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Abstract The aim of this paper is to discuss the existence and uniqueness of
solutions for the porous medium equation

up — (U™ e = p(x) in (x,t) € R x (0,400)
with initial condition
u(z,0) = uo(x) x € (—00,+00),

where p(7) is a nonnegative finite Radon measure, uy € L'(R)NL>(R) is a nonnegative
function, and m > 1, and R = (—o0, +00).
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1. Introduction

In this paper we consider the porous medium equation
ur — (U™)az = p(x) n @ (1.1)
with initial condition
u(z,0) = up(x) x €R, (1.2)

where j(z) is a nonnegative finite Radon measure, ug € L'(R)) N L>°(R)) is a nonneg-
ative function, m > 1,Q = R x (0, +00).
We denote
My = ||wo||;eomy +1, M= / d
0 = [[uol] oo (m) L= o dn
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in this paper.

Clearly, the Cauchy problem (1.1)—(1.2) has no classical solutions in general. There-
fore we consider its weak solutions.

Definition 1.1 A nonnegtive function u : Q — R is said to be a solution of (1.1)
if u satisfies the following conditions [H1] and [H2]:

[H1] For all T € (0,400), we have

we L®0,T; LY(R)) N BV,(Qr \ Qs),

and
u(-,t) € C*(R) Vte (0,T)

with s € (0,T), where Qr =R x (0,T).
[H2] For any ¢ € C3°(Q1), we have

//QT(—UCZSt—quf)m)dﬂsdt: //QT o(x, t)u(z)drdt.

Definition 1.2 A nonnegative function u : Q — (0,+00) is said to be a solution
of (1.1)-(1.2) if w is a solution of (1.1) and satisfies the initial condition (1.2) in the
following sense:

ess lim /Rw(:r)u(w,t)dx:/sz(x)uo(m)dx, Vi € C3°(R).

t—0t+

Our main results are the following theorems.
Theorem 1.1  The Cauchy problem (1.1)-(1.2) has a unique a solution u = u(x,t)

satisfying
u@t) € s Yat) €Qr

tm—34

for all § € (0,1), where C is a positive constant depending only on 6, m, My and M;.

Such kind of results has been obtained by a number of authours, for example, see
[1-11].

Remark 1.1 The proof of the existence in Theorem 1.1 is different from that of
[1-8],it is based some BV estimates. In particular, the uniqueness in Theorem 1.1 is
very intereting and is also different from that of [9-11].

In addition, we have

Theorem 1.2 Assume that u is the solution of (1.1)-(1.2). Then we have

u(@1,t) = u(w2,t)| < Clay — 2/

for all x; € R(i = 1,2) and all t € (1,+00),where 3 € (0,1) and C > 0 are some
positive constants depending only on 7, My and M;.

The proofs of Theorem 1.1-1.2 are completed in Section 3-5. In proving process we
shall use some uniform estimates in Section 2.
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2. Some Estimates of Approximate Solutions

In order to discuss the existence of solutions for the Cauchy Problem (1.1)-(1.2),
we consider the following equations of the form

up — (") g = pe(x) in Q (2.1)

with initial condition
u(z,0) = up=() (2.2)

where e = je * (u(x) + €), uoe(x) = je * uo(z) + €, and

) 1 [z
Je(w) = 2J (8> , 0<e<l, (2.3)
ZCQ
0 1
j(a) = OeXp{a:Q—l}’ =l <1, (2.4)
0, |z| > 1.
“+oo
50/ j(x)dx = 1. (2.5)

It is well known that the Cauchy problem (2.1)-(2.2) has a unique nonnegative
bounded solution u. € C®°(Qr) with u. > ¢ in Qr for all T € (0, +00).
In addition, we have the following estimates on u..
Lemma 2.1 We have
Ou, kue

P .
o = t’ (26)

1
where k = ——.

Remaryl? 2.1 Such estimates have been obtained by a number of authors, for
some quasilinear degenerate pralolic equations or quasilinear hyperbolic equations, see
[12-20].

Proof of Lemma 2.1 Denote

1 1
Uer (T, 1) = rml—l ue(x,rt), Vre (2, 1) .

