EXISTENCE AND UNIQUENESS OF BV SOLUTIONS FOR THE POROUS MEDIUM EQUATION WITH DIRAC MEASURE AS SOURCES

Yuan Hongjun

(Department of Mathematics, Jilin University, Changchun 130012, China) (E-mail: hjy@mail.jlu.edu.cn)

Jin Yang

(School of Statistics, Renmin University of China, Beijing 100872, China) (E-mail: jinyange_mail@sina.com) (Received Apr. 27, 2004)

Abstract The aim of this paper is to discuss the existence and uniqueness of solutions for the porous medium equation

$$u_t - (u^m)_{xx} = \mu(x)$$
 in $(x,t) \in \mathbb{R} \times (0,+\infty)$

with initial condition

$$u(x,0) = u_0(x) \qquad x \in (-\infty, +\infty),$$

where $\mu(x)$ is a nonnegative finite Radon measure, $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ is a nonnegative function, and m > 1, and $\mathbb{R} \equiv (-\infty, +\infty)$.

Key Words BV solution; porous medium equation; existence and uniqueness.
2000 MR Subject Classification 35K45, 35K55, 35K65.
Chinese Library Classification O175.29.

1. Introduction

In this paper we consider the porous medium equation

$$u_t - (u^m)_{xx} = \mu(x) \qquad \text{in} \quad Q \tag{1.1}$$

with initial condition

$$u(x,0) = u_0(x) \qquad x \in \mathbb{R},\tag{1.2}$$

where $\mu(x)$ is a nonnegative finite Radon measure, $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ is a nonnegative function, $m > 1, Q \equiv \mathbb{R} \times (0, +\infty)$.

We denote

$$M_0 \equiv ||u_0||_{L^{\infty}(\mathbb{R})} + 1, \quad M_1 \equiv \int_{\mathbb{R}} d\mu$$

in this paper.

Clearly, the Cauchy problem (1.1)–(1.2) has no classical solutions in general. Therefore we consider its weak solutions.

Definition 1.1 A nonnegtive function $u : Q \longmapsto \mathbb{R}$ is said to be a solution of (1.1) if u satisfies the following conditions [H1] and [H2]:

[H1] For all $T \in (0, +\infty)$, we have

$$u \in L^{\infty}(0, T; L^1(\mathbb{R})) \cap BV_t(Q_T \setminus Q_s),$$

and

$$u(\cdot,t) \in C^{\alpha}(R) \quad \forall t \in (0,T)$$

with $s \in (0,T)$, where $Q_T \equiv \mathbb{R} \times (0,T)$.

[H2] For any $\phi \in C_0^{\infty}(Q_T)$, we have

$$\int \int_{Q_T} (-u\phi_t - u^m \phi_{xx}) dx dt = \int \int_{Q_T} \phi(x, t) \mu(x) dx dt.$$

Definition 1.2 A nonnegative function $u: Q \mapsto (0, +\infty)$ is said to be a solution of (1.1)-(1.2) if u is a solution of (1.1) and satisfies the initial condition (1.2) in the following sense:

$$ess \lim_{t \to 0^+} \int_{\mathbb{R}} \psi(x) u(x,t) dx = \int_{\mathbb{R}} \psi(x) u_0(x) dx, \quad \forall \psi \in C_0^{\infty}(\mathbb{R}).$$

Our main results are the following theorems.

Theorem 1.1 The Cauchy problem (1.1)–(1.2) has a unique a solution u = u(x,t) satisfying

$$u(x,t) \le \frac{C}{t^{m-\delta}} \qquad \forall (x,t) \in Q_T$$

for all $\delta \in (0,1)$, where C is a positive constant depending only on δ , m, M_0 and M_1 . Such kind of results has been obtained by a number of authours, for example, see [1–11].

Remark 1.1 The proof of the existence in Theorem 1.1 is different from that of [1-8], it is based some BV estimates. In particular, the uniqueness in Theorem 1.1 is very intereting and is also different from that of [9-11].

In addition, we have

Theorem 1.2 Assume that u is the solution of (1.1)-(1.2). Then we have

$$|u(x_1,t) - u(x_2,t)| \le C|x_1 - x_2|^{\beta}$$

for all $x_i \in \mathbb{R}(i = 1, 2)$ and all $t \in (\tau, +\infty)$, where $\beta \in (0, 1)$ and C > 0 are some positive constants depending only on τ , M_0 and M_1 .

The proofs of Theorem 1.1–1.2 are completed in Section 3–5. In proving process we shall use some uniform estimates in Section 2.

2. Some Estimates of Approximate Solutions

In order to discuss the existence of solutions for the Cauchy Problem (1.1)-(1.2), we consider the following equations of the form

$$u_t - (u^m)_{xx} = \mu_{\varepsilon}(x) \quad \text{in} \quad Q \tag{2.1}$$

with initial condition

$$u(x,0) = u_{0\varepsilon}(x) \tag{2.2}$$

where $\mu_{\varepsilon} = j_{\varepsilon} * (\mu(x) + \varepsilon)$, $u_{0\varepsilon}(x) = j_{\varepsilon} * u_{0}(x) + \varepsilon$, and

$$j_{\varepsilon}(x) = \frac{1}{\varepsilon} j\left(\frac{x}{\varepsilon}\right), \quad 0 < \varepsilon < 1,$$
 (2.3)

$$j(x) = \begin{cases} \delta_0 \exp\left\{\frac{x^2}{x^2 - 1}\right\}, & |x| < 1, \\ 0, & |x| \ge 1. \end{cases}$$
 (2.4)

$$\delta_0 \int_{-\infty}^{+\infty} j(x)dx = 1. \tag{2.5}$$

It is well known that the Cauchy problem (2.1)-(2.2) has a unique nonnegative bounded solution $u_{\varepsilon} \in C^{\infty}(\overline{Q_T})$ with $u_{\varepsilon} \geq \varepsilon$ in Q_T for all $T \in (0, +\infty)$.

In addition, we have the following estimates on u_{ε} .

Lemma 2.1 We have

$$\frac{\partial u_{\varepsilon}}{\partial t} \ge -\frac{ku_{\varepsilon}}{t},\tag{2.6}$$

where $k = \frac{1}{m-1}$.

Remark 2.1 Such estimates have been obtained by a number of authors, for some quasilinear degenerate pralolic equations or quasilinear hyperbolic equations, see [12-20].

Proof of Lemma 2.1 Denote

$$u_{\varepsilon r}(x,t) = r^{\frac{1}{m-1}} u_{\varepsilon}(x,rt), \quad \forall r \in \left(\frac{1}{2},1\right).$$

By (1.1) we compute

$$(u_{\varepsilon r})_t - (u_{\varepsilon r}^m)_{xx} = r^{\frac{m}{m-1}} \mu_{\varepsilon}(x) \le \mu_{\varepsilon}(x), \quad \forall r \in \left(\frac{1}{2}, 1\right),$$
 (2.7)

$$u_{\varepsilon r}(x,0) = r^{\frac{1}{m-1}} u_{0\varepsilon}(x) \le u_{0\varepsilon}(x), \quad \forall x \in \mathbb{R}.$$
 (2.8)

Applying the comparison principle and (2.1)-(2.2) with (2.7)-(2.8), we obtain

$$u_{\varepsilon r}(x,t) \le u_{\varepsilon}(x,t), \quad \forall (x,t) \in Q.$$

By the definition of $u_{\varepsilon r}$ we have

$$r^{\frac{1}{m-1}}u_{\varepsilon}(x,rt) \le u_{\varepsilon}(x,t), \quad \forall (x,t) \in Q,$$

which implies that

$$\frac{u_{\varepsilon}(x,t) - u_{\varepsilon}(x,rt)}{t - rt} \ge \frac{r^{\frac{1}{m-1}} - 1}{t(1-r)} u_{\varepsilon}(x,t), \quad \forall (x,t) \in Q, \forall r \in \left(\frac{1}{2},1\right)$$

Letting $r \to 1^-$, we get

$$\frac{\partial u_{\varepsilon}}{\partial t} \ge -\frac{ku_{\varepsilon}}{t}.$$

Thus the proof is completed.

Lemma 2.2 We have

$$\int_{\mathbb{R}} (u_{\varepsilon}(x,t) - M_0)_{+} dx \le T M_1$$

for all $t \in (0,T)$.

