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Abstract In this paper we study an initial boundary value problem for a general-
ized complex Ginzburg–Landau equation with two spatial variables (2D). Applying the
notion of the ε-regular map we show the unique existence of global solutions for initial
data with low regularity and the existence of the global attractor.
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1. Introduction

The Ginzburg–Landau equation (GLE) describes various pattern formation and
the onset of instabilities in nonequilibrium fluid dynamical systems, as well as in the
theory of phase transitions and superconductivity and has drawn great attention to
many scientists. The existence of weak and strong solutions, the global attractors and
their relative dynamical issues, have been studied by many authors, see, e.g. [1–3] and
references therein. A 1D generalized (derivative) GLE has been derived by Doelman
[4, 5]) and the global existence of solutions and long time behavior have been studied
in [6–8].

In this paper we study the initial boundary value problem for the generalized 2D
GLE on a bounded regular domain Ω ⊂ R2

ut = γu + (1 + iν)∆u− (1 + iµ)|u|2σu + λ1 · ∇(|u|2u) + (λ2 · ∇u)|u|2, (1.1)

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω, (1.2)

u(0, x) = u0(x), x ∈ Ω. (1.3)
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Here λ1, λ2 are constant vectors with complex components. The most interesting case
for the derivative GLE is σ = 2. Guo and Wang [9] proved the existence of a finite
dimensional global attractor. One of their assumptions on σ is σ ≥ 3; the initial data
is in H2. The Cauchy problem was studied in [7] and the lower bound on σ becomes
σ ≥ 1+

√
10

2 . Later the results were improved in [10, 11]. The initial data are required
to have one order (weak) derivatives and the conditions on σ, ν and µ are reduced to

(A1) either (i) σ > 2 or (ii) σ = 2, |λ1| and |λ2| are suitably small;
(A2) −1− νµ <

√
2σ+1
σ |ν − µ|.

The main purpose of this paper is to study the existence and uniqueness of the
global solution with initial data belonging to some fractional power Sobolev space
Hs(Ω), s < 1, the existence of the global attractor, and the existence of a time-periodic
solution as well. We shall prove

Main Theorem Let σ, ν, µ satisfy (A1) and (A2), s ∈ (1− 1
2σ , 1). Then for any

u0 ∈ X1 = D((−∆)s/2) ⊂ Hs(Ω), (1.1)–(1.3) possess a unique solution u satisfying
u ∈ C([0,∞);X1)

⋂
C((0,∞);H2∩H1

0 (Ω)). When σ is an integer, u ∈ C∞((0,∞)×Ω).
Moreover, (1.1)(1.2) possesses a global attractor A which is compact in H1

0 and attracts
bounded subsets of H1

0 and points of X1.

This paper is arranged as follows. First we prove in Section 2 the local existence
of solutions. The idea comes from the so-called ε-regular map and ε-regular solution
developed in [12]. Then in Section 3 we refine the estimates in [10] to show the uniform
boundedness of solutions for large time and the existence of the global attractor.

2. Local Existence

We put (1.1)–(1.3) into a functional setting

ut + Au = F (u), u(0) = u0,

A = −(1+ iν)∆ : D(A) = H2∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω), F (u) = γu+(1+ iµ)|u|2σu+

(λ1 ·∇)(|u|2u)+(λ2 ·∇u)|u|2. It is known that A is a sectorial operator and generates an
analytic semigroup on L2. The fractional power of A, Aβ , with the domain of definition
Eβ = D(Aβ), for any β ∈ R, has the following properties [13].

Eβ ↪→ H2β(Ω), β ≥ 0;Eβ = H2β ∩H1
0 (Ω),

1
2
≤ β ≤ 1,

Eβ = H1
0 (Ω), 0 ≤ β ≤ 1/4, Eβ ←↩ Ls(Ω), −1

2
< β ≤ 0, s ≥ 4

2− 4β
.

The realization of A in Eβ (still denoted by A) is an isometry from E1+β to Eβ and is
also sectorial on Eβ .