By (1.1) we compute

m

()t — (U)aw = 77T e (2) < pe(2), V€ @ 1) , (2.7)

Uer(2,0) = rﬁu()a(x) <wupe(x), VzeR. (2.8)

Applying the comparison principle and (2.1)-(2.2) with (2.7)-(2.8),we obtain

Uer(2,t) < ue(z,t), V(z,t) € Q.
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By the definition of u., we have
T (e, r) < ue(e,), W) € Q,

which implies that

1
ue(x,t) —us(z,rt) _ rm-1 —1 (1 )
> -1
P T us(z,t), V(z,t) € Q,Vre 5

Letting r — 17 ,we get
Ou, < ku.

at — t

Thus the proof is completed.
Lemma 2.2  We have

/R(us(x,t) — My)dx < TM,;

for allt € (0,T).
Proof Choose a number of functions {r € C§°(R) with R > 2 such that
¢r=1 in (—R,R); &r=0 in R\ (—2R,2R),

/ C
0<¢&r <1, \fR’§§7
Er(ue — Mo)T
(ue — *7\40)1Z +n

” C .
ISRl < o R (2.9)

We multiply (2.1) by (0 < m < 1) and integrate over in Q7 to obtain

// et gR UEMO S ot // 5R “A;()jw )+nd dt
_//TME éR ue]\;o)]\40)+ dadt. (2.10)

We compute

// §R ue — M) dedt

T = Mo)} +1
://Taat <€R/0(ua—Mo)+ ;;"i;) Jrdt
N
([ )
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which implies that

gR Ue — M0>+ / /(ue(x,T)—M0)+ s™ds
d dt = dz. 2.11
//T — Mo)7? el sy ) de 21D

In addition, we have

fR(ue M)
//QT M0)+ +77d vt
_ m—1 é-R(UE MO)T
_/ QTmuE Uy <(U5M0) mn ) dxdt
N m—1 77§R[(Ua - )T]
= [, e <[(ua—Mo)T P )d «

m—1 fo(UE - )
—I—/ o mu, Ueg <( Mo) n 77) dxdt

_ [ [ Mmoo Z MO e — M)
o (e = Mo)7 + 12

d us ms™ (s — Mo)?
" //QT o (/0 (s = Mo)T + 1 ds) et
B us ms™ (s — Mo)
//QT&zm(/ AT Ly d)dxdt

- CTuelZ(gp)
- R )

dxdt

which implies that

£R(u5 M)} CTH“EH?oo(QT)
dxdt > — 2192
//T = Mo) +n R ’ (2.12)

where C' is a positive constant depending only on m.
Clearly, we have

(ue — M)
/ or €r (e — MO)T:_nug(w)dxdt < T/R du(x). (2.13)

Combining (2.12)-(2.13) with (2.11) we get

(ug(x,T)—M0)+ Sm CT”’U’EHZLOO(Q )
dr < T T/ d
/]RgR (/0 sm—l-n) v R + R Hw)
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Letting n — 40 and R — 400 we have

/R(%(x’T) — M) +dx < T/Rdu(x)

for all T € (0, +00). Thus the proof is completed.
Theorem 2.1  Assume that u. is the solution of (1.1)-(1.2). Then we have

we(wt) < s V(@) €Qr

for all § € (0,1), where 1 is a constant depending only on §, m, T', My and M;.
Proof For any 6 € (0,1), we can find a number « € (0,1/m) such that

ma = 4.
Clearly, we have
m(l—a)>m—1. (2.14)

Assume that

M, = sup [tV/0=ly (2 1)].
(z,t)eQT

Therefore, there exists a point (z4,t.) € Q7 such that
Ue (T, ty) = My — 1. (2.15)
Denote

nr(z) = Ep(z — )

for all z € R and all R > 1,where {p is defined by (2.9).
By Lemma 2.1 and (2.1) we get

ku
_(u?)xaz < Tg + Ue. (2.16)
mao
We multiply (2.16) by %:_1 (0 < a < 1/m) and integrate over R X (s,t) to obtain
u&
! NRU kue nruZ’ NRY
—//(u 4 dmd7<// dd7+//ua =" ddr.
s JR umo‘+1 R 7 ul+1 ul* 41

(2.17)
We compute

/ / ——=—dxdr
uma + 1
m 77Ru
-/ /R e [

upe 1],
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—//77 dxd—l—// 7735 dxdr
uma+ uma+1

u2me m—a)7 |2
1—a //”R e 1) [ 2 L e
W g
//nRax </ Sa+1d8>d;vd7
u2me mea) |2
1_@ //UR uma+ [ue 2 L dzdr