Proof Choose a number of functions $\xi_R \in C_0^{\infty}(R)$ with R > 2 such that

$$\xi_R = 1 \text{ in } (-R, R); \quad \xi_R = 0 \text{ in } \mathbb{R} \setminus (-2R, 2R),$$

$$0 \le \xi_R \le 1, \quad |\xi_R'| \le \frac{C}{R}, \quad |\xi_R''| \le \frac{C}{R^2} \text{ in } \mathbb{R}.$$
(2.9)

We multiply (2.1) by $\frac{\xi_R(u_\varepsilon - M_0)_+^m}{(u_\varepsilon - M_0)_+^m + \eta}$ (0 < η < 1) and integrate over in Q_T to obtain

$$\int \int_{Q_{T}} u_{\varepsilon t} \cdot \frac{\xi_{R}(u_{\varepsilon} - M_{0})_{+}^{m}}{(u_{\varepsilon} - M_{0})_{+}^{m} + \eta} dx dt - \int \int_{Q_{T}} u_{\varepsilon}^{m})_{xx} \cdot \frac{\xi_{R}(u_{\varepsilon} - M_{0})_{+}^{m}}{(u_{\varepsilon} - M_{0})_{+}^{m} + \eta} dx dt
= \int \int_{Q_{T}} \mu_{\varepsilon}(x) \cdot \frac{\xi_{R}(u_{\varepsilon} - M_{0})_{+}^{m}}{(u_{\varepsilon} - M_{0})_{+}^{m} + \eta} dx dt.$$
(2.10)

We compute

$$\int \int_{Q_T} u_{\varepsilon t} \cdot \frac{\xi_R(u_{\varepsilon} - M_0)_+^m}{(u_{\varepsilon} - M_0)_+^m + \eta} dx dt$$

$$= \int \int_{Q_T} \frac{\partial}{\partial t} \left(\xi_R \int_0^{(u_{\varepsilon} - M_0)_+} \frac{s^m ds}{s^m + \eta} \right) dx dt$$

$$= \int_{\mathbb{R}} \xi_R \left(\int_0^{(u_{\varepsilon}(x, T) - M_0)_+} \frac{s^m ds}{s^m + \eta} \right) dx - \int_{\mathbb{R}} \xi_R \left(\int_0^{(u_{0\varepsilon}(x) - M_0)_+} \frac{s^m ds}{s^m + \eta} \right) dx$$

$$= \int_{\mathbb{R}} \xi_R \left(\int_0^{(u_{\varepsilon}(x, T) - M_0)_+} \frac{s^m ds}{s^m + \eta} \right) dx$$

$$\int \int_{Q_T} u_{\varepsilon t} \cdot \frac{\xi_R(u_{\varepsilon} - M_0)_+^m}{(u_{\varepsilon} - M_0)_+^m + \eta} dx dt = \int_{\mathbb{R}} \xi_R \left(\int_0^{(u_{\varepsilon}(x, T) - M_0)_+} \frac{s^m ds}{s^m + \eta} \right) dx. \tag{2.11}$$

In addition, we have

$$\begin{split} -\int \int_{Q_T} (u_{\varepsilon}^m)_{xx} \cdot \frac{\xi_R(u_{\varepsilon} - M_0)_+^m}{(u_{\varepsilon} - M_0)_+^m + \eta} dx dt \\ &= \int \int_{Q_T} m u_{\varepsilon}^{m-1} u_{\varepsilon x} \left(\frac{\xi_R(u_{\varepsilon} - M_0)_+^m}{(u_{\varepsilon} - M_0)_+^m + \eta} \right)_x dx dt \\ &= \int \int_{Q_T} m u_{\varepsilon}^{m-1} u_{\varepsilon x} \left(\frac{\eta \xi_R[(u_{\varepsilon} - M_0)_+^m]_x}{[(u_{\varepsilon} - M_0)_+^m + \eta]^2} \right) dx dt \\ &+ \int \int_{Q_T} m u_{\varepsilon}^{m-1} u_{\varepsilon x} \left(\frac{\xi_{Rx}(u_{\varepsilon} - M_0)_+^m}{(u_{\varepsilon} - M_0)_+^m + \eta} \right) dx dt \\ &= \int \int_{Q_T} \frac{\eta \xi_R \cdot m(u_{\varepsilon} - M_0)_+^{m-1} \cdot m u_{\varepsilon}^{m-1} \cdot |[(u_{\varepsilon} - M_0)_+]_x|^2}{[(u_{\varepsilon} - M_0)_+^m + \eta]^2} dx dt \\ &+ \int \int_{Q_T} \xi_{Rx} \frac{\partial}{\partial x} \left(\int_0^{u_{\varepsilon}} \frac{m s^{m-1} (s - M_0)_+^m}{(s - M_0)_+^m + \eta} ds \right) dx dt \\ &\geq - \int \int_{Q_T} \xi_{Rxx} \left(\int_0^{u_{\varepsilon}} \frac{m s^{m-1} (s - M_0)_+^m}{(s - M_0)_+^m + \eta} ds \right) dx dt \\ &\geq - \frac{CT||u_{\varepsilon}||_{L^{\infty}(Q_T)}^n}{R}, \end{split}$$

which implies that

$$-\int \int_{Q_T} (u_{\varepsilon}^m)_{xx} \cdot \frac{\xi_R(u_{\varepsilon} - M_0)_+^m}{(u_{\varepsilon} - M_0)_+^m + \eta} dx dt \ge -\frac{CT||u_{\varepsilon}||_{L^{\infty}(Q_T)}^m}{R}, \tag{2.12}$$

where C is a positive constant depending only on m.

Clearly, we have

$$\int \int_{Q_T} \xi_R \frac{(u_\varepsilon - M_0)_+^m}{(u_\varepsilon - M_0)_+^m + \eta} \mu_\varepsilon(x) dx dt \le T \int_{\mathbb{R}} d\mu(x). \tag{2.13}$$

Combining (2.12)-(2.13) with (2.11) we get

$$\int_{\mathbb{R}} \xi_R \left(\int_0^{(u_\varepsilon(x,T)-M_0)_+} \frac{s^m}{s^m + \eta} \right) dx \le \frac{CT||u_\varepsilon||_{L^\infty(Q_T)}^m}{R} + T \int_{\mathbb{R}} d\mu(x).$$

Letting $\eta \to +0$ and $R \to +\infty$ we have

$$\int_{\mathbb{R}} (u_{\varepsilon}(x,T) - M_0)_{+} dx \le T \int_{\mathbb{R}} d\mu(x)$$

for all $T \in (0, +\infty)$. Thus the proof is completed.

Theorem 2.1 Assume that u_{ε} is the solution of (1.1)-(1.2). Then we have

$$u_{\varepsilon}(x,t) \le \frac{\gamma_1}{t^{m-\delta}} \qquad \forall (x,t) \in Q_T$$

for all $\delta \in (0,1)$, where γ_1 is a constant depending only on δ , m, T, M_0 and M_1 .

Proof For any $\delta \in (0,1)$, we can find a number $\alpha \in (0,1/m)$ such that

$$m\alpha = \delta$$
.

Clearly, we have

$$m(1-\alpha) > m-1. \tag{2.14}$$

Assume that

$$M_* = \sup_{(x,t)\in Q_T} [t^{1/[m(1-\alpha)]} u_{\varepsilon}(x,t)].$$

Therefore, there exists a point $(x_*, t_*) \in Q_T$ such that

$$u_{\varepsilon}(x_*, t_*) \ge M_* - 1.$$
 (2.15)

Denote

$$\eta_R(x) = \xi_R(x - x_*)$$

for all $x \in \mathbb{R}$ and all $R \ge 1$, where ξ_R is defined by (2.9).

By Lemma 2.1 and (2.1) we get

$$-(u_{\varepsilon}^m)_{xx} \le \frac{ku_{\varepsilon}}{t} + \mu_{\varepsilon}. \tag{2.16}$$

We multiply (2.16) by $\frac{\eta_R u_\varepsilon^{m\alpha}}{u_\varepsilon^{m\alpha}+1}$ $(0<\alpha<1/m)$ and integrate over $\mathbb{R}\times(s,t)$ to obtain

$$-\int_{s}^{t} \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau \leq \int_{s}^{t} \int_{\mathbb{R}} \frac{k u_{\varepsilon}}{\tau} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau + \int_{s}^{t} \int_{\mathbb{R}} \mu_{\varepsilon} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau.$$

$$(2.17)$$

We compute

$$-\int_{s}^{t} \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau$$

$$= \int_{s}^{t} \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{x} \left[\frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} \right]_{x} dx d\tau$$

$$\begin{split} &= \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} \frac{(u_{\varepsilon}^{m\alpha})_{x}(u_{\varepsilon}^{m})_{x}}{(u_{\varepsilon}^{m\alpha}+1)^{2}} dx d\tau + \int_{s}^{t} \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{x} \frac{\eta_{R}' u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha}+1} dx d\tau \\ &= \frac{4\alpha}{(1-\alpha)^{2}} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} \frac{u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha}+1)^{2}} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_{x} \right|^{2} dx d\tau \\ &+ \int_{s}^{t} \int_{\mathbb{R}} \eta_{R}' \frac{\partial}{\partial x} \left(\int_{0}^{u_{\varepsilon}^{m}} \frac{s^{\alpha}}{s^{\alpha}+1} ds \right) dx d\tau \\ &= \frac{4\alpha}{(1-\alpha)^{2}} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} \frac{u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha}+1)^{2}} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_{x} \right|^{2} dx d\tau \\ &- \int_{s}^{t} \int_{\mathbb{R}} \eta_{R}'' \left(\int_{0}^{u_{\varepsilon}^{m}} \frac{s^{\alpha}}{s^{\alpha}+1} ds \right) dx d\tau \\ &\geq \frac{4\alpha}{(1-\alpha)^{2}} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} \frac{u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha}+1)^{2}} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_{x} \right|^{2} dx d\tau - \int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}'' | u_{\varepsilon}^{m} dx d\tau, \end{split}$$

$$-\int_{s}^{t} \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau$$

$$\leq \frac{4\alpha}{(1-\alpha)^{2}} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} \frac{u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha} + 1)^{2}} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_{x} \right|^{2} dx d\tau + \int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}^{"}| u_{\varepsilon}^{m} dx d\tau. \quad (2.18)$$

