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1. Introduction

We study the interior Lipschitz regularity for equations of the type

F (II, ν) = 0, (1)

where II = II(S) is the second fundamental form of a hypersurface S in Rn+1 ( n ≥ 2
) and ν = ν(S) is its normal. We always assume that F is uniformly elliptic in the
tangential direction of the surface and Lipschitz in ν with Lipschitz constant linear in
|II|. See more precise definitions of these terms in the next section. The main goal of
this paper is to show that any C1 viscosity solution has Lipschitz apriori estimates in
its interior.

The main theorem of this paper is the following.

Theorem 1 Suppose F satisfies (3), (6) and (7). Assume S is, in the sense of
(3), a C1 solution of (1) in the cylinder C1 = B1 × [−K, K], where K = [S]L∞(B1) +
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|XnS(0)| + 1, in this coordinate system and Xn(S) the Xn coordinate of S such that
(0, Xn(S)) ∈ S. Then S ∈ Lip(C 1

2
). Moreover ‖S‖Lip(C 1

2
) has a upper bound depending

only on ‖S‖L∞, ellipticity and the dimension. In general, we denote Cr(x) = Br(x)×
[−‖S‖L∞(Br) −XnS(0)− 1, ‖S‖Lip(B1) + XnS(0) + 1].

By the theorems in [1], the Lipschitz regularity of (1) implies C1,α regularity. This kind
of estimates is not new for the classical solutions. However, we think our approach gives
not only a regularity theory but also a much better geometric intuition of how regularity
’propagates’ along a solution surface (see Lemma 5).

Our methods are related with the work of N. Korevaar [2] and its extensions by
Korevaar [3], Y. Li [4] and B. Guan and J. Spruck [5], where Lipschitz estimates for
C3 solutions were obtained.

To the contrast, our proof is more natural and geometrical. It is along the line of
the regularity theory for free boundaries developed by the first author [6].

In fact, it is one of our current objects to unify the theory of free boundaries and
the theory of elliptic equations.

The main technical contribution of this paper is the construction of ‘variable’ par-
allel surfaces, which are still subsolutions to the equation of the surface.

Our method also applies to parabolic equations and equations of motions of surfaces
by their curvatures.

2. Viscosity Solutions and Preliminary Considerations

Instead of considering the second fundamental form itself, we will deal with its
representations in coordinate systems of Rn+1.

Definition 1 Let M be an (n + 1)× (n + 1) matrix. If

vT Mv = II(v, v)

for
v ∈ TS = {ν · v = 0},

we say that M is a representation of II.

Clearly, the representations of a second fundamental form are not unique.
Equation (1) is equivalent to equations of the form,

F (M, ν) = 0 (2)

with the condition

µ(e⊗ ν + ν ⊗ e) + b(ν ⊗ ν), ν) = F (M, ν) (3)
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where e · ν = 0 and µ, b are real numbers. That is to say that F depends only on the
‘tangential’ part of M .

In representations, its calculations are easier than that for the fundamental form
itself. In particular, a change of coordinates for the representations is simply: GT MG

for some (n + 1)× (n + 1) orthogonal matrix G.
Example 1 Minimal Surface Equation

F (M, ν) = trM − νT Mν

= mean curvature.

In fact, this equation also satisfies the condition, which can be easily checked that

|F (M, ν)− F (M, µ)| ≤ |M ||ν − µ|2, (4)

which analytically says the equation is only tangential. Geometrically it can be viewed
as the tangential part of the normal vectors to Sn−1 is always second order.

Definition 2 We call F a geometric equation if (3) holds.

Now, let us recall the basic properties for the distance function of a surface:

d(Y, S) = min{d(Y, X)|X ∈ S}.
Suppose d(Y, S) = d(Y, X) for X ∈ S. If S is C2 at X, then there is a convenient
coordinate system e1, e2, · · · , en+1 at X such that the second fundamental form of S at
X is diagonal

−D2d =




µ1

. . .