¢ . u' g
—/S /]RUR</0 Sa+1ds> dzdr
uZma m(1—a)
e |,

2

t "
d$d7’—/ /R|773|u2ndxd7,

which implies that

ma
// —= —dxdr
uma+1
2mo¢
1—a //vm uma+1

Denote

t 1
dacd7’+/ /R\nR\ugndxdT. (2.18)

|: m(la):| 2
2
E
T

Ir = (z* — 2R, z* + 2R). (2.19)

By (2.19) and (2.14), we compute

t " t "
/ /R | u dedr — / /R 71/ Om(1=a))y_m=1 _ =(m=1)/(m(1=))y, 1y
t
Ss_(m_l)/(m(l_a))Ml”_I/ /R\né]uedzndT
t 1"
< S_lMl”_l/ / |nglusdxdr
s JR
_ . —1lasym—1 t ”
=s "M; |nglusdxdr
s IRF‘I{u5>M0}
—1a/m—1 t “
+ s M, // |nglusdxdr
s IRQ{’U,ESM()}

t 1"
= S_IM,:”_I/ / Ing|(ue — Mo)dzdr
s IRﬂ{u5>MQ}



42 Yuan Hongjun and Jin Yang Vol.18

t 1"
+ s_lM,:”_l/ / |ng| Modzdr
s IRﬁ{ug>M0}

t "
+ SflMl"*l/ / Ing|usdxdr
s IRQ{’U,SSMU}

CMITM™ Yt —5)  CMoM™ 1t —s)
< +
- sR2 sR

which implies that

t "om CMln_l(t—S) CMln_l(t—S)
/s /R Inglud dzdr < 2 + = : (2.20)

where C' is a positive constant depending only on m,T",My and M;. Combining (2.18)-
(2.19) with (2.20) we get

/ / uma n 1dl’d7‘

2ma m(l—a) 2 C’Mm_l(t _ 5)
2 _ *
1 — ) / / NR———— uma I [ug L dxdr — R (2.21)
for all R > 2,where C is a positive constant depending only on m,T,My and M;.
We have
/ / kue NRUET i
R 7 ul*+1
/ / nr(ue — Mp)4dxdr + — / / nrMoydzdr

<CRs !t — s) (2.22)

for all R > 2, where C is a positive contant depending only on m,T,My and M;. On
the other hand, we also have

nrug"
< — S). .
/ / fe ume 1 1dl’d7’ < Mq(t—s) (2.23)

Combining (2.21)-(2.23) with (2.17) we conclude that

2ma m(l—a) 2 1— 2 CMm—l
TIRU, 3 drdr] < ( Oé) * CR —1 M
t—s/ (ume +1)2 [ua L zdr] < 4o sR * § -+
for all s,¢ such that 0 < s <t < T. Let s T t and obtain
2ma m(l—a) 2 CR 1— 2
UL | M < CRO =) 1yt 4y 2.24
/R (u® 4 1) [ua L (z,t)de < at [ 7 } (224)

for allt € (0,7) and all R > 2.
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On the other hand, we also have

2ma m(l—a) 2
/ _NRbe |:U/5 2 } (x,t)dx
R (u"® +1) z
m — 2
2/ M |:Us G )] (x,t)dx
RO {ue > 1} (wre +1)2 .
g 757
>— U z,t)dx
2 JRnfue s 1y R,
S N [
=— U — x,t)dx
2 )R fue > 1y RN .
1 m(l—a) 2
=3 /RnR ‘ [(u6 = (x,t)dx

T

By (2.24), we get

and then

2

m(l—a)
T @)= 1)

[, (@)

x

2

m(l—a)
(e () - 1)

/Rt&%(x)

T

de < Ct7Y(M™ 1 +1)

de < C(M™ 1 +1)

(2.25)

for all t € (0,7) and « € (0,1/m),where C is a positive constant depending only on
R,a,m,My and M;.
Using (2.15) we compute

MO < (0 () 1

)m<1—a>/2

<C (L ur =2 (2, 1) + 1)

IN
Q

BP0 ) — 1) 4 + 1]+ 1)