Denote

$$I_R = (x^* - 2R, x^* + 2R). (2.19)$$

By (2.19) and (2.14), we compute

$$\begin{split} \int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}^{"}| u_{\varepsilon}^{m} dx d\tau &= \int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}^{"}| \tau^{1/(m(1-\alpha))} u_{\varepsilon}|^{m-1} \cdot \tau^{-(m-1)/(m(1-\alpha))} u_{\varepsilon} dx d\tau \\ &\leq s^{-(m-1)/(m(1-\alpha))} M_{*}^{m-1} \int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}^{"}| u_{\varepsilon} dx d\tau \\ &\leq s^{-1} M_{*}^{m-1} \int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}^{"}| u_{\varepsilon} dx d\tau \\ &= s^{-1} M_{*}^{m-1} \int_{s}^{t} \int_{I_{R} \cap \{u_{\varepsilon} > M_{0}\}} |\eta_{R}^{"}| u_{\varepsilon} dx d\tau \\ &+ s^{-1} M_{*}^{m-1} \int_{s}^{t} \int_{I_{R} \cap \{u_{\varepsilon} \leq M_{0}\}} |\eta_{R}^{"}| u_{\varepsilon} dx d\tau \\ &= s^{-1} M_{*}^{m-1} \int_{s}^{t} \int_{I_{R} \cap \{u_{\varepsilon} > M_{0}\}} |\eta_{R}^{"}| (u_{\varepsilon} - M_{0}) dx d\tau \end{split}$$

$$+ s^{-1} M_*^{m-1} \int_s^t \int_{I_R \cap \{u_{\varepsilon} > M_0\}} |\eta_R''| M_0 dx d\tau$$

$$+ s^{-1} M_*^{m-1} \int_s^t \int_{I_R \cap \{u_{\varepsilon} \leq M_0\}} |\eta_R''| u_{\varepsilon} dx d\tau$$

$$\leq \frac{C M_1 T M_*^{m-1} (t-s)}{sR^2} + \frac{C M_0 M_*^{m-1} (t-s)}{sR}$$

$$\int_{s}^{t} \int_{\mathbb{R}} |\eta_{R}^{"}| u_{\varepsilon}^{m} dx d\tau \le \frac{CM_{*}^{m-1}(t-s)}{sR^{2}} + \frac{CM_{*}^{m-1}(t-s)}{sR}, \tag{2.20}$$

where C is a positive constant depending only on m,T,M_0 and M_1 . Combining (2.18)-(2.19) with (2.20) we get

$$-\int_{s}^{t} \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau$$

$$\geq \frac{4\alpha}{(1 - \alpha)^{2}} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} \frac{u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha} + 1)^{2}} \left| \left[u_{\varepsilon}^{\frac{m(1 - \alpha)}{2}} \right]_{x} \right|^{2} dx d\tau - \frac{CM_{*}^{m-1}(t - s)}{sR} \quad (2.21)$$

for all $R \geq 2$, where C is a positive constant depending only on m, T, M_0 and M_1 . We have

$$\int_{s}^{t} \int_{\mathbb{R}} \frac{ku_{\varepsilon}}{\tau} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau
\leq \frac{k}{s} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} (u_{\varepsilon} - M_{0})_{+} dx d\tau + \frac{k}{s} \int_{s}^{t} \int_{\mathbb{R}} \eta_{R} M_{0} dx d\tau
\leq CRs^{-1} (t - s)$$
(2.22)

for all $R \geq 2$, where C is a positive contant depending only on m, T, M_0 and M_1 . On the other hand, we also have

$$\int_{s}^{t} \int_{\mathbb{R}} \mu_{\varepsilon} \frac{\eta_{R} u_{\varepsilon}^{m\alpha}}{u_{\varepsilon}^{m\alpha} + 1} dx d\tau \le M_{1}(t - s). \tag{2.23}$$

Combining (2.21)-(2.23) with (2.17) we conclude that

$$\frac{1}{t-s} \int_{s}^{t} \int_{\mathbb{R}} \frac{\eta_{R} u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha}+1)^{2}} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_{x} \right|^{2} dx d\tau \right| \leq \frac{(1-\alpha)^{2}}{4\alpha} \left[\frac{CM_{*}^{m-1}}{sR} + CRs^{-1} + M_{1} \right]$$

for all s, t such that 0 < s < t < T. Let $s \uparrow t$ and obtain

$$\int_{\mathbb{R}} \frac{\eta_R u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha} + 1)^2} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_x \right|^2 (x, t) dx \le \frac{CR(1-\alpha)^2}{\alpha t} \left[M_*^{m-1} + 1 \right]$$
 (2.24)

for all $t \in (0,T)$ and all $R \geq 2$.

On the other hand, we also have

$$\begin{split} \int_{\mathbb{R}} \frac{\eta_R u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha}+1)^2} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_x \right|^2 (x,t) dx \\ & \geq \int_{\mathbb{R}} \bigcap_{\left\{ u_{\varepsilon} > 1 \right\}} \frac{\eta_R u_{\varepsilon}^{2m\alpha}}{(u_{\varepsilon}^{m\alpha}+1)^2} \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_x \right|^2 (x,t) dx \\ & \geq \frac{1}{2} \int_{\mathbb{R}} \bigcap_{\left\{ u_{\varepsilon} > 1 \right\}} \eta_R \left| \left[u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} \right]_x \right|^2 (x,t) dx \\ & = \frac{1}{2} \int_{\mathbb{R}} \bigcap_{\left\{ u_{\varepsilon} > 1 \right\}} \eta_R \left| \left[(u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} - 1)_+ \right]_x \right|^2 (x,t) dx \\ & = \frac{1}{2} \int_{\mathbb{R}} \eta_R \left| \left[(u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} - 1)_+ \right]_x \right|^2 (x,t) dx \end{split}$$

By (2.24), we get

$$\int_{\mathbb{R}} \eta_R(x) \left| \left[(u_{\varepsilon}^{\frac{m(1-\alpha)}{2}}(x,t) - 1)_+ \right]_x \right|^2 dx \le Ct^{-1}(M_*^{m-1} + 1)$$

and then

$$\int_{\mathbb{R}} t \xi_R(x) \left| \left[\left(u_{\varepsilon}^{\frac{m(1-\alpha)}{2}} (x + x_*, t) - 1 \right)_+ \right]_x \right|^2 dx \le C(M_*^{m-1} + 1)$$
 (2.25)

for all $t \in (0,T)$ and $\alpha \in (0,1/m)$, where C is a positive constant depending only on R,α,m,M_0 and M_1 .

Using (2.15) we compute

$$\begin{split} M_*^{m(1-\alpha)/2} &\leq \left(t_*^{1/[m(1-\alpha)]} u_{\varepsilon}(x_*,t_*) + 1\right)^{m(1-\alpha)/2} \\ &\leq C \left(t_*^{1/2} u_{\varepsilon}^{m(1-\alpha)/2}(x_*,t_*) + 1\right) \\ &\leq C \left\{t_*^{1/2} [(u_{\varepsilon}^{m(1-\alpha)/2}(x_*,t_*) - 1)_+ + 1] + 1\right\} \\ &\leq C \left\{t_*^{1/2} (u_{\varepsilon}^{m(1-\alpha)/2}(x_*,t_*) - 1)_+ + 1\right\} \\ &= C \left\{t_*^{1/2} \xi_R(0) (u_{\varepsilon}^{m(1-\alpha)/2}(x_*,t_*) - 1)_+ + 1\right\} \\ &= C \left\{\int_{-2R}^0 \frac{\partial}{\partial x} \left(t_*^{1/2} \xi_R(x) (u_{\varepsilon}^{m(1-\alpha)/2}(x+x_*,t_*) - 1)_+\right) dx + 1\right\} \\ &= C \left\{1 + \int_{-2R}^0 t_*^{1/2} \xi_R(x) \frac{\partial}{\partial x} \left((u_{\varepsilon}^{m(1-\alpha)/2}(x+x_*,t_*) - 1)_+\right) dx \right\} \\ \end{aligned}$$

