin(πx) sin(πy))+2π2e−4π2t(2+sin(πx) sin(πy)) sin(πx) sin(πy), and the Dirichlet bound-
ary conditions are used.

First, we examine the errors in the solution for the parallel scheme. The errors in the
solution are presented in Table 6. Here the rate is the experimental rate of convergence,
five mesh refinements are used and four processors (2× 2) are used. We use the Picard
iteration method to linearize the nonlinear systems resulting from the parallel scheme,
and use the diagonally preconditioned conjugate gradient method in [11] to solve the
linear systems on each sub-domains. As can be seen in this table, the errors appear to
be O(h2).

Table 6: The accuracy for two-dimensional problem (r = 1, T = 0.1)

(J − 1)× (J − 1) 10× 10 20× 20 40× 40 80× 80 160× 160
maxi,j,n |vn

i,j − un
i,j | 8.09E-2 1.67E-2 3.96E-3 1.30E-3 3.68E-4

maxi,j,n
|vn

i,j−un
i,j |

|un
i,j | 9.08E-2 2.54E-2 1.00E-2 3.16E-3 8.87E-4

rate – 2.28 2.08 1.61 1.82

Next, we examine the stability of the parallel schemes for the two-dimensional
problem. In order to demonstrate the unconditional stability of the scheme, we present
the numerical results for different r in Table 7. Here τ = 1.0e− 4, T = 0.01, and four
processors (2 × 2) are used. This table shows that, for this test problem, the parallel
difference scheme produces very good results for different r. Notice that the stability
constraint for fully explicit scheme is r maxi,j,n un

i,j ≤ 1/4, and our parallel difference
scheme is still stable for r = 400. It indicates that the scheme is unconditionally stable.

Lastly, we examine the parallelism of the scheme for the two-dimensional problem.
In Figure 1, we present the speed-up for different number of processor. In these runs a
uniform mesh is used with 1000 grid blocks in each direction, i.e., the scale is 1000×1000.
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Table 7: The stability for two-dimensional problem (τ = 1.0E − 4, T = 0.01)

r 1 16 64 100 400
maxi,j,n |vn

i,j − un
i,j | 3.31E-4 8.96E-4 2.27E-3 2.97E-3 6.42E-3

maxi,j,n
|vn

i,j−un
i,j |

|un
i,j | 2.11E-4 1.39E-4 3.33E-4 4.51E-4 1.09E-3

The time step τ = 1.0e − 5, the time T = 0.01 and the mesh ratio r = 10. The
Picard iteration method is used to linearize the nonlinear systems and a diagonally
preconditioned conjugate gradient algorithm is used to solve the linear systems on
each sub-domains. The x-direction and y-direction have the same number of processor
m, i.e., the number of processor is m × m. Notice that the global problem is fully
decoupled using our parallel difference scheme, hence, some small scale systems on
each sub-domain are formed. There is no communication between different sub-domains
within the process of solving the nonlinear and linear systems on each sub-domain. The
communications only exist between the neighboring processors in order to update the
interface values, and then these communications are local. So our parallel schemes have
high parallelism.

Our methods have also been compared with the parallel algebraic method, which
solves a large scale system resulting from fully implicit scheme in parallel. The Picard
iteration method is applied to linearize the global nonlinear systems, and a diagonally
preconditioned conjugate gradient algorithm in [11] is used to solve the resulting linear
system of large scale in parallel. The parallel algebraic method needs both the local
communications between the neighboring processors and the global communications
among all processors as well. Hence, its parallelism is low compared with our methods,
especially when the CPUs number increases. It is worth to point out that, in the nu-
merical experiments, the same stop criterion is exploited to decide whether the solution
is convergence for the parallel difference method and parallel algebraic method.

In Figure 1, the solid line expresses the speed-up of our parallel schemes and the
dot line expresses that of the parallel algebraic method. As can be seen in this figure,
the speed-up of our method is higher than that of parallel algebraic method with the
number of processor increased. Moreover, the speed-up is over 213 when 100 processors
are used. This is because that the iterative number of small scale system is less than
that of the large scale system. In Table 8, we present the iterative number of parallel
difference scheme, where nonlinear it# is the average number of iteration for the
nonlinear system, and linear it# is the average number of iteration for the linear
system. For the parallel algebraic method, the iterative number is the same as that for
the parallel difference scheme when one processor is used, i.e., the iterative numbers
are 3 and 61 for the nonlinear system and the linear system respectively, and there
is no difference for different number of processor. When 100 processors are used, the



No.1 The unconditional stability of parallel difference schemes with second order... 63

iterative number of parallel algebraic method is 61, however the iterative number of
parallel difference scheme is 49, and hence our parallel methods converge still fast.
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Figure 1: The parallelism for two-dimensional problem

Table 8: The average number of iteration for parallel difference scheme

CPUs 1 4 16 25 64 100
nonlinear it# 3 3 3 3 3 3

linear it# 61 64 57 55 51 49

7. Summary

We have presented the construction of a new kind of general parallel difference
schemes with unconditional stability and second order accuracy for nonlinear parabolic
system. A priori error estimate, existence, convergence, stability and uniqueness of
the discrete vector solutions for the parallel difference schemes have been derived. The
design of the schemes is new and simple as well, and then it can be implemented with
little extra effort by using the sequential codes, which are written originally by the
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fully implicit scheme. The numerical results demonstrate the good performance of the
parallel schemes, i.e., they are unconditionally stable, and have second order accuracy
and high degree of parallelism. In particular, the super-linear speedup is achieved.

References

[1] Dawson C N, Du Q, Dupont T F. A finite difference domain decomposition algorithm for
numerical solution of the heat equation. Math. Comp, 1991, 57: 63-71.

[2] Dawson C N, Dupont T F. Explicit/implicit conservative domain decomposition proce-
dures for parabolic problems based on block–centered finite differences. SIAM J. Numer.
Anal., 1994, 31: 1045–1061.

[3] Du Q, Mu M, Wu Z N. Efficient parallel algorithms for parabolic problems. SIAM J.
Numer. Anal., 2001, 39: 1469-1487.

[4] Evans D J. Alternating group explicit method for the diffusion equations. Appl. Math.
Modeling, 1985, 19: 201–206.

[5] Han Z, Fu H Y, Shen L J. Pure alternating segment explicit–implicit method for the
diffusion equations. Intern. J. Computer Math., 1993, 51: 8–15.

[6] Yuan G W, Hang X D. The Parallel Iterative Difference Schemes Based on Interface
Correction for Parabolic Equations. Beijing: ICCP6-CCP, 2003.

[7] Yuan G W, Shen L J, Zhou Y L. Unconditional stability of parallel alternating difference
schemes for semilinear parabolic systems. Applied Mathematics and Computation, 2001,
117: 267- 283.

[8] Yuan G W, Shen L J, Zhou Y L. Implicit Differences Domain Decomposition Algotithms
for Parabolic Problem. Beijing: Annual Report of LCP, 2000: 472–489.

[9] Zhang B L. Difference graphs of block ADI method. SIAM J. Numer. Anal, 2000, 38:
742-752.

[10] Zhang B L, Li W Z. On alternating segment Crank–Nicolson scheme. Parallel Computing,
1994, 20: 897–902.

[11] Saad Y. Iterative Method for Sparse Linear Systems. New York: PWS publishing, 1996.
[12] Zhou Y L. Applications of Discrete Functional Analysis to Finite Difference Method.

Beijing: International Academic Publishers, 1990.