<C {t2 0= 2 e, 1) 1) +1)

|
Q

I
Q
—_—— A A A

0 Ep(0) (w2 (1) — 1)1 +1)

ox
0

Ce1+

*
—2R

0
/ 0 (6 er(@) PO (@ + 2., t) = 1)1 ) do + 1}
—2R

1/2 ﬁ m(1—a)/2 _
Snle) 5 (! (2 + 20y ta) = 1)1 ) da
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+/ 1/2 'LL (1—&)/2($+x*’t*) _1)+) dl‘}
8 5 71/2
{1+t1/2 [/ gR 87 ( m(1— a)/2(l‘—|—x*7t*) o 1)+> dﬂ?]
0 1/2
. (/ RfR(x)de) + / 1/2 m(l_a)/Q(x + -’E*’t*)dx}
2

0
SC{l + [C(Mlnil—i- 1)]1/2 ) R1/2+/ ti/2‘§}%(aj)|u?(lf&)/2(w —I—x*,t*)daﬁ}
—2R
0
<C {1 + MR / . £21gh ()| (=2 (5 4 g, t*)dg;} :
which implies that
0
M;n(l—oe)/? < C{1+M£m_1)/2+/ 1/2‘5 >‘u (1- a)/2($+$*,t*)dﬂ?}, (226)
2R

where C is a positive constant depending only on R,«, T, m,My and M;.
On the other hand, for m(1 — «)/2 < 1, we have

0
|, tP @0 @+ 0., )da
—2R

0
ScRil / U?(lia)/Q (.’E + T t*)dﬂf
—2R

0 2/[m(1-a)] 0 1-2/[m(1-a)]
<C (/ Ue (T + x4, t*)da:> (/ dx)
_9R —9R

0 2/[m(1—-a)]

—2R

0 0 2/[m(1-a)]
<c ( | ela+aa,t) = Mo)da + [ M0d56>

2R —2R
<c,

which implies that
0
| @l @r 02 ot )da < € (2:27)

for m(1 — a)/2 < 1, where C' is a positive constant depending only on R,co, m,T,M
and Ml.
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For m(1 — «)/2 > 1, we have

0 m(l—a)
/ |Er(@)ue 2 (x4 24, ti)da
2R

mi—a)/2—1 [ . o
<M, | | Jer@us(a + o t)do + | | [¢r(@)| Mody

<C (1 + M?“‘“)/Q‘l) :

which implies that

0 m(l—a)
/ Cp@lue = (0 +awt)de < C (14 MIO) (2.28)
—2R
for m(1 — «)/2 > 1, where C is a positive constant depending only on R,«a, m,T,M
and M;.

By (2.27) and (2.28), we obtain

0 m(l—a)
/ €r(@)ue * (24, t)de < O (14 MO0 (2.29)
—2R

where C is a positive constant depending only on R,«, m,T,My and Mj.
By (2.26) and (2.29), we get

Mln(l—a)/Q < 0{1 +M£m—1)/2 —l—C(l +M)§m(1—a)/2—1)+)}7

where C' is a positive constant depending only on R,a, m,T,My and M;. Applying
Young inequality we conclude that

M, <C,

where C' is a positive constant depending only on R,a, m, T, My and M;. Thus the
proof is completed.

Theorem 2.2  Assume that u. is the solution of (1.1)-(1.2). For any R €
(0, +00), we have

|ue (1, 1) — ue (w2, t)| < yolzy — 22|
for all (z1,t) € (=R,R) x (1,T) and all (xz2,t) € (=R,R) x (7,T), where y2 and
B € (0,1) are some positive constants depending only on T, T, R,m,My and M;.
Proof We multiply (2.16) by {rul(z,t) (0 < a < 1) and integrate over R to
obtain

—/R(ugn)m-ﬁRu?(:r,t)d:v < /Rkt_lug-ﬁRu?(x,t)dx—i—/Rug-é’Ru?(x,t)dx (2.30)

for all t € (7, 7).
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By Theorem 2.1, we compute
—/R(u;")m-&gu?(x,t)daz
—/ 2 (Erul(x, 1)) dx

—/fR Xz, 1)) da:+/§R ud(x,t)dx

dma et ue (2,t) o
—M/Rfff’(“é FOR)fPda + /Ri}a ( [ e 1ds> &

dma
> Gt ] o S

which implies that

o dma Mo
~ J e e e e > O [ eal@l a0 28

(m
for all t € (7,T), where C is a positive constant depending only on 7, T', R,m,My and
M;.