$$\begin{split} &+ \int_{-2R}^{0} t_{*}^{1/2} \xi_{R}'(x) \left(\left(u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*})-1 \right)_{+} \right) dx \right\} \\ &\leq C \left\{ 1 + t_{*}^{1/2} \left[\int_{-2R}^{0} \xi_{R}(x) \left| \frac{\partial}{\partial x} \left(\left(u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*})-1 \right)_{+} \right) \right|^{2} dx \right]^{1/2} \right. \\ & \cdot \left(\int_{-2R}^{0} \xi_{R}(x) dx \right)^{1/2} + \int_{-2R}^{0} t_{*}^{1/2} |\xi_{R}'(x)| (u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*}) dx \right\} \\ &\leq C \left\{ 1 + [C(M_{*}^{m-1}+1)]^{1/2} \cdot R^{1/2} + \int_{-2R}^{0} t_{*}^{1/2} |\xi_{R}'(x)| u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*}) dx \right\} \\ &\leq C \left\{ 1 + M_{*}^{(m-1)/2} + \int_{-2R}^{0} t_{*}^{1/2} |\xi_{R}'(x)| u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*}) dx \right\}, \end{split}$$

$$M_*^{m(1-\alpha)/2} \le C \left\{ 1 + M_*^{(m-1)/2} + \int_{-2R}^0 t_*^{1/2} |\xi_R'(x)| u_\varepsilon^{m(1-\alpha)/2}(x+x_*,t_*) dx \right\}, \quad (2.26)$$

where C is a positive constant depending only on R, α, T, m, M_0 and M_1 .

On the other hand, for $m(1-\alpha)/2 < 1$, we have

$$\int_{-2R}^{0} t_{*}^{1/2} |\xi_{R}'(x)| u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*}) dx
\leq CR^{-1} \int_{-2R}^{0} u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*}) dx
\leq C \left(\int_{-2R}^{0} u_{\varepsilon}(x+x_{*},t_{*}) dx \right)^{2/[m(1-\alpha)]} \left(\int_{-2R}^{0} dx \right)^{1-2/[m(1-\alpha)]}
\leq C \left(\int_{-2R}^{0} u_{\varepsilon}(x+x_{*},t_{*}) dx \right)^{2/[m(1-\alpha)]}
\leq C \left(\int_{-2R}^{0} (u_{\varepsilon}(x+x_{*},t_{*}) - M_{0})_{+} dx + \int_{-2R}^{0} M_{0} dx \right)^{2/[m(1-\alpha)]}
\leq C,$$

which implies that

$$\int_{-2R}^{0} t_{*}^{1/2} |\xi_{R}'(x)| (u_{\varepsilon}^{m(1-\alpha)/2}(x+x_{*},t_{*})dx \le C$$
(2.27)

for $m(1-\alpha)/2 < 1$, where C is a positive constant depending only on R,α, m,T,M_0 and M_1 .

For $m(1-\alpha)/2 \ge 1$, we have

$$\int_{-2R}^{0} |\xi'_{R}(x)| u_{\varepsilon}^{\frac{m(1-\alpha)}{2}}(x+x_{*},t_{*}) dx
\leq M_{*}^{m(1-\alpha)/2-1} \int_{-2R}^{0} |\xi'_{R}(x)| u_{\varepsilon}(x+x_{*},t_{*}) dx + \int_{-2R}^{0} |\xi'_{R}(x)| M_{0} dy
\leq C \left(1 + M_{*}^{m(1-\alpha)/2-1}\right),$$

which implies that

$$\int_{-2R}^{0} |\xi_R'(x)| u_{\varepsilon}^{\frac{m(1-\alpha)}{2}}(x+x_*,t_*) dx \le C \left(1 + M_*^{m(1-\alpha)/2-1}\right)$$
 (2.28)

for $m(1-\alpha)/2 \ge 1$, where C is a positive constant depending only on R,α, m,T,M_0 and M_1 .

By (2.27) and (2.28), we obtain

$$\int_{-2R}^{0} |\xi_R'(x)| u_{\varepsilon}^{\frac{m(1-\alpha)}{2}}(x+x_*,t_*) dx \le C\left(1 + M_*^{(m(1-\alpha)/2-1)_+}\right),\tag{2.29}$$

where C is a positive constant depending only on R, α, m, T, M_0 and M_1 .

By (2.26) and (2.29), we get

$$M_*^{m(1-\alpha)/2} \le C \left\{ 1 + M_*^{(m-1)/2} + C(1 + M_*^{(m(1-\alpha)/2-1)_+}) \right\},$$

where C is a positive constant depending only on R,α , m,T,M_0 and M_1 . Applying Young inequality we conclude that

$$M_* < C$$
.

where C is a positive constant depending only on R,α , m,T,M_0 and M_1 . Thus the proof is completed.

Theorem 2.2 Assume that u_{ε} is the solution of (1.1)-(1.2). For any $R \in (0, +\infty)$, we have

$$|u_{\varepsilon}(x_1,t) - u_{\varepsilon}(x_2,t)| \le \gamma_2 |x_1 - x_2|^{\beta}$$

for all $(x_1,t) \in (-R,R) \times (\tau,T)$ and all $(x_2,t) \in (-R,R) \times (\tau,T)$, where γ_2 and $\beta \in (0,1)$ are some positive constants depending only on τ , T, R,m, M_0 and M_1 .

Proof We multiply (2.16) by $\xi_R u_{\varepsilon}^{\alpha}(x,t)$ (0 < α < 1) and integrate over \mathbb{R} to obtain

$$-\int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \cdot \xi_{R} u_{\varepsilon}^{\alpha}(x,t) dx \leq \int_{\mathbb{R}} kt^{-1} u_{\varepsilon} \cdot \xi_{R} u_{\varepsilon}^{\alpha}(x,t) dx + \int_{\mathbb{R}} \mu_{\varepsilon} \cdot \xi_{R} u_{\varepsilon}^{\alpha}(x,t) dx \quad (2.30)$$

for all $t \in (\tau, T)$.

By Theorem 2.1, we compute

$$-\int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \cdot \xi_{R} u_{\varepsilon}^{\alpha}(x,t) dx$$

$$= \int_{\mathbb{R}} (u_{\varepsilon}^{m})_{x} (\xi_{R} u_{\varepsilon}^{\alpha}(x,t))_{x} dx$$

$$= \int_{\mathbb{R}} \xi_{R} (u_{\varepsilon}^{m})_{x} (u_{\varepsilon}^{\alpha}(x,t))_{x} dx + \int_{\mathbb{R}} \xi'_{R} (u_{\varepsilon}^{m})_{x} u_{\varepsilon}^{\alpha}(x,t) dx$$

$$= \frac{4m\alpha}{(m+\alpha)^{2}} \int_{\mathbb{R}} \xi_{R} |(u_{\varepsilon}^{(m+\alpha)/2})_{x}|^{2} dx + \int_{\mathbb{R}} \xi'_{R} \left(\int_{0}^{u_{\varepsilon}(x,t)} ms^{m+\alpha-1} ds\right) dx$$

$$\geq \frac{4m\alpha}{(m+\alpha)^{2}} \int_{\mathbb{R}} \xi_{R} |(u_{\varepsilon}^{(m+\alpha)/2})_{x}|^{2} dx - C,$$

which implies that

$$-\int_{\mathbb{R}} (u_{\varepsilon}^{m})_{xx} \cdot \xi_{R} u_{\varepsilon}^{\alpha}(x,t) dx \ge \frac{4m\alpha}{(m+\alpha)^{2}} \int_{\mathbb{R}} \xi_{R} |(u_{\varepsilon}^{(m+\alpha)/2})_{x}|^{2} dx - C$$
 (2.31)

for all $t \in (\tau, T)$, where C is a positive constant depending only on τ , T, R,m,M₀ and M₁.

In addition, by Theorem 2.1, we also have

$$\int_{\mathbb{R}} kt^{-1}u_{\varepsilon} \cdot \xi_{R}u_{\varepsilon}^{\alpha}(x,t)dx \le C \tag{2.32}$$

and

$$\int_{\mathbb{R}} \mu_{\varepsilon} \cdot \xi_R u_{\varepsilon}^{\alpha}(x, t) dx \le C \tag{2.33}$$

where C is a positive constant depending only on τ , T, R,m, M_0 and M_1 .

Combining (2.31)-(2.33) with (2.30) we obtain

$$\int_{\mathbb{R}} \xi_R |(u_{\varepsilon}^{(m+\alpha)/2})_x|^2 dx \le C \tag{2.34}$$

for all $t \in (\tau, T)$, where C is a positive constant depending only on τ , T, R,m,M₀ and M₁.