µn

0




,

where µi are the principal curvatures of S and en+1 is the normal at X. The normal
for Sg at Y is en+1−Dg

|en+1−Dg| . Moreover if 1 − dνi > 0 for i = 1, · · · , n, −D2d at Y is also
diagonal 



µ1

1−dµ1
0

. . .
µn

1−dµn
0

0 0 0




Lemma 2 Let G be a smooth function. Suppose G(0) = 0, DG(0) = αen+1 for
some α 6= 0. Then the second fundamental form of G(X) = 0 at 0 is

− 1
α

J(D2G),

where J is the projection to the left up corner. In particular, we may take − 1
αD2G as

its representation.
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Proof Since DG(0) = αen+1, we have

xn+1 =
1
2
xT IIx + higher order terms.

At the same time

0 = G(X) = αxn+1 +
1
2
(x, xn+1)D2G

[
x

xn+1

]
+ h.o.t.

= αxn+1 +
1
2
xT (JD2G)x + h.o.t..

The lemma follows immediately.

Definition 3 Let D be an open domain in Rn+1. We say that S ⊂ ∂D is a subso-
lution (supersolution) of (1) if the distance function d = d(X, D)(d(x) = d(x,C(D)))
is a viscosity supersolution of

−F (−D2d,Dd) ≤ 0, (5)

in a neighborhood of S (exclude S). S is a solution if it is both a supersolution and a
subsolution.

Remark The neighborhood mentioned in the above definition can be specified as
the points whose distance to S is obtained in the ’interior’ of the surface S. In the case
that S is a Lipschitz graph in some coordinate system, we always take D as the domain
below S in that coordinate system. Correspondingly, ν = Dd is always the upward
normal.

Definition 4 F is called uniformly elliptic if for µ > 0, e ⊥ ν, |e| = 1,

Λµ ≥ F (M + µ(e⊗ e), ν)− F (M, ν) ≥ λµ, (6)

where Λ and λ are positive real constants.

Definition 5 Let M be a representation of a second fundamental form. Let ν be
its normal. Let (e1, · · · , en) be a tangential orthogonal coordinate system. Let the
representations of M in (e1, · · · , en, ν) be




M1,1 · · · M1,n M1,n+1

. . .

Mn,1 · · · Mn,n Mn,n+1

Mn+1,1 · · · Mn+1,n Mn+1,n+1




Denote 


M1,1 · · · M1,n

. . .

Mn,1 · · · Mn,n




by Mν .
Then Mν depends on e1, · · · , en. However, |Mν | is independent of e1, · · · , en.
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Definition 6 We say that F is geometrically Lipschitz in ν if

|F (M, ν1)− F (M, ν2)| ≤ C|ν1 − ν2| (1 + |ν1 − ν2|(|Mν1 |+ |Mν2 |)) . (7)

Now, we remark that we can extend the domain of F from S(n + 1)× Sn+1, where
S(n + 1) are the n + 1 by n + 1 symmetric matrices, to S(n + 1)×Rn+1. We define

F (M, αν) = αF (
1
α

M, ν) if α 6= 0 (8)

F (M, 0) = 0. (9)

Clearly we have the following identity for any α,

F (αM,αν) = αF (M, ν). (10)

We also have that F is uniformly elliptic and satisfies (7).
We point out that there are many different ways to extent the function F . One

way is to extend F such that it is uniformly elliptic in n + 1 directions. This can be
achieved by defining

F̃ (M, n) = F (M, n) + |P (M)n|,
where P(M) is the projection of M to the direction n. However, for the simplicity of
the computation in this paper, we keep the extension as in (8). The advantage of our
extension is reflected by the following lemma.

Lemma 3 S is a subsolution if and only if there is a defining function G of S with
condition that DG 6= 0 and such that G satisfies the following in a neighborhood above
S,

−F (−D2G,DG) ≤ 0. (11)

3. Construction of Parallel Surfaces

Now, we start to prove our theorem. Let us start out to construct parallel surfaces
of the solution surfaces.

Let S be a surface satisfying equation (1).
Let g(X) be a function defined on the whole space X = (x, xn+1). We will choose

g a small smooth function.
Let us consider the surface Sg, which is above S, defined by

Sg = {X : d(X, S) = g(X)}. (12)

Under additional conditions on g, we will prove that Sg is a subsolution of (1).
For any Y ∈ Sg, there is an X ∈ S, such that

d(Y, X) = d(Y, S) = g(Y ).
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Since the computation in this chapter has nothing to do with the orientation of the
graph, we may assume that Y−X

|Y−X| = en+1 and Y = 0.
Before the detail computation for the equation of Sg, let us make an observation on

the geometry between S and Sg. Although Sg is a surface inherited from S, S can be
reconstructed from Sg under the condition of curvature bounds on S. If S is smooth
and g is small, S is the lower envelope of balls with center Y ∈ Sg and radius g(Y ).