Let s ∈ (1 − 1
2σ , 1), Xα = Eα+ 1

2
s−1, ε = 1

2(1 − s), γ = (2σ + 1)ε. Then A is a
sectorial operator on X0 with the domain of definition X1, 0 < 1− 1

2s− γ < 1
2 , and
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X1 = Es/2 ↪→ Hs(Ω), X1+ε = E1/2 = H1
0 (Ω) ↪→ Lp(Ω), ∀p ≥ 1,

Xγ = Eγ+s/2−1 ←↩ Ls1(Ω), s1 =
2

3− s− 2γ
, 1 < s1 < 2,

‖F (u)‖Xγ ≤ ‖u‖X1+ε + C‖u‖2σ+1
2σ+1 + C‖u‖2

4s1/(2−s1) ‖∇u‖2

≤ C
(‖u‖X1+ε + ‖u‖2σ+1

X1+ε + ‖u‖3
X1+ε

)
,

‖F (u)− F (v)‖Xγ ≤ C
(
1 + ‖u‖2σ

X1+ε + ‖u‖2
X1+ε

) ‖u− v‖X1+ε ,

∀u, v ∈ X1+ε, here and in the sequel C is the generic constant, ‖ · ‖p denotes the norm
of Lp(Ω). Therefore F (u) is an ε-regular map relative to the pair (X1, X0).

Similarly, for s = 1, we let Xα = Eα− 1
2 , ε ∈ (0, 1

2(2σ+1)), γ = (2σ + 1)ε. Then A is
a sectorial operator on X0 = H−1 with the domain of definition X1 = H1

0 (Ω),

X1+ε = E2ε+1/2 = H1+2ε ∩H1
0 (Ω) ↪→ L∞(Ω),

Xγ = Eγ−1/2 ←↩ Ls2(Ω), s2 =
1

1− γ
, 1 < s2 < 2,

and F (u) is also an ε-regular map relative to the pair (X1, X0).
Thanks to the theory of linear operator semigroups in [12] we have

Theorem 2.1 Let s ∈ (1 − 1
2σ , 1), ε = 1

2(1 − s) > 0. For any u0 ∈ X1 =
D((−∆)s/2), there exists a T > 0 such that () admits a unique ε-regular solution
u(t) ∈ C([0, T ], X1) ∩ C((0, T ], X1+ε).

Remark For s = 1, ε ∈ (0, 1
2(2σ+1)), if u0 ∈ H1

0 , the solution is in C([0, T ];H1
0 (Ω))

∩C((0, T ];H1+2ε ∩H1
0 (Ω)). Now if we consider () in X0 = L2(Ω), X1 = D(A) = H2 ∩

H1
0 (Ω), then F (u) is locally Lipschitz continuous from D(A

1
2
+ε) = H1+2ε∩H1

0 (Ω)(∀ ε >

0) to X0. Thus, from the classical local existence theorem [13], for u0 ∈ H1+2ε∩H1
0 (Ω),

the solution is in C((0, T ];D(A)). Therefore, the solution stated in the above theorem
is in fact in C((0, T ];H2 ∩H1

0 (Ω)).

3. Proof of The Main Theorem

Lemma 3.1 Assume that p, ν satisfy 2 ≤ p < 2
√

1+ν2√
1+ν2−1

, or 2
√

1+ν2√
1+ν2+1

< p ≤ 2. Then
there is a constant K1 independent of u0 and t such that

‖u‖p
p ≤ ‖u0‖p

pe
−t + K1(1− e−t), t ≥ 0. (3.1)

Proof We multiply (1.1) by |u|p−2u, integrate over Ω, take real parts and get

1
p

d

dt
‖u‖p

p =γ‖u‖p
p − ‖u‖p+2σ

p+2σ + Re
∫

(1 + iν)|u|p−2u∆u dx

+ Re
∫
|u|p−2u

(
(λ1 · ∇)(|u|2u) + (λ2 · ∇u)|u|2

)
dx.
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Note that

Re
∫

(1 + iν)|u|p−2u∆u dx = −1
4

∫
|u|p−4

2∑

j=1

(
u∂ju, u∂ju

)
M(ν, p)