Choose

$$\alpha = \begin{cases} 1 - \frac{m}{4} & \text{if } 1 < m < 2 \\ \frac{1}{2} & \text{if } m \ge 2 \end{cases}$$

and have

$$(m+\alpha)/2 > 1. \tag{2.35}$$

For $(x_1,t) \in (-R,R) \times (\tau,T)$ and $(x_2,t) \in (-R,R) \times (\tau,T)$, using (2.34), (2.35) we compute

$$|u_{\varepsilon}(x_1,t) - u_{\varepsilon}(x_2,t)| \le |u_{\varepsilon}^{(m+\alpha)/2}(x_1,t) - u_{\varepsilon}^{(m+\alpha)/2}(x_2,t)|^{2/(m+\alpha)}$$

$$|u_{\varepsilon}(x_1,t) - u_{\varepsilon}(x_2,t)| \le C |x_1 - x_2|^{1/(m+\alpha)}$$

for all $t \in (\tau, T)$, where C is a positive constant depending only on τ , T, R,m, M_0 and M_1 . Thus the proof is completed.

Theorem 2.3 Assume that u_{ε} is the solution of (1.1)-(1.2). For any $R \in (0, +\infty)$, and any $s \in (0, T)$ we have

$$\int_{s}^{T} \int_{-R}^{R} |u_{\varepsilon t}| dx dt \le \gamma_3$$

where γ_3 is a positive constant depending only on R, s, T, m, M_0 and M_1 .

Proof Applying (2.6) we get

$$\frac{\partial}{\partial t} \left(t^k u_{\varepsilon}(x, t) \right) = k t^{k-1} u_{\varepsilon} + t^k u_{\varepsilon t} \ge 0. \tag{2.36}$$

On the other hand, by (2.1), we have

$$\frac{\partial}{\partial t} \left(t^k u_{\varepsilon} \right) = t^k (u_{\varepsilon}^m)_{xx} + k t^{k-1} u_{\varepsilon} + t^k \mu_{\varepsilon}. \tag{2.37}$$

We multiply (2.37) by ξ_R in (2.9) and integrate over in $\mathbb{R} \times (s,T)$ (0 < $s < T < +\infty$) to obtain

$$\int_{s}^{T} \int_{\mathbb{R}} \xi_{R} \frac{\partial}{\partial t} \left(t^{k} u_{\varepsilon} \right) dx dt = \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} t^{k} (u_{\varepsilon}^{m})_{xx} dx dt
+ \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} k t^{k-1} u_{\varepsilon} dx dt + \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} t^{k} \mu_{\varepsilon} dx dt. \quad (2.38)$$

Applying Theorem 2.1 we compute

$$\int_{s}^{T} \int_{\mathbb{R}} \xi_{R} t^{k} (u_{\varepsilon}^{m})_{xx} dx dt = \int_{S}^{T} \int_{\mathbb{R}} \xi_{R}^{"} t^{k} u_{\varepsilon}^{m} dx dt \le C, \tag{2.39}$$

where C is a positive constant depending only on s,T,R,m,M_0 and M_1 . In addition, we have

$$\int_{s}^{T} \int_{\mathbb{R}} \xi_{R} k t^{k-1} u_{\varepsilon} dx dt + \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} t^{k} \mu_{\varepsilon} dx dt \le C, \tag{2.40}$$

where C is a positive constant depending only on s, T, R m, M_0 and M_1 . Combining (2.39) and (2.40) with (2.38) we conclude that

$$\int_{s}^{T} \int_{\mathbb{R}} \xi_{R} \frac{\partial}{\partial t} \left(t^{k} u_{\varepsilon} \right) dx dt \leq C. \tag{2.41}$$

Using (2.39) and (2.41) we have

$$\int_{s}^{T} \int_{\mathbb{R}} \xi_{R} |u_{\varepsilon t}| dx dt \leq \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} t^{-k} \left| \frac{\partial}{\partial t} \left(t^{k} u_{\varepsilon} \right) - k t^{k-1} u_{\varepsilon} \right| dx dt \\
\leq s^{-k} \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} \frac{\partial}{\partial t} \left(t^{k} u_{\varepsilon} \right) dx dt + k s^{-1} \int_{s}^{T} \int_{\mathbb{R}} \xi_{R} u_{\varepsilon} dx dt \\
\leq C s^{-k} + C s^{-1}.$$

Thus the proof is completed.

3. The Proof of the Existence in Theorem 1.1

In order to prove the existence in Theorem 1.1, we cosider the following problem

$$u_t - (u^m)_{xx} = \mu_{\varepsilon}(x) \quad \text{in} \quad Q,$$
 (3.1)

$$u(x,0) = u_{0\varepsilon}(x) \quad \text{for } x \in \mathbb{R},$$
 (3.2)

where μ_{ε} and $u_{0\varepsilon}$ are defined by (2.1)-(2.2). Clearly, the Cauchy problem (3.1)-(3.2) has a unique nonnegtive bounded smooth solution u_{ε} . By Theorem 2.1 - Theorem 2.3, there exists a subsequent $\{u_{\varepsilon_i}\}$ of $\{u_{\varepsilon}\}$ such that, for any compact subset $K \subset Q$,

$$u_{\varepsilon_j} \to u \quad a.e. \text{in } K \quad \text{as } \varepsilon_j \to 0^+.$$
 (3.3)

In addition, we also have

$$u \in L^{\infty}(0, T; L^{1}(\mathbb{R})) \tag{3.4}$$

and

$$u \in L^{\infty}(\mathbb{R} \times (s, T)), \quad u \in BV_t(\mathbb{R} \times (s, T)) \qquad \forall 0 < s < T < +\infty,$$
 (3.5)

and

$$u(\cdot,t) \in C^{\beta}(\mathbb{R})$$
 for some $\beta \in (0,1)$ $\forall t \in (s,T)$ with $0 < s < T < +\infty$. (3.6)

For any $\varphi \in C_0^{\infty}(Q_T)$, we multipy (3.1) by φ and integrate over Q_T to obtain

$$\int \int_{Q_T} \varphi u_{\eta t} dx dt - \int \int_{Q_T} \varphi (u_{\varepsilon}^m)_{xx} dx dt = \int \int_{Q_T} \varphi \mu_{\varepsilon}(x) dx dt,$$

which implies that

$$\int \int_{O_T} (-u_{\varepsilon} \varphi_t - \varphi_{xx} u_{\varepsilon}^m) dx dt = \int \int_{O_T} \varphi \mu_{\varepsilon}(x) dx dt.$$

By (3.3), letting $\varepsilon = \varepsilon_j \to 0^+$ we have

$$\int \int_{Q_T} (-u\varphi_t - u^m \varphi_{xx}) dx dt = \int \int_{Q_T} \varphi d\mu dt.$$

By Definition 1.1 we conclude that u is a solution of (1.1).

In addition, we shall prove that u is a solution of (1.1)–(1.2).

In fact, For any $\varphi \in C_0^{\infty}(\mathbb{R})$, we multiply (3.1) by ψ and integrate over Q_t to obtain

$$\int \int_{Q_t} \psi u_{\varepsilon t} dx d\tau - \int \int_{Q_t} \psi \left(u_{\varepsilon}^m \right)_{xx} dx d\tau = \int \int_{Q_t} \psi \mu_{\varepsilon}(x) dx d\tau. \tag{3.7}$$

We compute

$$\int \int_{Q_t} \psi u_{\eta t} dx d = \int_{\mathbb{R}} \psi u_{\varepsilon}(x, t) dx - \int_{\mathbb{R}} \psi u_{0\varepsilon}(x) dx.$$
 (3.8)

By Theorem 2.1 and Lemma 2.2, we have

$$\left| -\int \int_{Q_{t}} \psi(u_{\varepsilon}^{m})_{xx} dx d\tau \right|
= \left| -\int \int_{Q_{t}} \psi_{xx} u_{\varepsilon}^{m} dx d\tau \right|
\leq \int_{0}^{t} \left\| \psi_{xx} u_{\varepsilon}^{m-1}(\cdot, \tau) \right\|_{L^{\infty}(supp\psi)} \left(\int_{supp\psi} u_{\varepsilon} dx \right) d\tau
\leq C \int_{0}^{t} \left(C\tau^{1/(m-\delta)} \right)^{m-1} \left(\int_{supp\psi} (u_{\varepsilon}(x, \tau) - M_{0})_{+} dx + \int_{supp\psi} (u_{\varepsilon} M_{0} dx) d\tau \right)
\leq C \int_{0}^{t} \tau^{-(m-1)/(m-\delta)} d\tau
\leq C t^{(1-\delta)/(m-\delta)}$$
(3.9)

for all $\delta \in (0,1)$. In addition, we also have

$$\int \int_{Q_t} \psi \mu_{\varepsilon}(x) dx d\tau \le Ct. \tag{3.10}$$

Combining (3.8)-(3.10) with (3.7) we conclude that

$$\left| \int_{\mathbb{R}} \psi u_{\varepsilon}(x,t) dx - \int_{\mathbb{R}} \psi u_{0\varepsilon}(x) dx \right| \le Ct + Ct^{(1-\delta)/(m-\delta)}.$$

Letting $\varepsilon = \varepsilon_i \to 0^+$ and $t \to 0^+$ we get

$$\lim_{t \to 0^+} \int_{\mathbb{R}} \psi u(x, t) dx = \int_{\mathbb{R}} \psi u_0(x) dx.$$

By Definition 1.2, the proof is completed.