In the case S is not smooth, the envelope will touch the points on S with curvatures
bounded by 1/g(Y ).

Let us calculate the equation for Sg.
First we calculate it in the case of classical solution. We will reduce the calculation

for viscosity solutions to this case.

Definition 7 For fixed 0 < λ ≤ Λ < ∞. The geometric Pucci maximal operator is
defined by:

Mν(B) = Mλ,Λ(B) = inf
A

trAνB,

where the infimum is taken over matrices such that when x ⊥ ν and λ|x|2 ≤ xT Ax ≤
Λ|x|2.

Notice that D(d− g)(0) = en+1 −Dg and dµi ≤ 1.
We have

F (−D2(d− g), D(d− g))=F (D2g −D2d, en+1 −Dg)

≥CMn(D2g) + F (−D2d, en+1 −Dg).

Moreover,

F (−D2d, en+1 −Dg)=F

(
· · · ,

µi

1− dµi
, · · · , en+1 −Dg

)

≥F

(
· · · ,

µi

1− dµi
, · · · , en+1

)
− C|Dg|(|Dg|(

n∑

1

|µi|
1− dµi

+ 1))

≥F

(
· · · , µi +

dµ2
i

1− dµi
, · · · , en+1

)

−C|Dg|(|Dg|(
n∑

1

|µi|
1− dµi

+ 1))

≥λdΣ
µ2

i

1− dµi
+ F

(
· · · , µi, · · · , en+1

)

−C|Dg|(|Dg|
n∑

1

|µi|
1− dµi

+ 1)

≥λdΣ
µ2

i

1− dµi
− C|Dg|(|Dg|

n∑

1

|µi|
1− dµi

+ 1).
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Combining these inequalities, we have

F (−D2(d− g), en+1 −Dg)≥C

n∑

i=1

(
Mn(D2g)

n
+

λdµ2
i

1− dµi
+

+|Dg| (±C|Dg|+ Cg)
µi

1− gµi
− C

|Dg|
n

)

=
n∑

i=1

C

1− gµi
(aµ2

i + bµi + c)

where a = λg, b = −Mn(D2g)
n d + (±|Dg|+ Cg)|Dg| and c = Mn(D2g)

n − C|Dg|. Looking
at the discriminant of the quadratic polynomial in µi, we have that Sg is a subsolution
provided

∣∣∣∣±|Dg|2 − C|Dg|g − Mn(D2g)
n

g

∣∣∣∣
2

− 4λg

(
Mn(D2g)− Cn|Dg|

n

)
< 0. (13)

We will take g so that g = 0 near the boundary. Now the above inequality is possible
when it has strictly bigger than 1 of the order of vanishing of g near its zeros. In deed,
it is a consequence of the following conditions, in the range of g(x) > 0,

Mn(D2g)
2nC

≥ |Dg|, (14)

|D2g|+ |Dg|+ |g| ≤ 1
C

, (15)

|Dg|4 < gMn(D2g). (16)

This shows that Sεg for ε small is a subsolution provided the conditions (14)-(16) on g

hold.
We remark the geometric condition on the equation plays key role for the inhomo-

geneity of (16).
Now, we begin to show the same results in the sense of viscosity. Let us prove a

lemma first.

Lemma 4 Let S be a continuous graph. We assume that it is semiconvex ( and
then almost every where second order differentiable). Then S is a subsolution of the
equation if and only if it satisfies the equation almost everywhere.

Proof We only prove the ‘if’ part. The other part follows from the general prop-
erties of viscosity solutions and the fact that semiconvex functions are second order
differentiable almost everywhere.

Suppose S(x) is below S(x0) + p · (x− x0) + 1
2(x− x0)T A(x− x0). We may assume

p = 0 by taking appropriate coordinate system. We will show F (A, 0) ≥ 0.
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Let u(x) be the representation of S in this coordinate system. Let w(x) = [u(x0) +
1
2(x − x0)(A + ε)(x − x0)] − u, which has a strict local maximum at x0. Let Γ(w) be
the convex envelope of w. Clearly, Γ(w) is C1,1.