(
u∂ju

u∂ju

)
dx, (3.2)

where M(ν, p) = M(ν, p)
tr

=
(

p (1 + iν)(p− 2)

∗ p

)
is a Hermitian matrix. Under

the assumption on p, the smaller eigenvalue of M(ν, p) λM (ν, p) = p−|p−2|√1 + ν2 > 0,

so M(ν, p) is positively definite. When σ > 2, by controlling the indefinite terms we
obtain

1
p

d

dt
‖u‖p

p ≤ (γ + C)‖u‖p
p −

1
2
‖u‖p+2σ

p+2σ −
λM (ν, p)

8

∫
|u|p−2|∇u|2 dx.

Since σ is positive, ∃C1 > 0 such that (γ + C + 1
p)zp ≤ 1

4zp+2σ + C1, ∀ z ∈ R, so

1
p

d

dt
‖u‖p

p +
1
p
‖u‖p

p +
1
4
‖u‖p+2σ

p+2σ +
λM (ν, p)

8

∫
|u|p−2|∇u|2 dx ≤ C1|Ω|.

Applying Gronwall inequality we get (3.1).
When σ = 2, and 6|λ1|+ 2|λ2| < λM (ν, p), (3.1) is also valid.

Lemma 3.2 Under the assumptions of (A1) and (A2), there exists a K2 such that

‖∇u(t)‖2
2 ≤ ‖∇u0‖2

2e
−t + K2(1− e−t), t ≥ 0.

Proof Similar to (3.2), for any α with |α| <
√

2σ+1
σ , the smaller eigenvalue

λM (α, 2σ + 2) of M(α, 2σ + 2) is positive and thus M(α, 2σ + 2) is definitely posi-
tive. Thus we have

Re
∫

(1 + iα)|u|2σu∆u dx + λM (α, 2σ)
∫
|u|2σ |∇u|2 dx ≤ 0.

Define Vδ(u(t)) =
∫ (

1
2 |∇u|2 + δ

2σ+2 |u|2σ+2
)
dx, multiply (3.3) by −η (δ > 0, η > 0 and

0 ≤ κ < 1 will be suitably chosen), then add it to d
dtVδ(u(t)) and get

d

dt
Vδ(u(t))≤γ(‖∇u‖2

2 + δ‖u‖2σ+2
2σ+2)− (1− κ)(‖∆u‖2

2 + δ‖u‖4σ+2
4σ+2)

−ηλM (α, 2σ + 2)
∫
|u|2σ |∇u|2 dx

+
1
2
Re

∫ (|u|2σu, ∆u
) ·N ·

( |u|2σu

∆u

)
dx

+C(3|λ1|+ |λ2|)
∫

(|u|2|∇u||∆u|+ |u|2σ+3|∇u|) dx, (3.3)

where N = N
tr =

( −2δκ 1 + δ − η − i(δν − µ− αη)

∗ −2κ

)
is a Hermitian matrix.

When σ, ν and µ satisfy the assumptions (A1) and (A2), we can choose suitable δ, η
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positive, κ ∈ [0, 1) and |α| <
√

2σ+1
σ such that N is nonpositive (see [3, 10]). Hence the

integral involving N is negative. Carefully estimating the last integral of (3.3), using
Lemma 3.1 and interpolation inequalities, we have

d

dt
Vδ(u(t))≤ (γ + C)(‖∇u‖2

2 + δ‖u‖2σ+2
2σ+2)−

1
2
(1− κ)(‖∆u‖2

2 + δ‖u‖4σ+2
4σ+2)

≤−Vδ(u(t))− 1
4
(1− κ)(‖∆u‖2

2 + ‖u‖4σ+2
4σ+2) + K2,

where K2 may depend on ‖u‖L2 . By Gronwall inequality we have the lemma.