4. The Proof of the Uniqueness in Theorem 1.1

In this section we shall prove the uniqueness in Theorem 1.1.

We assume that u and v are the solutions of (1.1)-(1.2).

We define

$$A(x,t) = \begin{cases} \frac{u^m(x,t) - v^m(x,t)}{u(x,t) - v(x,t)} & \text{if } u(x,t) \neq v(x,t) \\ 0, & \text{otherwise} \end{cases}$$

and

$$A_{\varepsilon}(x,t) = A(x,t) + \varepsilon, \quad 0 < \varepsilon < 1$$

and

$$A_{\varepsilon,\rho}(x,t) = (J_{\rho} * A_{\varepsilon})(x,t), \quad 0 < \rho < 1,$$

where J_{ρ} is defined by

$$J_{\rho} \in C^{\infty}(\mathbb{R} \times \mathbb{R}), \int_{\mathbb{R}} \int_{\mathbb{R}} J_{\rho}(x, t) dx dt = 1$$

with

$$\operatorname{supp} J_{\rho} \subset \{(x,t) : |x| < \rho, \qquad |t| < \rho\}.$$

Clearly, we have

$$\varepsilon \le A_{\varepsilon,\rho}(x,t) \le M$$

for all $(x,t) \in \mathbb{R} \times (s,T)$, where M is a positive constant depending only on $||u||_{L^{\infty}(\mathbb{R} \times (s,T))}$ and $||v||_{L^{\infty}(\mathbb{R} \times (s,T))}$.

For $\theta \in C_0^{\infty}(\mathbb{R})$ with $|\theta| \leq 1$, we choose a positive number R such that

$$\theta \in C_0^{\infty}(B_{R-1}),$$

where $B_R \equiv \{x : |x| < R\}$ with R > 0.

Now consider the following equations

$$\frac{\partial \psi}{\partial t} + A_{\varepsilon,\rho} \Delta \psi = 0 \tag{4.1}$$

in $B_R \times (0,T)$ with the following initial-boundary values

$$\psi(x,t) = 0 \qquad \forall (x,t) \in \partial B_R \times (0,T) \tag{4.2}$$

and

$$\psi(x,T) = \theta(x)e^{-|x|} \qquad x \in B_R. \tag{4.3}$$

It is known that the problem (4.1)-(4.3) has a unique smooth solution $\psi_{\varepsilon,\rho}$. In order to prove the uniqueness in Theorem 1.1 we need the following lemmas.

Lemma 4.1 The solution $\psi_{\varepsilon,\rho}$ of (4.1)-(4.3) satisfies the following inequalities

$$|\psi_{\varepsilon,\rho}(x,t)| \le 1 \tag{4.4}$$

for all $(x,t) \in B_R \times (0,T)$, and

$$\int_{B_{R}} |\nabla \psi_{\varepsilon,\rho}(x,t)|^{2} dx \le C \tag{4.5}$$

for all $t \in (0,T)$, and

$$\int_0^T \int_{B_R} A_{\varepsilon,\rho} (\Delta \psi_{\varepsilon,\rho})^2 dx dt \le C_0, \tag{4.6}$$

where C_0 is a positive constant depending only on θ .

Proof The inequality (4.4) follows from the maximum principle. In order to prove (4.5) and (4.6) we multiply (4.1) by $\Delta \psi_{\varepsilon,\rho}$ and integrate in $B_R \times (t,T)$ to obtain

$$\int_{t}^{T} \int_{B_{R}} \left\{ (\Delta \psi_{\varepsilon,\rho})(\psi_{\varepsilon,\rho})_{t} + A_{\varepsilon,\rho} [\Delta \psi_{\varepsilon,\rho}]^{2} \right\} dx d\tau = 0$$

for all $t \in (0, T)$.

We compute

$$\int_{t}^{T} \int_{B_{R}} (\Delta \psi_{\varepsilon,\rho}) (\psi_{\varepsilon,\rho})_{t} dx d\tau = -\frac{1}{2} \int_{B_{R}} |\nabla (\theta e^{-|x|})|^{2} dx + \frac{1}{2} \int_{B_{R}} |\nabla \psi_{\varepsilon,\rho}|^{2} dx$$

and then have

$$\frac{1}{2} \int_{B_R} |\nabla \psi_{\varepsilon,\rho}|^2 dx + \int_t^T \int_{B_R} A_{\varepsilon,\rho} [\Delta \psi_{\varepsilon,\rho}]^2 dx d\tau = \frac{1}{2} \int_{B_R} |\nabla (\theta e^{-|x|})|^2 dx,$$

which implies (4.5) and (4.6). Thus the proof is completed.

Lemma 4.2 The solution $\psi_{\varepsilon,\rho}$ of (4.1)-(4.3) satisfies

$$\psi_{\varepsilon,\rho}(x,t)| \le C_1 e^{-|x|} \tag{4.7}$$

for all $(x,t) \in B_R \times (s,T)$ with $s \in (0,T)$, where C_1 is a positive constant depending only on θ and N(s,T), and

$$N(s,T) = ||u||_{L^{\infty}(\mathbb{R} \times (s,T))} + ||v||_{L^{\infty}(\mathbb{R} \times (s,T))}.$$

Proof We consider the following functions

$$w^{\pm}(x,t) = \mp \psi_{\varepsilon,\rho}(x,t) + e^{1-|x|+\nu(T-t)},$$

where $\nu > 0$ will be determined later.

From (4.1)-(4.3) and Lemma 4.1, we have

$$w^{\pm}(x,t) \ge 0$$

on |x| = 1 and |x| = R, and

$$w^{\pm}(x,T) = \mp \theta e^{-|x|} + e^{1-|x|+\nu(T-T)} > 0,$$

and

$$\frac{\partial w^{\pm}}{\partial t} + A_{\varepsilon,\rho} \Delta w^{\pm} = \frac{\partial e^{1-|x|} + \nu(T-t)}{\partial t} + A_{\varepsilon,\rho} \Delta e^{1-|x|} + \nu(T-t)$$
$$= e^{1-|x|} + \nu(T-t) \left\{ A_{\varepsilon,\rho} - \nu \right\}.$$

Therefore, we can choose ν depending only on N(s,T) such that

$$\frac{\partial w^{\pm}}{\partial t} + A_{\varepsilon,\rho} \Delta w^{\pm} < 0$$

for all $(x,t) \in \{(-R,-1) \times (s,T)\} \cap \{(1,R) \times (s,T)\}$ with $s \in (0,T)$. Applying comparison principle, we have

$$w^{\pm}(x,t) \geq 0$$

for all $(x,t) \in \{(-R,-1) \times (s,T)\} \cap \{(1,R) \times (s,T)\}$ with $s \in (0,T)$. This implies (4.7). Thus the proof is completed.

Lemma 4.3 The solution $\psi_{\varepsilon,\rho}$ of (4.1)-(4.3) satisfies

$$|\nabla \psi_{\varepsilon,\rho}(x,t)| \le C_2 e^{-R} \tag{4.8}$$

for all $(x,t) \in \partial B_R \times (s,T)$ with $s \in (0,T)$, where C_1 is a positive constant depending only on θ and N(s,T).

Proof We consider the functions

$$z^{\pm}(x,t) = \mp \psi_{\varepsilon,\rho}(x,t) + K_1 e^{-R} [e^{K_2(|x|-R)} - 1]$$

for all $(x,t) \in \{(-R,-1) \times (0,T)\} \cap \{(1,R) \times (0,T)\}.$

Clearly, we have

$$z^{\pm}(x,t) = 0$$

for |x| = R, and

$$z^{\pm}(x,T) = \mp \theta e^{-|x|} + K_1 e^{-R} [e^{K_2(|x|-R)} - 1] < 0$$

for $x \in B_R \setminus B_{R-1}$.

Using Lemma 4.2 we can choose K_1 and K_2 large enough such that

$$z^{\pm}(x,t) = \mp \psi_{\varepsilon,\rho}(x,t) + K_1 e^{-R} [e^{-K_2} - 1] < 0$$

for |x| = R - 1. Clearly,

$$\frac{\partial z^{\pm}}{\partial t} + A_{\varepsilon,\rho} \Delta z^{\pm} = K_1 e^{-R} \cdot e^{K_2(|x|-R)} A_{\varepsilon,\rho} K_2^2 > 0$$

for $R-1 \leq |x| \leq R$. Therefore, by maximum principle, we have

$$z^{\pm}(x,t) < 0$$

for all $(x,t) \in [(-R,-(R-1)) \times (s,T)] \cap [(R-1,R) \times (s,T)]$ with $s \in (0,T)$, and

$$\frac{\partial z^{\pm}}{\partial x} \ge 0$$

on $\partial B_R \times (s,T)$ with $s \in (0,T)$. This implies

$$\mp \frac{\partial z^{\pm}}{\partial x} \ge -K_1 K_2 e^{-R}$$

on $\partial B_R \times (s,T)$ with $s \in (0,T)$. Thus the proof is completed.