In addition, by Theorem 2.1, we also have

/R kt . - Egul(z,t)de < C (2.32)

and
/R e - Eu(z, t)dz < C (2.33)

where C' is a positive constant depending only on 7, T', R,m, My and M;.
Combining (2.31)-(2.33) with (2.30) we obtain

/RﬁR!(U§m+“)/2)x!2dx <C (2.34)
for all t € (7,T), where C' is a positive constant depending only on 7, T', R,m,My and
M;.

Choose m
1-— ) ifl<m<2
o =
1
and have
(m+a)/2 > 1. (2.35)

For (z1,t) € (—R,R) x (7,T) and (z2,t) € (=R, R) x (7,T), using (2.34), (2.35) we

compute

[ue (21,1) = ue (22, 0)] <Jul™ 2 (21, 1) — al™ 2 (@, 1) 2/ 0H)
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2/(m+a)

|2 @, ) da
T1

1/(m+a) 1/(m+a)

<

T2 T2
[t e P Rt
1 1
SC |x1 _ x2’1/(m+a) ,
which implies that

lue(21, 1) — uc(wa, t)| < C |og — 2|/ F)

for all t € (1,T), where C' is a positive constant depending only on 7, T', R,m, My and
M. Thus the proof is completed.

Theorem 2.3 Assume that ug is the solution of (1.1)-(1.2). For any R €
(0,400), and any s € (0,T) we have

T rR
/ / |uet|dxdt < 73
s —-R

where v3 is a positive constant depending only on R, s, T ,m,My and M;.
Proof  Applying (2.6) we get

0 _
5 (tkug(:v,t)) = ktF " 4+ tRug > 0. (2.36)

On the other hand, by (2.1),we have
0 k ki, m k—1 k
— (t ua) =t (ul") gz + K" ue + 7 . (2.37)

We multiply (2.37) by £g in (2.9) and integrate over in R X (s,7") (0 < s < T < +00)
to obtain

4 9 k r ki m
/ RﬁR& (t Ue) dxdt :/ /Rth (ul") g dadt
T T
+ / /RéRkt’“‘lugdxdtJr / /R cnt*udedt.  (2.38)

Applying Theorem 2.1 we compute

T T p
/ / Ertt (U™ ppdxdt = / / EptFumdxdt < C, (2.39)
s R s JR

where C' is a positive constant depending only on s,7,R,m,My and M;. In addition,
we have

T T
/ /R Erkt* Yu dzdt + / /R EptF pedzdt < C, (2.40)
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where C' is a positive constant depending only on s,T, R m,My and M;. Combining
(2.39) and (2.40) with (2.38) we conclude that

/ST /RgRgt (thu.) dedt < C. (2.41)

Using (2.39) and (2.41) we have
0

T T &
| [ galudlasar< [ [ et |
<s7F /T ng (tku )dxdt+k:s_1 /T/ Erucdxdt

) - R AN s JR™TT

§C’s_k +Cs L

(tkua) — ktkilua dxdt

Thus the proof is completed.

3. The Proof of the Existence in Theorem 1.1
In order to prove the existence in Theorem 1.1, we cosider the following problem
up — (U"™)pe = pe(x) in Q, (3.1)

u(x,0) = ugs(z) for x € R, (3.2)

where p1. and wug. are defined by (2.1)-(2.2).Clearly,the Cauchy problem (3.1)-(3.2) has
a unique nonnegtive bounded smooth solution u.. By Theorem 2.1 - Theorem 2.3,
there exists a subsequent {uc,} of {uc} such that, for any compact subset K C @,

us, »u aein K ase; — 0% (3.3)
In addition,we also have
u € L>®(0,T; L'(R)) (3.4)
and
u€ L®(R x (s,T)), ue€ BV(Rx (s,T)) VO <s<T < +o0, (3.5)
and

u(-,t) € CP(R) for some B € (0,1) Vte(s,T) with 0<s<T < +oo. (3.6)

For any ¢ € C§°(Qr), we multipy (3.1) by ¢ and integrate over Q7 to obtain

// gountdardt—// go(u;”)mda:dt:// e (z)dzdt,
Qr T Qr

which implies that

// (—uggot—gomu?)dﬂvdt:// e (x)dxdt.
Qr Qr
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By (3.3), letting ¢ = ¢; — 07 we have

// (—ucpt—um<pm)dxdt:// pdpudt.
T Qr

By Definition 1.1 we conclude that u is a solution of (1.1).
In addition, we shall prove that u is a solution of (1.1)—(1.2).
In fact, For any ¢ € C§°(R), we multiply (3.1) by ¢ and integrate over Q¢ to obtain