Lemma 3.3 Let t0 > 0, u(t0) ∈ H2 ∩H1
0 (Ω). Under the assumptions of (A1) and

(A2), there exists a K3 such that

‖ut(t)‖2
2 + ‖∆u(t)‖2

2 ≤ 5‖∆u(t0)‖2
2e
−(t−t0) + K3, t ≥ t0. (3.4)

Proof Differentiate (1.1) with respect to t, multiply both sides by ūt, integrate
over Ω, and then take real parts to get

1
2

d

dt
‖ut‖2

2 + ‖∇ut‖2
2 ≤− Re

∫
(1 + iµ)(|u|2σu)tūt dx

+ C(3|λ1|+ |λ2|)
∫

(|u| |∇u| |ut|+ |u|2 |∇ut|) dx. (3.5)

Note that, similar to (3.2) and (3.3), under the assumption (A2), µ satisfies |µ| <√
2σ+1
σ , the smaller eigenvalue λM (µ, 2σ +2) of the matrix M(µ, 2σ +2) is positive and

thus M(µ, 2σ + 2) is definitely positive. Thus we have

Re
∫

(1 + iµ)(|u|2σu)t ūt dx =
1
2

∫
|u|2σ−2

(
uūt, ūut

) ·M(µ, 2σ + 2) ·
(

ūut

uūt

)
dx ≥ 0.

Therefore

1
2

d

dt
‖ut‖2

2 + ‖∇ut‖2
2 ≤ C(‖u‖4 ‖∇u‖2 ‖ut‖4 + ‖u‖2

4 ‖∇ut‖2) ≤ 1
2
‖∇ut‖2

2 + C,

where C = C(‖u‖2
4 ‖∇u‖2

2 + ‖u‖4
4). By Poincaré inequality λ‖ut‖2

2 ≤ ‖∇ut‖2
2, constant

λ > 0, and Gronwall inequality we have ‖ut(t)‖2
2 ≤ ‖ut(t0)‖2

2e
−(t−t0) + K̃3 for all

t ≥ t0. By (1.1) and Lemmas 3.1 and 3.2, we have ‖ut(t0)‖2 ≤ 2‖∆u(t0)‖2 + C,
‖∆u(t)‖2 ≤ 2‖ut(t)‖2 + C, and thus (3.4).

Now we prove the main theorem. From Theorem 2.1 and Lemmas 3.1–3.3 we see
that, for every initial data u0 ∈ X1, the solution exists globally and remains bounded
in H2 for t ≥ t0 ∀ t0 > 0. When σ is an integer, the nonlinear term is analytic. Using
bootstrapping method we see that u ∈ Cj((0,+∞);Hk(Ω)),∀j, k ≥ 0. The solution
operator S(t) : u0 7→ u(t) = S(t)u0 forms a continuous dynamic system generated by
the derivative GLE.

From Lemma 3.1 we can choose ρ1 = 2K1 and t1(R) such that ‖u(t)‖2 ≤ ρ1, ∀ t ≥
t1(R) whenever ‖u0‖2 ≤ R. Thus, by Lemma 3.2, when t ≥ t1, K2 is independent of
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u0. Let ρ2 = 2(K1 + K2). From Lemma 3.2 we can choose t2(R) > t1(R) such that
‖u(t)‖H1 ≤ ρ2, ∀ t ≥ t2(R) whenever ‖u0‖H1 ≤ R. That is, B(0, ρ2), the ball in H1

0 (Ω)
of radius ρ2 centered at 0, is a bounded absorbing set of S(t). Moreover S(t) is compact
in X1 for t > 0 and compact in H1

0 (Ω) uniformly for t large. The ω-limit set of B(0, ρ2)

under the action of S(t), A =
⋂

s≥0

⋃
t≥s S(t)B(0, ρ2)

H1
0 , is a global attractor of the

derivative GLE. A attracts points in X1 and bounded subsets of H1
0 (Ω). It can be

shown that A has finite Hausdorff and fractal dimension [14]. The proof of the main
theorem is completed.
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