Proof of the uniqueness in Theorem 1.1 We choose $\eta_{\alpha} \in C_0^{\infty}(B_R)$ such that

$$0 \le \eta_{\alpha}(x,t) \le 1 \quad \forall (x,t) \in B_R; \qquad \eta_{\alpha}(x,t) = 1 \quad \forall (x,t) \in B_{R-\alpha}$$

and

$$|\nabla \eta_{\alpha}(x,t)| \le C\alpha^{-1}, \qquad |\Delta \eta_{\alpha}(x,t)| \le C\alpha^{-2}$$

for all $x \in B_R$, where $0 < \alpha < R$ and C is a positive constant independent of R and α . Using Definition 1.1 we get

$$\int_{B_R} \eta_{\alpha} \psi_{\varepsilon,\rho} u(x,t) dx = \int_{B_R} \eta_{\alpha} \psi_{\varepsilon,\rho} u(x,s) dx + \int_s^t \int_{B_R} \eta_{\alpha} [\psi_{\varepsilon,\rho}]_t u(x,\tau) dx d\tau
+ \int_s^t \int_{B_R} u^m \Delta [\eta_{\alpha} \psi_{\varepsilon,\rho}] dx d\tau$$
(4.9)

and

$$\int_{B_R} \eta_{\alpha} \psi_{\varepsilon,\rho} v(x,t) dx = \int_{B_R} \eta_{\alpha} \psi_{\varepsilon,\rho} v(x,s) dx + \int_s^t \int_{B_R} \eta_{\alpha} [\psi_{\varepsilon,\rho}]_t v(x,\tau) dx d\tau
+ \int_s^t \int_{B_R} v^m \Delta [\eta_{\alpha} \psi_{\varepsilon,\rho}] dx d\tau$$
(4.10)

for a. e. s, t with 0 < s < t < T, where $\psi_{\varepsilon,\rho}$ is a solution of (4.1)-(4.3). By (4.9) and (4.10), we have

$$\begin{split} \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho}(u(x,t)-v(x,t)) dx \\ &= \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho}(u(x,t)-v(x,s)) dx + \int_s^t \int_{B_R} \eta_\alpha [\psi_{\varepsilon,\rho}]_t (u(x,\tau)-v(x,\tau)) dx d\tau \\ &+ \int_s^t \int_{B_R} (u^m-v^m) \Delta [\eta_\alpha \psi_{\varepsilon,\rho}] dx d\tau \end{split}$$

for a. e. s, t with 0 < s < t < T. By (4.1), we have

$$\begin{split} \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho}(u(x,t)-v(x,t)) dx \\ &= \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho}(u(x,t)-v(x,s)) dx \\ &+ \int_s^t \int_{B_R} \eta_\alpha [(u^m-v^m)-A_{\varepsilon,\rho}(u-v)] \Delta \psi_{\varepsilon,\rho} dx d\tau \\ &+ \int_s^t \int_{B_R} (u^m-v^m) [2\nabla \eta_\alpha \nabla \psi_{\varepsilon,\rho} + \psi_{\varepsilon,\rho} \Delta \eta_\alpha] dx d\tau \end{split}$$

for a. e. s, t with 0 < s < t < T. In addition, we also have

$$\begin{split} \int_{B_R} \eta_\alpha \theta e^{-|x|} (u(x,T) - v(x,T)) dx \\ &= \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho} (u(x,s) - v(x,s)) dx \\ &+ \int_s^t \int_{B_R} \eta_\alpha [(u^m - v^m) - A_{\varepsilon,\rho} (u-v)] \Delta \psi_{\varepsilon,\rho} dx d\tau \\ &+ \int_s^T \int_{B_R} (u^m - v^m) [2 \nabla \eta_\alpha \nabla \psi_{\varepsilon,\rho} + \psi_{\varepsilon,\rho} \Delta \eta_\alpha] dx d\tau \end{split} \tag{4.11}$$

for a. e. s, t with 0 < s < t < T.

By Lemma 4.1, we compute

$$\begin{split} \int_{s}^{T} \int_{B_{R}} \eta_{\alpha} [(u^{m} - v^{m}) - A_{\varepsilon,\rho}(u - v)] \Delta \psi_{\varepsilon,\rho} dx d\tau \\ &= \int_{s}^{T} \int_{B_{R}} \eta_{\alpha}(u - v) (A_{\varepsilon} - A_{\varepsilon,\rho}) \Delta \psi_{\varepsilon,\rho} dx d\tau \\ &- \varepsilon \int_{s}^{T} \int_{B_{R}} \eta_{\alpha}(u - v) \Delta \psi_{\varepsilon,\rho} dx d\tau \\ &\leq \left\{ \int_{s}^{T} \int_{B_{R}} [\eta_{\alpha}(u - v) \Delta \psi_{\varepsilon,\rho}]^{2} dx d\tau \right\}^{1/2} \cdot \left\{ \int_{s}^{T} \int_{B_{R}} |A_{\varepsilon} - A_{\varepsilon,\rho}|^{2} dx d\tau \right\}^{1/2} \\ &+ \varepsilon \int_{s}^{T} \left\{ \int_{B_{R}} |\eta_{\alpha}(u - v)|^{2} dx d\tau \right\}^{1/2} \cdot \int_{s}^{T} \left\{ \int_{B_{R}} |\Delta \psi_{\varepsilon,\rho}|^{2} dx d\tau \right\}^{1/2} \\ &\leq C \varepsilon^{-1/2} \left\{ \int_{s}^{T} \int_{B_{R}} |A_{\varepsilon} - A_{\varepsilon,\rho}|^{2} dx d\tau \right\}^{1/2} + C \varepsilon^{1/2}, \end{split}$$

which implies that

$$\int_{s}^{T} \int_{B_{R}} \eta_{\alpha} \left[(u^{m} - v^{m}) - A_{\varepsilon,\rho}(u - v) \right] \Delta \psi_{\varepsilon,\rho} dx d\tau
\leq C_{3} \varepsilon^{-1/2} \left\{ \int_{s}^{T} \int_{B_{R}} |A_{\varepsilon} - A_{\varepsilon,\rho}|^{2} dx d\tau \right\}^{1/2} + C_{3} \varepsilon^{1/2},$$
(4.12)

where C_3 is a positive constant independent of ε and ρ .

Using Lemma 4.3 we compute

$$\begin{split} \int_{s}^{T} \int_{B_{R}} (u^{m} - v^{m}) \left[2\nabla \eta_{\alpha} \nabla \psi_{\varepsilon,\rho} + \psi_{\varepsilon,\rho} \Delta \eta_{\alpha} \right] dx d\tau \\ &= \int_{s}^{T} \int_{B_{R}} (u^{m} - v^{m}) [2\nabla \eta_{\alpha} \nabla \psi_{\varepsilon,\rho}] dx d\tau + \int_{s}^{T} \int_{B_{R}} (u^{m} - v^{m}) [\psi_{\varepsilon,\rho} \Delta \eta_{\alpha}] dx d\tau \\ &\leq C\alpha^{-1} \int_{s}^{T} \int_{B_{R} \backslash B_{R-\alpha}} |\nabla \psi_{\varepsilon,\rho}| dx d\tau + C\alpha^{-2} \int_{s}^{T} \int_{B_{R} \backslash B_{R-1}} |\psi_{\varepsilon,\rho}| dx d\tau \\ &\leq C \sup_{(x,t) \in [B_{R} \backslash B_{R-1}] \times (s,T)} |\nabla \psi_{\varepsilon,\rho}| + C\alpha^{-1} \sup_{(x,t) \in [B_{R} \backslash B_{R-1}] \times (s,T)} |\psi_{\varepsilon,\rho}|, \end{split}$$

which implies that

$$\int_{s}^{T} \int_{B_{R}} (u^{m} - v^{m}) [2\nabla \eta_{\alpha} \nabla \psi_{\varepsilon, \rho} + \psi_{\varepsilon, \rho} \Delta \eta_{\alpha}] dx d\tau \\
\leq C_{4} \sup_{(x,t) \in [B_{R} \setminus B_{R-1}] \times (s,T)} |\nabla \psi_{\varepsilon, \rho}| + C_{4} \alpha^{-1} \sup_{(x,t) \in [B_{R} \setminus B_{R-1}] \times (s,T)} |\psi_{\varepsilon, \rho}|, \quad (4.13)$$

where C_4 is a positive constant independent of R, ε and ρ . By Lemma 4.1-Lemma 4.3, there exists a subsequence $\{\psi_{\varepsilon,\rho_i}\}$ of $\{\psi_{\varepsilon,\rho}\}$ such that

$$\psi_{\varepsilon,\rho_i}(\cdot,t) \to \psi_{\varepsilon}(\cdot,t)$$
 (4.14)

as $\rho_i \to 0^+$ in $C(B_R)$, where ψ_{ε} satisfies

$$|\psi_{\varepsilon}(x,t)| \le 1 \quad (x,t) \in B_R \times (0,T) \tag{4.15}$$

and

$$\int_{B_R} |\nabla \psi_{\varepsilon}(x,t)|^2 dx \le C_0 \quad t \in (0,T). \tag{4.16}$$