/ /Q t Yuerdrdr — / /Q tw(u?)m dadr = / /Q t Ype(x)dwdr. (3.7)

We compute
//Qz Yuprdzd :/Rwue(x,t)dw—/Rwuog(x)dx. (3.8)

By Theorem 2.1 and Lemma 2.2, we have

’ // ) pedadT
t
:’—// Yygul dedr
m— 1
/ ’wmu HL‘X’ (suppy) </suppw usd:n) ar

-1
SC/ CTl/(mf6))m (/ (ue(z,7) —M0)+dx+/
0 suppy suppy
<C /tT—<m—1>/<m—6>dT
0

<=9/ (m=9) (3.9)

(uaModa:> dr

for all 6 € (0,1). In addition, we also have
/ Yue(z)drdr < Ct. (3.10)
Qt
Combining (3.8)-(3.10) with (3.7) we conclude that

‘/R Yue(z,t)dr — /R Yupe(x)dx| < Ct + C¢(1=0)/(m=9),

Letting e =¢; — 07 and ¢ — 0" we get

lim wu x,t) d:):—/ Yug(x

t—0t

By Definition 1.2, the proof is completed.
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4. The Proof of the Uniqueness in Theorem 1.1

In this section we shall prove the uniqueness in Theorem 1.1.
We assume that v and v are the solutions of (1.1)-(1.2).

We define
u™(z,t) — v™(x,t) )
if w(x,t) #v(x,t)
A(:L‘,t) = U($,t) —U($,t)
0, otherwise
and
Ac(z,t) = Az, t)+e, 0<e<1
and

Ac p(z,t) = (Jpx Ac)(x,t), 0<p<1,
where J, is defined by

J, GCOORXR,//J x,t)dxdt =1
pec®@xm), [ [ )
with

suppJ, C {(z,t) : |z| < p, lt] < p}.

Clearly, we have
e< Acp(x,t) <M

for all (x,t) € Rx(s,T), where M is a positive constant depending only on ||u| |L°°(R % (5,T))
and ||[v]] r x (5, 7))
For § € C3°(R) with |f] < 1, we choose a positive number R such that
0 e CSO(BRfl),

where Br = {z : |z| < R} with R > 0.
Now consider the following equations

o
— + A Ay = 4.1

in Br x (0,7) with the following initial-boundary values
P(x,t) =0 V(x,t) € 0Bg x (0,T) (4.2)

and
(@, T) =0(z)e ™ z e Bp. (4.3)

It is known that the problem (4.1)-(4.3) has a unique smooth solution 9., . In
order to prove the uniqueness in Theorem 1.1 we need the following lemmas.
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Lemma 4.1  The solution 1. , of (4.1)-(4.3) satisfies the following inequalities

thep(z, )] < 1 (4.4)
for all (x,t) € Br x (0,T), and
196t < (4.5)
Br
for allt € (0,T), and
T
/ / Ac (M. ,)2dzdt < Co, (4.6)
0 JBg

where Cy is a positive constant depending only on 6.
Proof The inequality (4.4) follows from the maximum principle. In order to
prove (4.5) and (4.6) we multiply (4.1) by A, and integrate in Bg x (¢,T) to obtain

T
/t /BR {(Aws’p)(d}&p)t + AE,p[Ad)z—:,p]Q} dedr =0

for all t € (0, 7).
We compute

T 1 1
| @ @ededr = =5 [ (Vo4 5 [V Pda
t JBg 2 /By 2 JBg

and then have

1 T 1
. / IVepe 2 dec + / / Ao [ A 2dedr = © / V(612 de,
2 /By t JBg 2 JBg

which implies (4.5) and (4.6). Thus the proof is completed.
Lemma 4.2  The solution 1., of (4.1)-(4.3) satisfies

¢s,p(1‘,t)| < Cle_lx‘ (47)

for all (z,t) € Br x (s,T) with s € (0,T), where C} is a positive constant depending
only on 0 and N(s,T), and

N T) = el x (5. 7)) + Pl (.7
Proof We consider the following functions
wh(2,t) = Fhep(a, t) + !,

where v > 0 will be determined later.
From (4.1)-(4.3) and Lemma 4.1, we have

wE(z,t) >0
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on x| =1 and || = R, and
wi(l',T) _ :Fee—|:v| + el—\w\—i—u(T—T) > 0,

and

+ 1—|z| _
8;; + A, Aw® _Oe g:(T 2 + A pAetll (T — 1)

==kl (T — ) {A., —v}.