By the Aleksandrov-Bakel′man-Pucci maximum principle,

0 ≤
∫

{x:|x|≤δ,|DΓw(x)|≤δ,w(x)=Γw(x)}
det(D2Γ(w))dx

for δ > 0 sufficient small.
Hence we can find xk → 0 such that pk = Dw(xk) → 0 and D2w(xk) ≥ 0 and S

is second order differentiable and its differentials satisfies the equation at xk. Conse-
quently F (II(S)(xk), ν(S)(xk)) ≥ 0. Noting that A + ε ≥ D2u(xk), we have

F (II(S(ε)(xk)), ν(S)(ε)(xk)) ≥ F (II(S)(xk), ν(S)(xk))− C|ν(S)(xk)− ν(S(ε))(xk)|,

where S(ε) is the graph of the function u = 1
2xT (A + ε)x. Letting k → ∞ and then

ε → 0, we have the lemma. We remark that Sg is semiconvex (i.e. C1,1 from below).
At each point Y0 ∈ Sg, there is an X0 ∈ S such that d(X0, Y0) = g(y0). Then Sg is
above

{Y : d(Y, X0) = g(Y )}
which is smooth at Y0, if |Dg| < 1. Hence Sg is semiconvex.

Hence, we need only to check that Sg is a subsolution at the points where Sg

is second order differentiable. Let Y0 be such a point. Hence d − g is second order
differentiable at Y0. Then there is an X0 on the surface S such that d(X0, Y0) = g(Y0).
It is not hard to see, by considering envelope of balls, that for any 0 < r < g(Y0),
{d = r} defines a set which is second order differentiable along the line passing X0 and
Y0. From the definition of viscosity solution for S, it follows that {d = r} has a smooth
approximation which is a classical subsolution on the point X0 + r Y0−X0

|Y0−X0| .
Now, we are in the situation of classical solutions for that surface. Hence its parallel

surface, which has the same curvature and normal at Y0 with the defining function
d− g + r, is a subsolution at Y0:

F (−D2(d− g), D(d− g)) ≥ 0,

provided the conditions on g holds on the function g − r, which is true for r small.

4. Construction of g

Lemma 5 For any ε, δ > 0. Let x0 ∈ B 1
4
(0), 0 < r0 < 1

4 . Then there exists a
smooth function defined on (B1 −Br0(x0))× (−K, K) such that (14)-(16) hold.

Proof We only to have check (14) and the other two are evident. Similar we only
have to check when the tangent is vertical by a perturbation.
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Remind that X = (x, xn+1). We will take φ(X) = (1− |x|2)peMxn+1 for some large
p and M .

We will compute when the maximal operator is defined on a vertical plane. Clearly
that Dn+1,n+1φ = M2φ and Dττφ = 4p(p+1)(1−|x|2)p−2τ2eMxn+1+2p(1−|x|2)p−1eMxn+1 .

It is clear that Dn+1φ = Mφ and Dτφ = p(1 − |x|2)p−1eMxn+1 and that Dτφ =
pτk(xn+1 + K + |x|2)p−1eMxn+1 .

Hence for |x| ≤ 1
2 , one can take M large and then p large for |x| ≥ 1

2 so that

Men+1φ ≥ C|Dφ|.

The lemma follows.
Proof of Theorem 1 Suppose S is a C1 solution and suppose S is the graph

of the function xn+1 = u(x). Take g that is constructed in Lemma 5. Consider the
comparison surface: Sεg and consider the vertical distance between Sεg and S. Clearly
Sε is above S and their vertical distance is controlled by εg(

√
Lip(u)2 + 1+o(1)), where

o(1) → 0 as ε → 0 and the convergence depends on the C1 property the solution S.
We claim the maximal vertical distance between S and Sεg is less of Cεg if C is

large enough.
At the point where the maximum vertical is achieved, Sεg is a supersolution. How-

ever if C is large, the tangent plane is more and more vertical. By Lemma 5, Sεg is
actually a subsolution there, which is a contradiction.
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