By (4.15) and (4.16), there exists a subsequence $\{\psi_{\varepsilon_i}\}$ of $\{\psi_{\varepsilon}\}$ such that

$$\psi_{\varepsilon_i}(\cdot, t) \to \psi_R(\cdot, t)$$
 (4.17)

as $\varepsilon_i \to 0^+$ in $C(B_R)$, where ψ_R satisfies

$$|\psi_R(x,t)| \le 1 \quad (x,t) \in B_R \times (0,T)$$
 (4.18)

and

$$\int_{B_R} |\nabla \psi_R(x,t)|^2 dx \le C_0 \quad t \in (0,T).$$
(4.19)

By (4.18) and (4.19), there exists a subsequence $\{\psi_{R_k}\}$ of $\{\psi\}$ such that

$$\psi_{R_k}(\cdot,t) \to \psi(\cdot,t)$$
 (4.20)

as $R_k \to +\infty$ in $C_{loc}(\mathbb{R})$, where ψ satisfies

$$|\psi(x,t)| \le 1 \quad (x,t) \in \mathbb{R} \times (0,T) \tag{4.21}$$

and

$$\int_{\mathbb{R}} |\nabla \psi(x,t)|^2 dx \le C_0 \quad t \in (0,T). \tag{4.22}$$

Combining (4.12)-(4.13) with (4.11) we conclude that

$$\begin{split} \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho}(u(x,t)-v(x,t)) dx \\ &= \int_{B_R} \eta_\alpha \psi_{\varepsilon,\rho}(u(x,s)-v(x,s)) dx \\ &\quad + C_3 \varepsilon^{-1/2} \left\{ \int_s^T \int_{B_R} |A_\varepsilon - A_{\varepsilon,\rho}|^2 dx d\tau \right\}^{1/2} + C_3 \varepsilon^{1/2} \\ &\quad + C_4 \sup_{(x,t) \in [B_R \backslash B_{R-1}] \times (s,T)} |\nabla \psi_{\varepsilon,\rho}| + C_4 \alpha^{-1} \sup_{(x,t) \in [B_R \backslash B_{R-1}] \times (s,T)} |\psi_{\varepsilon,\rho}|. \end{split}$$

Letting $\rho = \rho_i \to 0+$ and $\varepsilon = \varepsilon_j \to 0^+$ and using (4.14) and (4.17), we get

$$\int_{B_R} \theta e^{-|x|} (u(x,T) - v(x,T)) dx \le \int_{B_R} \psi_R(u(x,s) - v(x,s)) dx$$
$$\le C_4 e^{-R} + C_4 e^{-R}.$$

Letting $R = R_k \to +\infty$ and using (4.20) we get

$$\int_{\mathbb{R}} \theta e^{-|x|} (u(x,T) - v(x,T)) dx \le \int_{\mathbb{R}} \psi(u(x,s) - v(x,s)) dx.$$

Leting $s \to 0^+$ we have

$$\int_{\mathbb{R}} \theta e^{-|x|} (u(x,T) - v(x,T)) dx \le 0$$

for all $\theta \in C_0^{\infty}(\mathbb{R})$ with $|\theta| \leq 1$. This implies that

$$\int_{\mathbb{R}} e^{-|x|} |u(x,T) - v(x,T)| dx \le 0$$

for a.e. $T \in (0, +\infty)$. Therefore, we have

$$u(x,t) = v(x,t)$$

for a. e. $(x,t) \in Q_T$. Thus the proof is completed.

5. Proof of Theorem 1.2

In this section we shall prove Theorem 1.2.

Proof of Theorem 1.2 By Theorem 2.2, there exist two positive constants $\beta \in (0,1)$ and C independent of ε such that

$$|u_{\varepsilon}(x_1,t) - u_{\varepsilon}(x_2,t)| \le C|x_1 - x_2|^{\beta}$$

for all $x_i \in \mathbb{R}(i=1,2)$ and all $t \in (0,+\infty)$. Letting $\varepsilon = \varepsilon_j \to 0^+$ and using (3.3) we get

$$|u(x_1,t) - u(x_2,t)| \le C|x_1 - x_2|^{\beta}$$

for all $x_i \in \mathbb{R}(i = 1, 2)$ and all $t \in (\tau, +\infty)$. Thus, by the proof of Theorem 1.1, the proof is completed.

References

- [1] Stampacchia G. Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus. *Ann. Inst. Fourier (Grenoble)*, 1965, **15**(1): 189–258.
- Benilan P, Brezis H, Crandall M. A semilinear equation in L¹. Ann. Scuola Norm. Sup. Pisa, 1975, 2: 523-555.
- [3] Boccardo L, Gallouet T. Nonlinear elliptic and parabolic equations involving measure data, J. Func. Anal., 1989, 87: 149–169.
- [4] Boccardo L, Gallouet T. Nonlinear elliptic equations with right hand side measures. *Comm. Partial Differential Equations*, 1992, **17**(3/4): 641–655.
- [5] Del Vecchio T. Nonlinear elliptic equations with measure data, *Potential Anal.*, 1995, 4: 185–203.
- [6] Boccardo L. Some nonlinear Dirichlet problems in L^1 involving lower order terms in divergence form. in "Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994)", Pitman Rescarch Notes in Mathematics, Harlow, Longman, 1996, 43–57.
- [7] Dall'Aglio A, Orsina L. Existence results for some nonlinear parabolic equations with nonregular data. *Differential Integral Equations*, 1992, **5**(6): 1335–1354.
- [8] Boccardo L, Dall'Aglio A. Gallouet T. and Orsina L., Quasilinear parabolic equations with measure data. in "Proceedings of the Intenational Conference on Nonlinear Differential Equations, Kiev. 1995." to apper.
- [9] Blanchard D, Murat F. Renormalized solutions of nonlinear parabolic problems with L^1 data: Existence and uniqueness. *Proc. Roy. Soc. Edinburgh*, to appear.
- [10] Casas E., Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations, IMA Preprint, Ser.1290,1995.
- [11] Dall'Aglio A. Approximated solutions of equations with L^1 data, Application to the H-convergence of quasilinear parabolic equations. 1996, Ann. Mat. Pure Appl., 170: 207–240.
- [12] Aronson D G, Benilan Ph. Regularte des solutions de l'equation des milieux poreux dans \mathbb{R}^N . C. R. Acad. Sci., Paris Ser A-B, 1979, **288**: 103-105.
- [13] Crandall M G, Pierre M. Regularizing effects for $u_t = \Delta \varphi(u)$. Transactions of the American Mathematical Society, 1982, **274**(1): 159–168.

- [14] Yuan Hongjun. Hölder continuity of interfaces for the porous medium equation with absorption. Communications in Partial Differential Equations, 1993, 18(5/6): 965-976.
- [15] Yuan Hongjun. Existence and uniqueness of BV solutions for a conservation law with σ finite Borel measures as initial conditions. *Journal of Differential Equations*, 1998, **146**: 90-120.
- [16] Yuan Hongjun. Source-type solutions of a singular conservation law with absorption. Non-linear Analysis: Theory, Methods and Applications, 1998, **32**(4): 467-492.
- [17] Yuan Hongjun. Extinction and positivity for the evolution p- Laplacian equation. *Journal of Mathematics Analysis and Application*, 1995, **196**: 754-763.
- [18] Yuan Hongjun. The Cauchy problem for a singular conservation law with measures as initial conditions. *Journal of Mathematics Analysis and Applications*, 1998, **225**: 427-439.
- [19] Yuan Hongjun. Extinction and positivity for the non-Newtonian polytropic filtration equation. *Journal of Partial Differential Equations*, 1996, **9**(2): 169-176.
- [20] Yuan Hongjun. Cauchy's problem for degenerate quasilinear hyperbolic equations with measures as initial value. *Journal of Partial Differential Equations*, 1999, **12**(2): 149-178.
- [21] Prignet A., Existence and uniqueness of "entropy" solutions of parabolic problems with L¹ data, Nonlinear Anal., 1997, 28: 1943–1954.
- [22] Zhao Junning, Yuan Hongjun. Uniqueness of the solutions of $u_t = \Delta u^m$ and $u_t = \Delta u^m u^p$ with initial datum a measures: the fast diffusion case. J. Partial Diff. Eqs., 1994, 7: 143–159.