Therefore, we can choose v depending only on N(s,T’) such that

o +
% + A ,Aw* <0

for all (z,t) € {(=R,—1) x (s,T)} N {(1,R) x (s,T)} with s € (0,T). Applying com-
parison principle, we have
w(x,t) >0

for all (z,t) € {(—R,—1)x (s,T)}N{(1,R) x (s,T)} with s € (0,T). This implies (4.7).
Thus the proof is completed.
Lemma 4.3  The solution 1., of (4.1)-(4.3) satisfies

Vipe (2, 1)] < Coe™ ™ (4.8)

for all (z,t) € O0BRr x (s,T) with s € (0,T), where Cy is a positive constant depending
only on 6 and N(s,T).
Proof We consider the functions

Zi(:t,t) = :F¢E,P(xvt) + Kle_R[eKz(‘ﬂ_R) - 1]

for all (z,t) € {(-R,—1) x (0,T)} Nn{(1,R) x (0,7)}.
Clearly, we have
2E(z,t) =0

for |x| = R, and
(a2, T) = Fhe 1 + Ke Blef2021-10) _ 1) <o

for x € Bp \ Br-1.
Using Lemma 4.2 we can choose K7 and K5 large enough such that

2 (x,t) = Fe p(, 1) + Kie Rle™™2 — 1] < 0
for || = R — 1. Clearly,

o +
% + A A = Kie B Fold=P g K250
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for R — 1 < || < R. Therefore, by maximum principle, we have
2 (z,t) <0
for all (z,t) € [(-R,—(R—1)) x (s,T)]N[(R—1,R) x (s,T)] with s € (0,T), and

0zt

— >0

ox —
on 0Bg x (s,T) with s € (0,7). This implies

0
:F% > Klng

on OBr x (s,T) with s € (0,T"). Thus the proof is completed.
Proof of the uniqueness in Theorem 1.1 We choose 1, € C§°(Br) such that

0 < Nalz,t) <1 V(z,t) € Bp; Na(z,t) =1 V(z,t) € Br_q

and
Ve (z, )] < Ca™ !, |Any (z,t)] < Ca~?

for all x € B, where 0 < a < R and C' is a positive constant independent of R and «.
Using Definition 1.1 we get

t
/BR Nate pu(x, t)dx :/B na¢57pu(x,s)dx—l—/ /BR, Na[Ve pleu(x, T)dxdr

+ / /B " Al Jdadr (4.9)

and
t
/BR naws,pU@:vt)dx:/ naws,pv(x>3)d$+/ /BR na[wa,p]tv(xﬂ—)dxdT
+ / / Alnatye pldedr (4.10)

for a. e. s,t with 0 < s <t < T, where v , is a solution of (4.1)-(4.3).
By (4.9) and (4.10), we have

/B e, 1) — vl 1))
= [}, movesuta) — (oo + g ol gl (e 7) = ol 7)o

+/ /BR Anate pldzdr
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for a. e. s,t with 0 < s <t < T. By (4.1), we have
/ nalps,p(u(l} t) — U($, t))da?
Br
:/ nawa,p(u(ﬂf, t) — v(x, S))dx
Br
t
+ / . Na[(u™ — ™) — Ac p(u — v)] A, pdzdT
R

+/ @ ™) 2V1a Ve p + e pArga]dzdr
R

for a. e. s,t with 0 < s <t < T. In addition, we also have
/ nabe™ V" (u(x, T) — v(x,T))dx
Br
= [ mate e, 9) (e, 9)da
Br
t
+ / /B Na[(u™ —v™) = Ag p(u — )] At pdzdT
R

/’/ ™) 2V Ve p + o pAa]drdr
Br

fora. e s,twith0O<s<t<T.
By Lemma 4.1, we compute

T
[ el = o™ = A p(u = 0] A dadr
s Br
T
- / [ o= 0)(As = Acp) At dadr
S R

T
— z-:/ Na(u — v) Atpe pdxdr
Bgr

{/ /BR Na(u — v) At)e ] daZdT} {/ / |Ae — Ac | d:ch}
+6/s {/B |77a(u—v)|2d:vd7-}1/2./sT {/B |A¢s,p\2dxd7-}l/2

T 1/2
<Ce 12 {/ /B |A: — A57p]2dxdr} + 051/2,
s R

which implies that

/T /B Na [(u™ —0™) — Ac p(u — v)] Ate pdxdr

1/2

T
gcge-lﬂ{/ / |A€—A€7p]2dxdr} + Oy,
S BR

(4.11)

/2

(4.12)
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where C3 is a positive constant independent of € and p.
Using Lemma 4.3 we compute

/ / ") 2V 1o Ve p + e pAne| dxdT
BR
—/ / ") 2Vna Ve p|dxdr + / / — ") [Ye pAng|dxdT
BR

Ca~! / / Ve |dadr + Ca~? / / (e | ddr
s JBR\BR-a s JBRr\Br-1

<C sup |Vipe | + Ca™t sup Ve ol
(z,t)e[BR\Br-1]x(s,T) (x,t)€[BR\Br-1]*(s,T)

which implies that

/ /B ™) 2V 0 Ve p + e pAno]dzdr
R
<Cy sup |Vipe | + Cypa™? sup [Vepl, (4.13)
(z,t)€[BR\Br—-1]x(s,T) (z,t)€[BR\Br—-1]x(s,T)

where Cy is a positive constant independent of R, € and p. By Lemma 4.1-Lemma 4.3,
there exists a subsequence {v. ,,} of {1 ,} such that

Vepi (45 1) = Ve, 1) (4.14)
as p; — 07 in C(Bg), where 9. satisfies
[e(z,t)| <1 (x,t) € Bg x (0,T) (4.15)
and
/BR |Vape (2, 1) |Pde < Cy  t € (0,T). (4.16)

By (4.15) and (4.16), there exists a subsequence {t,} of {t.} such that

Pe; (1) = YR(-1) (4.17)
as e; — 01 in C(BR), where 9 satisfies
lWr(z,t)| <1 (x,t) € Bg x (0,T) (4.18)
and
/BR \Vipg(z,t)?de < Cy t e (0,T). (4.19)

By (4.18) and (4.19), there exists a subsequence {¢r, } of {1} such that

VR, (1) = ¥(-1) (4.20)
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as Ry — 400 in Ce(R), where 9 satisfies
[h(z, )| <1 (x,t) €Rx(0,T) (4.21)

and
/R V(e t)2de < Co t € (0,T). (4.22)

Combining (4.12)-(4.13) with (4.11) we conclude that
| nateputa,t)  via, 0)ds
Br

= [ mate e, 9) (e, 9)da
Br

T 1/2
4 Cye V2 { / / A — A€7p|2da:d7} + Oyl
s Bgr

+ Cy sup |Vipe | + Cha™? sup Ve, p)-
(z,t)€[BR\Br—-1]x(s,T) (z,t)€[BR\Br—-1]x(s,T)

Letting p = p; — 0+ and € = ¢; — 0" and using (4.14) and (4.17), we get
e 1l (w(z, T) — v(z, T))dx < Yr(u(z,s) —v(x,s))dx
Bg Br
<Cye B+ Cye k.
Letting R = Ry — 400 and using (4.20) we get
/R e 1l (w(z, T) — v(z, T))dz < /Rq/)(u(x, s) —v(z, s))dz.
Leting s — 0T we have
/Raeflw\(u(g;,z’) — o(z, T))dz < 0
for all # € C§°(R) with |§| < 1. This implies that
/Re_m\u(:z,T) — (@, T)|dz < 0
for a.e. T € (0, +00). Therefore, we have
u(z,t) = v(x,t)

for a. e. (x,t) € Qp. Thus the proof is completed.
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5. Proof of Theorem 1.2

In this section we shall prove Theorem 1.2.
Proof of Theorem 1.2 By Theorem 2.2, there exist two positive constants 3 €
(0,1) and C independent of ¢ such that

’uE(xht) - u€($2,t)| < C|.%'1 - xQ‘ﬁ
for all z; € R(: = 1,2) and all ¢ € (0, 4+00). Letting ¢ = ¢; — 0" and using (3.3) we get
|u(@1,t) — u(we, t)] < Clay — 2|

for all ; € R(@ = 1,2) and all ¢t € (7,4+00). Thus, by the proof of Theorem 1.1, the
proof is completed.
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